
Document Parsing

Paolo Ferragina
Dipartimento di Informatica

Università di Pisa

Tokenizer

Token stream. Friends Romans Countrymen

Inverted index construction

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Sec. 1.2

Tokenizer

Token stream. Friends Romans Countrymen

Inverted index construction

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Sec. 1.2

Parsing a document

 What format is it in?
 pdf/word/excel/html?

 What language is it in?
 What character set is in use?

Each of these is a classification problem.

But these tasks are often done heuristically …

Tokenization

 Input: “Friends, Romans and Countrymen”
 Output: Tokens

 Friends
 Romans
 Countrymen

 A token is an instance of a sequence of
characters

 Each such token is now a candidate for an
index entry, after further processing

 But what are valid tokens to emit?

Tokenization: terms and numbers

 Issues in tokenization:
 Barack Obama: one token or two?
 San Francisco?
 Hewlett-Packard: one token or two?
 B-52, C++, C#
 Numbers ? 24-5-2010
 192.168.0.1

Tokenization: terms and numbers

 Issues in tokenization:
 Barack Obama: one token or two?
 San Francisco?
 Hewlett-Packard: one token or two?
 B-52, C++, C#
 Numbers ? 24-5-2010
 192.168.0.1
 Lebensversicherungsgesellschaftsan

gestellter == life insurance company
employee in german!

Stop words

 We exclude from the dictionary the most
common words (called, stopwords). Intuition:

 They have little semantic content: the, a, and, to, be
 There are a lot of them: ~30% of postings for top 30 words

 But the trend is away from doing this:
 Good compression techniques (lecture!!) means the space

for including stopwords in a system is very small
 Good query optimization techniques (lecture!!) mean you

pay little at query time for including stop words.
 You need them for phrase queries or titles. E.g., “As we may

think”

Stop words

 We exclude from the dictionary the most
common words (called, stopwords). Intuition:

 They have little semantic content: the, a, and, to, be
 There are a lot of them: ~30% of postings for top 30 words

 But the trend is away from doing this:
 Good compression techniques (lecture!!) means the space

for including stopwords in a system is very small
 Good query optimization techniques (lecture!!) mean you

pay little at query time for including stop words.
 You need them for phrase queries or titles. E.g., “As we may

think”

Normalization to terms

 We need to “normalize” terms in indexed text
and query words into the same form
 We want to match U.S.A. and USA

 We most commonly implicitly define
equivalence classes of terms by, e.g.,
 deleting periods to form a term

 U.S.A., USA USA

 deleting hyphens to form a term
 anti-discriminatory, antidiscriminatory

antidiscriminatory

 C.A.T. cat ?

Normalization to terms

 We need to “normalize” terms in indexed text
and query words into the same form
 We want to match U.S.A. and USA

 We most commonly implicitly define
equivalence classes of terms by, e.g.,
 deleting periods to form a term

 U.S.A., USA USA

 deleting hyphens to form a term
 anti-discriminatory, antidiscriminatory

antidiscriminatory

 C.A.T. cat ?

Case folding
 Reduce all letters to lower case

 exception: upper case in midsentence?
 e.g., General Motors
 SAIL vs. sail
 Bush vs. bush

 Often best to lower case everything, since users
will use lowercase regardless of ‘correct’
capitalization…

Case folding
 Reduce all letters to lower case

 exception: upper case in midsentence?
 e.g., General Motors
 SAIL vs. sail
 Bush vs. bush

 Often best to lower case everything, since users
will use lowercase regardless of ‘correct’
capitalization…

Thesauri

 Do we handle synonyms and homonyms?
 E.g., by hand-constructed equivalence classes

 car = automobile color = colour

 We can rewrite to form equivalence-class terms
 When the document contains automobile, index it under

car-automobile (and vice-versa)

 Or we can expand a query
 When the query contains automobile, look under car as

well

Thesauri

 Do we handle synonyms and homonyms?
 E.g., by hand-constructed equivalence classes

 car = automobile color = colour

 We can rewrite to form equivalence-class terms
 When the document contains automobile, index it

under car-automobile (and vice-versa)

 Or we can expand a query
 When the query contains automobile, look under car

as well

Stemming

 Reduce terms to their “roots” before indexing
 “Stemming” suggest crude affix chopping

 language dependent
 e.g., automate(s), automatic, automation all

reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s algorithm

Stemming

 Reduce terms to their “roots” before indexing
 “Stemming” suggest crude affix chopping

 language dependent
 e.g., automate(s), automatic, automation all

reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s algorithm

Lemmatization

 Reduce inflectional/variant forms to base form
 E.g.,

 am, are, is be
 car, cars, car's, cars' car

 Lemmatization implies doing “proper”
reduction to dictionary headword form

Lemmatization

 Reduce inflectional/variant forms to base form
 E.g.,

 am, are, is be
 car, cars, car's, cars' car

 Lemmatization implies doing “proper”
reduction to dictionary headword form

Language-specificity

 Many of the above features embody
transformations that are
 Language-specific and
 Often, application-specific

 These are “plug-in” addenda to indexing

 Both open source and commercial plug-ins are
available for handling these

Sec. 2.2.4

Does stemming help?

 English: very mixed results. Helps recall for
some queries but harms precision on others

 operative, operational, operations → oper

 Definitely useful for Spanish, German (with
compound splitting) Finnish, …

 30% performance gains for Finnish!

Sec. 2.2.4

Introduction to Information RetrievalIntroduction to Information Retrieval

Index parameters vs. what we index (details

IIR Table 5.1, p.80)

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

Size (K) ∆% cumul
%

Size (K) ∆
%

cumul
%

Size (K) ∆
%

cumul
%

Unfiltered 484 109,971 197,879

No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9

Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9

30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38

150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52

stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Exercise: give intuitions for all the ‘0’ entries. Why do some zero
entries correspond to big deltas in other columns?

Sec. 5.1

22

Statistical properties of text

Paolo Ferragina
Dipartimento di Informatica

Università di Pisa

Statistical properties of texts

 Tokens are not distributed uniformly. They
follow the so called “Zipf Law”

 Few tokens are very frequent
 A middle sized set has medium frequency
 Many are rare

 The first 100 tokens sum up to 50% of the text,
and many of them are stopwords

 k-th most frequent token has frequency f(k)
approximately 1/k;

 Equivalently, the product of the frequency f(k) of a
token and its rank k is a constant

 Scale invariant: f(b*k) = bs * f(k)

The Zipf Law, in detail

f(k) = c / k
 s

sk * f(k) = c
f(k) = c / k

General Law

An example of “Zipf curve”

 Taking the logarithm f(k) = c/ks yields

log(f(k)) = log c – s log k

 If we plot log(f(k)) vs log (k) we get

 y = log c - s x

ie a line with slope -s

Some math

A log-log plot for a Zipf’s curve

Distribution vs Cumulative distr

Sum after the k-th element is ≤ f(k) * k/(s-1)
Sum up to the k-th element is ≥ f(k) * k

Power-law with smaller exponentLog-log plot

Other statistical properties of texts

 The number of distinct tokens grows as
 The so called “Heaps Law” (nwhere <1, typically 0.5,

where n is the total number of tokens)

 The average token length grows as (log n)

 Interesting words are the ones with medium
frequency (Luhn)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

