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¨  Pointwise 
¤  Each query-document pair is associated with a score 
¤  The objective is to predict such score 

n  can be considered a regression problem 
¤  Does not consider the position of a document into the result list 

¨  Pairwise 
¤  We are given pairwise preferences, d1 is better than d2 for query q 
¤  The objective is to predict a score that preserves such 

preferences 
n  Can be considered a classification problem 

¤  It partially considers the position of a document into the result list 
¨  Listwise 

¤  We are given the ideal ranking of results for each query 
n  NB. It might not be trivial to produce such training set 

¤  Objective maximize the quality of the resulting ranked list 
n  We need some improved approach… 

Learning to Rank approaches 



¨  What did we get ? 
¤ C is minimum if all pairs are ranked in the proper 

order, therefore by minimizing C we improve 
NDCG 
n  this does not imply that the optimal solution for C is the 

optimal solution for NDCG or other quality measures 

¤ we can compute the gradient of C 
n  If h is differentiable then also Y and C are 

¨  We can directly apply steepest descent 
¤ Just need derivatives of h, i.e. BM25F 

RankNet 

C = log(1 + eY ) = log

⇣
1 + eh(d2)�h(d1)

⌘



¨  The trick is in the representation 

¨  Trees can represent complex functions, where 
nodes are operations and leaves are features 

¨  Crossover is performed by exchanging 
subtrees at random 

Genetic Algorithms 



¨  Classification technique, aiming at maximizing 
the generalization power of its classification 
model 

¤ Given the above points in a 2D space, what is the 
line that best “separates” the squares from the 
circle? 

Support Vector Machines 



¨  Let yi∈{+1,-1} be the class of the i-th instance,  
the (linear) SVM (binary) classification problem is: 
 
¤ Minimize       ½ |w|2 

¤  Subject to:   yi (wTxi + b) ≥ 1 

                  or:   yi (wTxi + b) -1 ≥ 0 

 
¤  Since the objective function is quadratic, and the 

constrains are linear in w and b, this is know to be a 
convex optimization problem. 

Linear SVM formulation 



¨  Idea: 
¤ First transform the data, potentially mapping to a 

space with higher dimensionality, 
then use a linear decision boundary as before.  
 

¤ Minimize       ½ |w|2 

¤ Subject to:   yi (wTΦ(xi) + b) ≥ 1 

¤ The dual is: 

Nonlinear SVM 
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¨  We need to relax the previous constraints, 
introducing slack variables 𝜉i ≥ 0 

 
¤ Minimize         ½ |w|2   +  C ∑ 𝜉i

 
i
 

¤  Subject to:     yi (wTxi + b) ≥  1 - 𝜉i 
                                                       𝜉i≥ 0 i≥ 0 

¤ At the same time, this relaxation must be 
minimized. 

¤ C defines the trade-off between training error and 
large margin 

¤ The problem has the same dual formulation as 
before, with addition constraint 0 ≤λi ≤ C 

Soft margin 



¨  In case of a linear combination of features: 
h(d) = wTd 

¨  Our objective is to find w, such that: 
¤  h(di) ≥ h(dj) 
¤  wTdi ≥ wTdj 
¤  wT(di – dj) ≥ 0 

¨  We approximate by adding slack variables 𝜉 and 
minimizing this “relaxation” 
¤  given the k-th document pair, find the weights w such that 

       
              wT(di – dj) ≥ 1-𝜉k        with  𝜉k≥ 0 
 
and 𝜉k is minimum 
 

(Linear) Ranking SVM 



¨  The full formulation of the problem is 

¤ Minimize         ½|w|2  +  C ∑k 𝜉k 

¤  Subject to      wT(di – dj) ≥ 1-𝜉k  
                                                      𝜉k≥ 0   

¤ where C allows to trade-off error between the margin 
(|w|2 ) and the training error (∑k 𝜉k) 

¨  This is an SVM classification problem ! 
¤  Is convex, with no local optima, it can be generalized 

to non-linear functions of documents features. 

(Linear) Ranking SVM 



¨  We might not realized that 
some queries are really badly 
ranked 

¨  Top result pairs should be more 
important than other pairs 

¨  In general, the number of 
document pairs violations, 
might not be a good indicator 

Issues of the pairwise approach 



¨  Goal: 
¤ Optimize the NDCG score for each query 

¨  Tools: 
¤ Gradient Boosted Regression Trees 
¤ A modified cost function, stemming from RankNet 

List-wise approach: Lamda-MART 



¨  Machine Learning Tool for predicting a continuos variable 
¤  given features X={X1, …, Xn} predict variable Y 

¨  A Regression Tree is a tree where: 
¤  an internal node is a predicate on some feature 
¤  a leaf is the prediction 
¤  note: every node induces a partitioning/splitting of the data 

¨  A RT is build on the basis of some training set 
¤  find the tree that best predicts Y on the training data 

What is Regression Tree ? 

20 

80 

80 

40 
65 

18 

BMI 

AGE Dose=Function (BMI,AGE) 

24 

AGE<65 

80 

80 

BMI<24 

AGE<18 

40 20 

Y 

Y 

Y 

N 

N 

N 



¨  For each attribute: 
¤  For each possible predicate, i.e., splitting criteria 
¤  Compute the prediction for the left and right child 

n  Predicted value is the average of the target variable on the 
corresponding instances 

¤  Compute the goodness of the split 
n  Error reduction, usually measured as Mean Squared Error 
n  New error is given by the average distance of the target variable from the 

new prediction: the variance ! 
¤  Take the split with the best error reduction, i.e. smallest variance 

¨  Then: 
¤  Split the data according to the chosen split criterion 
¤  and repeat recursively for generating new nodes 

¨  Note: 
¤  A new node will not degrade prediction 

How to choose the best split ? 



¨  We want to learn a predictor incrementally: 

¨  Input: a learning sample {(xi,yi): i=1,…,N} 
¨  Initialize 

¤  Baseline preticts the average label value  
¤  ŷ0(x) = 1/N ∑i yi ;       ri=yi, i=1,…,N 

¨  For t=1 to M: 
¤  Regression tree predicts the residual error 
¤  For i=1 to N, compute the residuals 

   ri ← ri -ŷm-1(xi) 
¤  Build a regression tree from the learning sample {(xi,ri): i=1,…,N} 
¤  The prediciton of the new regression tree is denoted with ŷm 

¨  Return the model ŷ(x)= ŷ0(x)+ŷ1(x)+…+ŷM(x)  

¨  Function fm should be easy to be learnt: 
¨  Decision stump: trees with one node and two leaves 

What is a Boosted Regression Tree ? 
MART (multiple additive regression trees) 

F

⇤(x) =
MX

m=0

fm(x)



¨  We want to learn a predictor incrementally: 

 
¤ where fm is sufficiently easy to be learnt 

n chosen from a family H 
n E.g. decision stumps, or small trees 

¤ each fi reduces the error/cost function 
¤  f0 is an initial guess (e.g., average) 

¨  How to find the best fi at each step ? 
¤ We use steepest descent and line search to find fi 
 

What is a Gradient Boosted Regression Tree ? 

F

⇤(x) =
MX

m=0

fm(x)



¨  Let C(yi, Fm-1(xi)) be the error  in predicting yi with Fm-1 (xi) at the step m-1 

¨  To improve Fm-1(xi) we should compute the gradient gm of C 
¤  Given the gradient the new approximation should be as follows 
¤   Fm(xi) = Fm-1(xi) -  𝛾m gm 

 
¨  Note that we are looking for a tree being equivalent to the gradient of Fm-1 ! 

¨  Since gm may not be in H, we search for the best approximation: 
¤  Compute the value of gradient of the cost function at each training instance 

n  This is independent from the fact that Fm-1 is a tree 

¤  Find the tree h in H that best approximates gm 
n  This is a simple regression tree learning 

 
¨  Finally, line search is used to find the best weight of the tree 
 
¨  The new estimated score function Fm is:  

Gradient Boosting and Regression Trees 

Fm(x) = Fm�1(x) + ⇢mhm(x)



¨  Recall the RankNet cost function 

¨  Let’s denote with w the parameters of h 

¤  where we define: 

¨  The update rule of the weights w with steepest descent is: 

¨  equivalently 

GBRT can optimize any cost function…  
so which one ? 
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¨  λi  is a single magic number 
for each URL assessing 
whether it is well ranked and 
how much far is from it 

¨  Note that λi  depends on 
number of violoated pairwise 
constraints 
¤  Becasue it comes directly from 

the RankNet cost 

What did we get ? 
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From left to right, the number of 
pairwise violations decreases from 13 
to 7 (good for RankNet) 
 
Black arrows are RankNet Gradients, 
read are what we want 



¨  Observation 1: 
¤  GBRT only need to be able to compute gradients of the cost function 

¨  Observation 2: 
¤  λij  are exactly the gradients of the cost function w.r.t. the document 

scoring function h 

¨  Conclusion 1: 
¤  We can plugλij into a GBRT so that at each iteration a new tree is 

found that approximates λij  

¨  Observation 2: 
¤  Since we want to optimize NDCG, we can improve λij  so that they 

take into account the change in NDCG due to swapping i with j 

¨  Result: 

How to optimize NDCG ? 
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¨  Input: a learning sample {(xi,yi): i=1,…,N} 
¨  Initialize 

¤  Baseline preticts the average label value  
¤  ŷ0(x) = 1/N ∑i yi ;       ri=yi, i=1,…,N 

¨  For t=1 to M: 
¤  Regression tree predicts the corrected lambdas 
¤  For i=1 to N, compute the pseudo-residuals 

   ri ← λi 
¤  Build a regression tree from the learning sample {(xi,ri): i=1,…,N} 
¤  The prediciton of the new regression tree is denoted with ŷm 

¨  Return the model ŷ(x)= ŷ0(x)+ŷ1(x)+…+ŷM(x)  

¨  Note that the final prediction is not close to yi, but, since 
it optimized lambdas, it optimizes the final NDCG. 

Lambda-MART 



¨  Results are from the Yahoo! Learning to rank 
challenge 

¨  The winner of the challenge used a 
combination of several Lambda-MART models 

Performance 



¨  Explicit 
¤ Ask users to rate result  

n  (by the page or by the snippet) 

¨  Implicit 
¤  Process logs to get information about: 

n  Clicks 
n  Query reformulation 

¨  Fancier… 
¤  Eye tracking 

n  Fixation: spatially stable gaze 
lasting for approximately 200–300 ms  

¨  Goals: 
¤  Build a training set 
¤  Evaluate our search engine 

How to Exploit User feedback 



¨  Phase I: 
¤ Use Google to answer 10 questions 

n 34 user recruited 

¤  Is there any rank bias ? 

¨  Phase II: 
¤ Answer the same questions with a “modified 

Google” 
n 27 users recruited 

¤ Modifications: 
n SWAPPED: swap the top 2 results 
n REVERSED: reverse top-10 results 

Experiment Set-up 



n  Phase I: 1.9 queries per question, 0.9 clicks per query 
n  Phase II: 2.2 queries per question, 0.8 clicks per query 

Questions 



¨  Phase I: 
¤ “order the results by how promising their abstracts 

are for leading to information that is relevant to 
answering the question “ 

¨  Phase II: 
¤ same as Phase I 
¤ Assessment of results by looking at the webpage 

without any provided snippet 

Explicit Feedback 



¨  First result receives a large number of clicks w.r.t. to the 
number of fixations 

¨  There is drop after page scroll 

Which Links Did Users View and Click?  



¨  Yes, but the first 2 results are seen almost at the same 
time 

¨  Scroll is after the 6th result 

Did Users Scan Links from Top to Bottom?  



 
¨  Users check most of the results above the click 
¨  Almost no attention below the click 
¨  An exception is the first link below the click 

Which Links Did Users Evaluate Before Clicking?  
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Does Relevance Influence User Decisions?  



¨  Average number of clicks changes from 2.1 to 2.45 
¨  The quality of the system impact on the clicks 
¨  Trust bias and quality bias make it difficult to use 

clicks as an absolute measure of result quality 

Does Relevance Influence User Decisions?  



¨  Can we use clicks to compare results ? 
¨  Idea:  

¤ exploit clicked and non clicked results 

¨  Strategy 1: CLICK > SKIP ABOVE  
¨  Example: 

¤  l1∗   l2   l3∗   l4    l5∗   l6    l7  
¤  l3>l2, l5>l4 , l5>l2 

¨  Measure the goodness of these constraints as the 
ratio of agreement with relevance judgments 

Are Clicks Relative Relevance Judgments 
Within One Results Page? 



¨  Idea:  
¤  Latest click is the most important 

¨  Strategy 2: LAST CLICK > SKIP ABOVE  
¨  Example: 

¤  l1∗   l2   l3∗   l4    l5∗   l6    l7  
¤  l5>l4 , l5>l2 

¨  Idea:  
¤  Earlier clicks are less important 

¨  Strategy 3: CLICK > EARLIER CLICK 
¨  Example: 

¤  l1∗   l2   l3∗   l4    l5∗   l6    l7     (l3 then l1 then l5) 
¤  l1>l3 , l5>l1 , l5>l3 

Are Clicks Relative Relevance Judgments 
Within One Results Page? 



¨  Idea:  
¤  Previous result receives lot of attention 

¨  Strategy 4: CLICK > SKIP PREVIOUS 
¨  Example: 

¤  l1∗   l2   l3∗   l4    l5∗   l6    l7  
¤  l3>l2 , l5>l4 

¨  Idea:  
¤ Next result receives lot of attention 

¨  Strategy 5: CLICK > NO-CLICK NEXT 
¨  Example: 

¤  l1∗   l2   l3∗   l4    l5∗   l6    l7 
¤  l1>l2 , l3>l4 , l5>l6 

Are Clicks Relative Relevance Judgments 
Within One Results Page? 



¨  CLICK > SKIP ABOVE: performs well, close to the judge agreement 

¨  LAST CLICK > SKIP ABOVE: slightly improves 

¨  CLICK > EARLIER CLICK: not performing well 

¨  CLICK > SKIP PREVIOUS: No statistically significant difference with 
CLICK > SKIP ABOVE 

¨  CLICK > NO-CLICK NEXT: is it useful ? 



¨  Observations: 
¤ Clicked top queries are not very involved in the 

generated frequencies 
¤ Users run sequence of queries before satisfying their 

information need 

¨  Strategy 1: CLICK > SKIP EARLIER 
¨  Strategy 2: LAST CLICK > SKIP EARLIER 
¨  Strategy 3: CLICK > CLICK EARLIER 
¨  Strategy 4: CLICK > TOP 1 NO CLICK EARLIER 
¨  Strategy 5: CLICK > TOP 2 NO CLICK EARLIER 
¨  Strategy 6: TOP 1 > TOP 1 EARLIER 

Are Clicks Relative Relevance Judgments 
Within a Query Chain? 



¨  The performance of CLICK > TOP 2 NO CLICK 
EARLIER suggest that query reformulation is a 
strong evidence of document poor quality 

Are Clicks Relative Relevance Judgments 
Within a Query Chain? 



¨  RankLib: 
¤ http://sourceforge.net/p/lemur/wiki/RankLib/ 

Software tools 



¨  Machine learning frameworks are necessary for 
modern web search engines 

¨  Creating a training dataset is expensive 
¤  Potentially requires users to evaluate a large number 

of queries and results 

¨  Click data can be successfully transformed in pair-
wise preferences: 
¤  To estimate the quality of the system 
¤  To create a training set of a learning-to-rank approach 

¨  Several approaches have been developed 
¤  They succeed in the non trivial task of optimizing 

complex IT evaluation measures such as NDCG. 

Conclusions 
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The End 


