
LEARNING TO RANK
Claudio Lucchese
claudio.lucchese@isti.cnr.it

¨  Pointwise
¤  Each query-document pair is associated with a score
¤  The objective is to predict such score

n  can be considered a regression problem
¤  Does not consider the position of a document into the result list

¨  Pairwise
¤  We are given pairwise preferences, d1 is better than d2 for query q
¤  The objective is to predict a score that preserves such

preferences
n  Can be considered a classification problem

¤  It partially considers the position of a document into the result list
¨  Listwise

¤  We are given the ideal ranking of results for each query
n  NB. It might not be trivial to produce such training set

¤  Objective maximize the quality of the resulting ranked list
n  We need some improved approach…

Learning to Rank approaches

¨  What did we get ?
¤ C is minimum if all pairs are ranked in the proper

order, therefore by minimizing C we improve
NDCG
n  this does not imply that the optimal solution for C is the

optimal solution for NDCG or other quality measures

¤ we can compute the gradient of C
n  If h is differentiable then also Y and C are

¨  We can directly apply steepest descent
¤ Just need derivatives of h, i.e. BM25F

RankNet

C = log(1 + eY) = log

⇣
1 + eh(d2)�h(d1)

⌘

¨  The trick is in the representation

¨  Trees can represent complex functions, where
nodes are operations and leaves are features

¨  Crossover is performed by exchanging
subtrees at random

Genetic Algorithms

¨  Classification technique, aiming at maximizing
the generalization power of its classification
model

¤ Given the above points in a 2D space, what is the
line that best “separates” the squares from the
circle?

Support Vector Machines

¨  Let yi∈{+1,-1} be the class of the i-th instance,
the (linear) SVM (binary) classification problem is:

¤ Minimize ½ |w|2

¤  Subject to: yi (wTxi + b) ≥ 1

 or: yi (wTxi + b) -1 ≥ 0

¤  Since the objective function is quadratic, and the

constrains are linear in w and b, this is know to be a
convex optimization problem.

Linear SVM formulation

¨  Idea:
¤ First transform the data, potentially mapping to a

space with higher dimensionality,
then use a linear decision boundary as before.

¤ Minimize ½ |w|2

¤ Subject to: yi (wTΦ(xi) + b) ≥ 1

¤ The dual is:

Nonlinear SVM

LD =
X

i

�i �
1

2

X

ij

�i�jyiyj�(xi)�(xj)

¨  We need to relax the previous constraints,
introducing slack variables 𝜉i ≥ 0

¤ Minimize ½ |w|2 + C ∑ 𝜉i

i

¤  Subject to: yi (wTxi + b) ≥ 1 - 𝜉i
 𝜉i≥ 0 i≥ 0

¤ At the same time, this relaxation must be
minimized.

¤ C defines the trade-off between training error and
large margin

¤ The problem has the same dual formulation as
before, with addition constraint 0 ≤λi ≤ C

Soft margin

¨  In case of a linear combination of features:
h(d) = wTd

¨  Our objective is to find w, such that:
¤  h(di) ≥ h(dj)
¤  wTdi ≥ wTdj
¤  wT(di – dj) ≥ 0

¨  We approximate by adding slack variables 𝜉 and
minimizing this “relaxation”
¤  given the k-th document pair, find the weights w such that

 wT(di – dj) ≥ 1-𝜉k with 𝜉k≥ 0

and 𝜉k is minimum

(Linear) Ranking SVM

¨  The full formulation of the problem is

¤ Minimize ½|w|2 + C ∑k 𝜉k

¤  Subject to wT(di – dj) ≥ 1-𝜉k
 𝜉k≥ 0

¤ where C allows to trade-off error between the margin
(|w|2) and the training error (∑k 𝜉k)

¨  This is an SVM classification problem !
¤  Is convex, with no local optima, it can be generalized

to non-linear functions of documents features.

(Linear) Ranking SVM

¨  We might not realized that
some queries are really badly
ranked

¨  Top result pairs should be more
important than other pairs

¨  In general, the number of
document pairs violations,
might not be a good indicator

Issues of the pairwise approach

¨  Goal:
¤ Optimize the NDCG score for each query

¨  Tools:
¤ Gradient Boosted Regression Trees
¤ A modified cost function, stemming from RankNet

List-wise approach: Lamda-MART

¨  Machine Learning Tool for predicting a continuos variable
¤  given features X={X1, …, Xn} predict variable Y

¨  A Regression Tree is a tree where:
¤  an internal node is a predicate on some feature
¤  a leaf is the prediction
¤  note: every node induces a partitioning/splitting of the data

¨  A RT is build on the basis of some training set
¤  find the tree that best predicts Y on the training data

What is Regression Tree ?

20

80

80

40
65

18

BMI

AGE Dose=Function (BMI,AGE)

24

AGE<65

80

80

BMI<24

AGE<18

40 20

Y

Y

Y

N

N

N

¨  For each attribute:
¤  For each possible predicate, i.e., splitting criteria
¤  Compute the prediction for the left and right child

n  Predicted value is the average of the target variable on the
corresponding instances

¤  Compute the goodness of the split
n  Error reduction, usually measured as Mean Squared Error
n  New error is given by the average distance of the target variable from the

new prediction: the variance !
¤  Take the split with the best error reduction, i.e. smallest variance

¨  Then:
¤  Split the data according to the chosen split criterion
¤  and repeat recursively for generating new nodes

¨  Note:
¤  A new node will not degrade prediction

How to choose the best split ?

¨  We want to learn a predictor incrementally:

¨  Input: a learning sample {(xi,yi): i=1,…,N}
¨  Initialize

¤  Baseline preticts the average label value
¤  ŷ0(x) = 1/N ∑i yi ; ri=yi, i=1,…,N

¨  For t=1 to M:
¤  Regression tree predicts the residual error
¤  For i=1 to N, compute the residuals

 ri ← ri -ŷm-1(xi)
¤  Build a regression tree from the learning sample {(xi,ri): i=1,…,N}
¤  The prediciton of the new regression tree is denoted with ŷm

¨  Return the model ŷ(x)= ŷ0(x)+ŷ1(x)+…+ŷM(x)

¨  Function fm should be easy to be learnt:
¨  Decision stump: trees with one node and two leaves

What is a Boosted Regression Tree ?
MART (multiple additive regression trees)

F

⇤(x) =
MX

m=0

fm(x)

¨  We want to learn a predictor incrementally:

¤ where fm is sufficiently easy to be learnt

n chosen from a family H
n E.g. decision stumps, or small trees

¤ each fi reduces the error/cost function
¤  f0 is an initial guess (e.g., average)

¨  How to find the best fi at each step ?
¤ We use steepest descent and line search to find fi

What is a Gradient Boosted Regression Tree ?

F

⇤(x) =
MX

m=0

fm(x)

¨  Let C(yi, Fm-1(xi)) be the error in predicting yi with Fm-1 (xi) at the step m-1

¨  To improve Fm-1(xi) we should compute the gradient gm of C
¤  Given the gradient the new approximation should be as follows
¤  Fm(xi) = Fm-1(xi) - 𝛾m gm

¨  Note that we are looking for a tree being equivalent to the gradient of Fm-1 !

¨  Since gm may not be in H, we search for the best approximation:
¤  Compute the value of gradient of the cost function at each training instance

n  This is independent from the fact that Fm-1 is a tree

¤  Find the tree h in H that best approximates gm
n  This is a simple regression tree learning

¨  Finally, line search is used to find the best weight of the tree

¨  The new estimated score function Fm is:

Gradient Boosting and Regression Trees

Fm(x) = Fm�1(x) + ⇢mhm(x)

¨  Recall the RankNet cost function

¨  Let’s denote with w the parameters of h

¤  where we define:

¨  The update rule of the weights w with steepest descent is:

¨  equivalently

GBRT can optimize any cost function…
so which one ?

�w = �⇢
X

ij

✓
�ij

@h(di)

@w
� �ij

@h(dj)

@w

◆

�i =
X

di�dj

�ij �
X

dj�di

�ij

C = log(1 + eY) = log

⇣
1 + eh(d2)�h(d1)

⌘

@C

@w
=

@C

@h(d1)

@h(d1)

@w
+

@C

@h(d2)

@h(d2)

@w
=

1

1 + e�Y

✓
@h(d1)

@w
� @h(d2)

@w

◆

�12 =
1

1 + e�Y

�w = �⇢
X

i

�i
@h(di)

@w

¨  λi is a single magic number
for each URL assessing
whether it is well ranked and
how much far is from it

¨  Note that λi depends on
number of violoated pairwise
constraints
¤  Becasue it comes directly from

the RankNet cost

What did we get ?

�i =
X

di�dj

�ij �
X

dj�di

�ij

From left to right, the number of
pairwise violations decreases from 13
to 7 (good for RankNet)

Black arrows are RankNet Gradients,
read are what we want

¨  Observation 1:
¤  GBRT only need to be able to compute gradients of the cost function

¨  Observation 2:
¤  λij are exactly the gradients of the cost function w.r.t. the document

scoring function h

¨  Conclusion 1:
¤  We can plugλij into a GBRT so that at each iteration a new tree is

found that approximates λij

¨  Observation 2:
¤  Since we want to optimize NDCG, we can improve λij so that they

take into account the change in NDCG due to swapping i with j

¨  Result:

How to optimize NDCG ?

�ij =
1

1 + e�Y
|�NDCG| =

1

1 + e�Y

�
2

li � 2

lj
�✓

log

✓
1

1 + i

◆
� log

✓
1

1 + j

◆◆

¨  Input: a learning sample {(xi,yi): i=1,…,N}
¨  Initialize

¤  Baseline preticts the average label value
¤  ŷ0(x) = 1/N ∑i yi ; ri=yi, i=1,…,N

¨  For t=1 to M:
¤  Regression tree predicts the corrected lambdas
¤  For i=1 to N, compute the pseudo-residuals

 ri ← λi
¤  Build a regression tree from the learning sample {(xi,ri): i=1,…,N}
¤  The prediciton of the new regression tree is denoted with ŷm

¨  Return the model ŷ(x)= ŷ0(x)+ŷ1(x)+…+ŷM(x)

¨  Note that the final prediction is not close to yi, but, since
it optimized lambdas, it optimizes the final NDCG.

Lambda-MART

¨  Results are from the Yahoo! Learning to rank
challenge

¨  The winner of the challenge used a
combination of several Lambda-MART models

Performance

¨  Explicit
¤ Ask users to rate result

n  (by the page or by the snippet)

¨  Implicit
¤  Process logs to get information about:

n  Clicks
n  Query reformulation

¨  Fancier…
¤  Eye tracking

n  Fixation: spatially stable gaze
lasting for approximately 200–300 ms

¨  Goals:
¤  Build a training set
¤  Evaluate our search engine

How to Exploit User feedback

¨  Phase I:
¤ Use Google to answer 10 questions

n 34 user recruited

¤  Is there any rank bias ?

¨  Phase II:
¤ Answer the same questions with a “modified

Google”
n 27 users recruited

¤ Modifications:
n SWAPPED: swap the top 2 results
n REVERSED: reverse top-10 results

Experiment Set-up

n  Phase I: 1.9 queries per question, 0.9 clicks per query
n  Phase II: 2.2 queries per question, 0.8 clicks per query

Questions

¨  Phase I:
¤ “order the results by how promising their abstracts

are for leading to information that is relevant to
answering the question “

¨  Phase II:
¤ same as Phase I
¤ Assessment of results by looking at the webpage

without any provided snippet

Explicit Feedback

¨  First result receives a large number of clicks w.r.t. to the
number of fixations

¨  There is drop after page scroll

Which Links Did Users View and Click?

¨  Yes, but the first 2 results are seen almost at the same
time

¨  Scroll is after the 6th result

Did Users Scan Links from Top to Bottom?

¨  Users check most of the results above the click
¨  Almost no attention below the click
¨  An exception is the first link below the click

Which Links Did Users Evaluate Before Clicking?

0
10
20
30
40
50
60
70
80
90
100

1 2 3 4 5 6 7 8 9 10
Rank of Result

Pr
ob

ab
ili

ty
 R

es
ul

t w
as

 V
ie

w
ed

Clicked Link

Does Relevance Influence User Decisions?

¨  Average number of clicks changes from 2.1 to 2.45
¨  The quality of the system impact on the clicks
¨  Trust bias and quality bias make it difficult to use

clicks as an absolute measure of result quality

Does Relevance Influence User Decisions?

¨  Can we use clicks to compare results ?
¨  Idea:

¤ exploit clicked and non clicked results

¨  Strategy 1: CLICK > SKIP ABOVE
¨  Example:

¤  l1∗ l2 l3∗ l4 l5∗ l6 l7
¤  l3>l2, l5>l4 , l5>l2

¨  Measure the goodness of these constraints as the
ratio of agreement with relevance judgments

Are Clicks Relative Relevance Judgments
Within One Results Page?

¨  Idea:
¤  Latest click is the most important

¨  Strategy 2: LAST CLICK > SKIP ABOVE
¨  Example:

¤  l1∗ l2 l3∗ l4 l5∗ l6 l7
¤  l5>l4 , l5>l2

¨  Idea:
¤  Earlier clicks are less important

¨  Strategy 3: CLICK > EARLIER CLICK
¨  Example:

¤  l1∗ l2 l3∗ l4 l5∗ l6 l7 (l3 then l1 then l5)
¤  l1>l3 , l5>l1 , l5>l3

Are Clicks Relative Relevance Judgments
Within One Results Page?

¨  Idea:
¤  Previous result receives lot of attention

¨  Strategy 4: CLICK > SKIP PREVIOUS
¨  Example:

¤  l1∗ l2 l3∗ l4 l5∗ l6 l7
¤  l3>l2 , l5>l4

¨  Idea:
¤ Next result receives lot of attention

¨  Strategy 5: CLICK > NO-CLICK NEXT
¨  Example:

¤  l1∗ l2 l3∗ l4 l5∗ l6 l7
¤  l1>l2 , l3>l4 , l5>l6

Are Clicks Relative Relevance Judgments
Within One Results Page?

¨  CLICK > SKIP ABOVE: performs well, close to the judge agreement

¨  LAST CLICK > SKIP ABOVE: slightly improves

¨  CLICK > EARLIER CLICK: not performing well

¨  CLICK > SKIP PREVIOUS: No statistically significant difference with
CLICK > SKIP ABOVE

¨  CLICK > NO-CLICK NEXT: is it useful ?

¨  Observations:
¤ Clicked top queries are not very involved in the

generated frequencies
¤ Users run sequence of queries before satisfying their

information need

¨  Strategy 1: CLICK > SKIP EARLIER
¨  Strategy 2: LAST CLICK > SKIP EARLIER
¨  Strategy 3: CLICK > CLICK EARLIER
¨  Strategy 4: CLICK > TOP 1 NO CLICK EARLIER
¨  Strategy 5: CLICK > TOP 2 NO CLICK EARLIER
¨  Strategy 6: TOP 1 > TOP 1 EARLIER

Are Clicks Relative Relevance Judgments
Within a Query Chain?

¨  The performance of CLICK > TOP 2 NO CLICK
EARLIER suggest that query reformulation is a
strong evidence of document poor quality

Are Clicks Relative Relevance Judgments
Within a Query Chain?

¨  RankLib:
¤ http://sourceforge.net/p/lemur/wiki/RankLib/

Software tools

¨  Machine learning frameworks are necessary for
modern web search engines

¨  Creating a training dataset is expensive
¤  Potentially requires users to evaluate a large number

of queries and results

¨  Click data can be successfully transformed in pair-
wise preferences:
¤  To estimate the quality of the system
¤  To create a training set of a learning-to-rank approach

¨  Several approaches have been developed
¤  They succeed in the non trivial task of optimizing

complex IT evaluation measures such as NDCG.

Conclusions

claudio.lucchese@isti.cnr.it

The End

