LEARNING TO RANK

Claudio Lucchese claudio.lucchese@isti.cnr.it

Ranking

Ranking is (one of) the most important challenges in Web Search

please, find the document i need

I'm Feeling Lucky

Ļ

We define *Ranking* as the problem of sorting a set of documents according to their *relevance* to the user query.

Vector space model

Documents and queries are represented by a vector of term weights

weights could be binary, frequency, or something more complex...

 $D_i = (d_{i1}, d_{i2}, \dots, d_{it})$ $Q = (q_1, q_2, \dots, q_t)$

	$Term_1$	$Term_2$	• • •	$Term_t$
Doc_1	d_{11}	d_{12}	• • •	d_{1t}
Doc_2	d_{21}	d_{22}	• • •	d_{2t}
•	•			
•	•			
Doc_n	d_{n1}	d_{n2}	• • •	d_{nt}

Document and queries are points in a t-dimensional space

where t is the size of the lexicon

Vector space model

Documents ranked by their distance/similarity from the query

$$Cosine(D_i, Q) = \frac{\sum_{j=1}^{t} d_{ij} \cdot q_j}{\sqrt{\sum_{j=1}^{t} d_{ij}^2 \cdot \sum_{j=1}^{t} q_j^2}}$$

BM25

□ BM25 is a probabilistic model:

using term independence assumption to approximate the document probability of being relevant

$$BM25(d,q) = \sum_{t} IDF_t \tau(F_t)$$

 $\square IDF_{t} = log(N/n_{t})$ is the inverse document frequency

- N is the number of doc.s in the collection
- n_t is the number of doc.s containing t
- frequent terms are not very specific, and their contribution is reduced

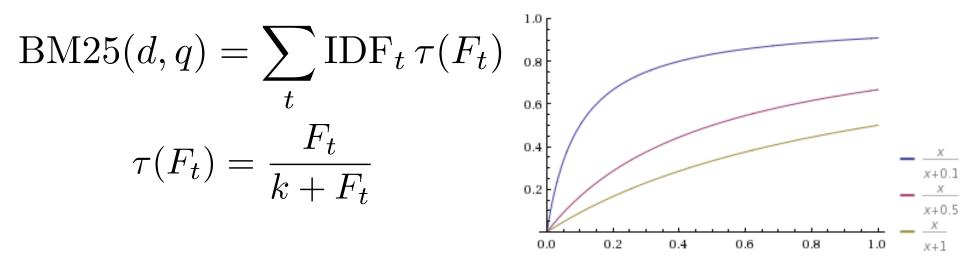
BM25

$$BM25(d,q) = \sum_{t} IDF_{t} \tau(F_{t})$$
$$F_{t} = \frac{f_{t,d}}{1 - b + b \cdot l_{d}/L}$$

 \Box **f**_{t,d} is the frequency of term t in document d

- \square I_d is the length of document d
 - Ionger documents are less important
- L is the average document length in the collection
- \square b determines the importance of I_d

BM25



 $\Box \tau$ is a **smoothing function**, modeling non-linearity of terms contribution

- <u>Note 1</u>: let t_1, t_2, t_3 have frequencies 0.1, 0.2, 0.3, the relative importance of t_2 w.r.t. t_1 is greater than t_3 w.r.t. t_2
- Note 2: above a certain threshold the terms' contribution are equally important and not so discriminative

BM25 and BM25F

BM25 can be extended to handle structured (multi-field) documents

- e.g., title, abstract, summary, author
- e.g., title, url, body, anchor
- The extended function is named BM25F:

BM25F(d,q) =
$$\sum_{t} \text{IDF}_t \tau(F_t)$$
 $F_t = \sum_{s} \frac{w_s \cdot f_{t,s}}{1 - b_s + b_s \cdot l_s/L_s}$

n

 \square w_s is a weight of field s

- \Box $f_{t,s}$ is the frequency of term t in field s (of document d)
- \Box *I*_s is the length of field s (of document d)
- **\Box b_s** determines the importance of I_s
- \Box L_s is the average length of field s in the collection

Need for tuning of BM25(F)

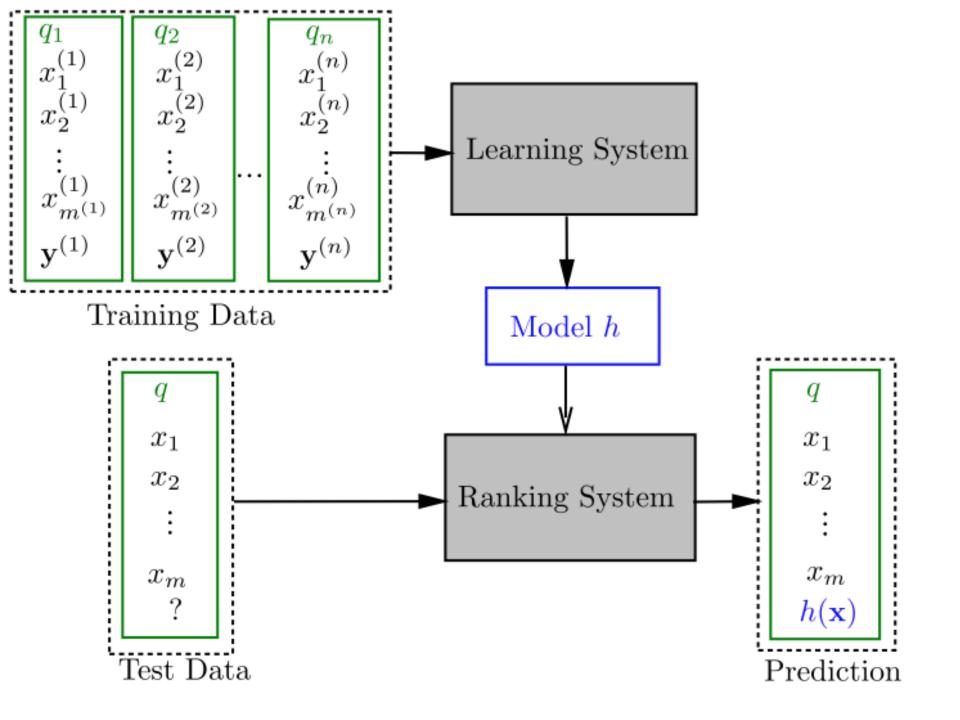
BM25 has 2 free parameters: b,k

BM25F has 2S+1 free parameters (S is the no. of fields)

 \mathbf{w}_{s}, b_{s}, k

 \square How to find the best parameter of BM25(F) ?

□ Fit it into a learning-to-rank framework



Some features

http://research.microsoft.com/en-us/projects/mslr/feature.aspx

Baselines of Yahoo! LtR Challenge

	Validation		Test	
	ERR	NDCG	ERR	NDCG
BM25F-SD	0.42598	0.73231	0.42853	0.73214
RankSVM	0.43109	0.75156	0.43680	0.75924
GBDT	0.45625	0.78608	0.46201	0.79013

- BM25F-SD, is a variant of BM25F including proximity
- RankSVM uses a linear kernel
- GBDT (Gradient Boosted Decision Tree) ... you will see next

Learning-to-Rank framework

We need:

1. To create a training set

- training queries, training results and their relevance annotation
- 2. To define an objective function to be optimized
 - how to define the quality of a result set?
- 3. To chose a machine learning algorithm
 - Gradient Descent, Neural Networks, Regression trees, Support Vector Machines, ...

Learning to Rank approaches

Pointwise

- Each query-document pair is associated with a score
- The objective is to predict such score
 - can be considered a regression problem
- Does not consider the position of a document into the result list

Pairwise

- We are given pairwise preferences, d_1 is better than d_2 for query q
- The objective is to predict a score that preserves such preferences
 - Can be considered a classification problem
- It partially considers the position of a document into the result list

Listwise

- We are given the ideal ranking of results for each query
 - NB. It might not be trivial to produce such training set
- Objective maximize the quality of the resulting ranked list
 - We need some improved approach...

L-t-R applied to BM25F

We have a training set of query/results

- Each query has a set of candidate results
- Each results was manually annotated with a relevance label (e.g. 1 to 5)

A very simple learning algorithm

Gradient Descent

We chose a specific quality function Normalized Discounted Cumulative Gain @ K

NDCG@K

NDCG @K

\square Rationale:

- Consider only the top-K ranked documents, and sum up (cumulate) their contribution
- The contribution (gain) of a result depends on its relevance label
- Contribution is diminished (discounted) if the result is in the "bottom" positions
- Normalize between 0 and 1

$$DCG@k = \sum_{i=1}^{k} \frac{2^{rel_i} - 1}{\log(i+1)} \quad NDCG@k = \frac{DCG@k}{IDCG@k}$$

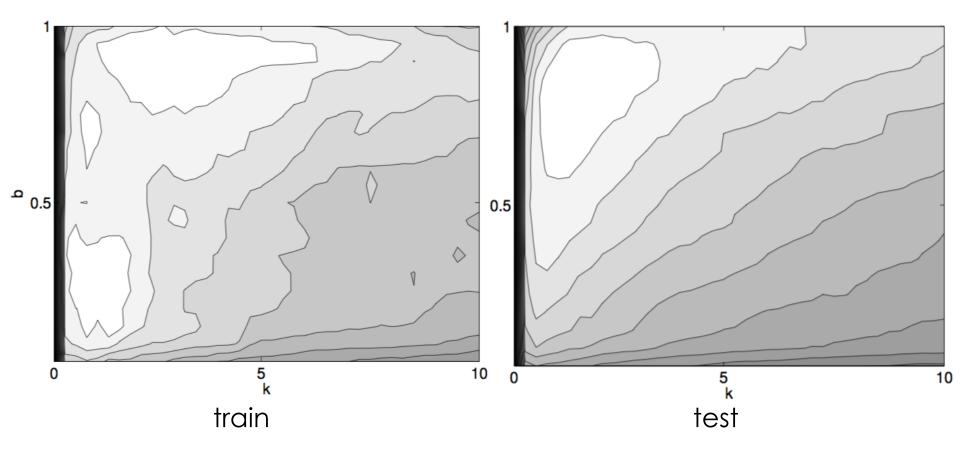
rel_i is the relevance label of the *i*-th result (e.g., 1..5)
 IDCG@k is the score of the ideal ranking

L-t-R applied to BM25F

Given a query q and a set of documents D={d₁, d₂, ...}
 Results = <u>retrieve</u> (D | q)

- We want to learn a model h that allows to rank the documents in D according to their relevance
 - Results = <u>sort</u> { $h(d_1)$, $h(d_2)$, ...}
 - where the function **h** is **BM25F** with a proper parameter set θ
- How to apply Gradient Descent ?
 - **\square** we need to compute the **gradient** of <u>sort</u> w.r.t. θ
 - but <u>sort</u> is not a continuous and derivable function!
 - We cannot apply gradient descent
- One of the issues in LtR is how to optimize the sorted results "bypassing" the <u>sort</u> operation

NDCG on real-world data



NDCG averaged over 512 queries

Pairwise approach

- □ We are given a collection *R* of document pairs (d_i, d_j) , for each pair we now that d_i is better d_i
- □ Our goal is to find the **best ranking function r***, such that for every pair $(d_i, d_j) \in \mathbb{R}$, $r^*(d_i) > r^*(d_j)$, or such that the smallest number of such constraints is violated
- This problem is known to be NP-Hard (rank aggregation), therefore, we need to find some smart approximation

RankNet

- Let the training set be result pairs (d₁, d₂) where d₁ is better than d₂
 we also say that the (true) probability that d₁ is better d₂ is T₁₂=1
- Let **h(d)** be the score of document *d*, computed by the learned model
- We define the score difference Y=h(d₂)-h(d₁)
 If Y<0 then the documents are ranked correctly
- We map Y to the **probability** P_{12} that d_1 is better d_2 with a logistic function $P_{12} = e^{-Y}/(1+e^{-Y})$
- We measure the error of the model with cross entropy between P_{12} and T_{12} :
 - **c** $C = -T_{12} \log P_{12} (1 T_{12}) \log(1 P_{12})$
 - Cross entropy can be thought as the number of bits needed to encode T_{12} given a coding scheme based on P_{12}
- □ Since $T_{12}=1$ □ C = log(1+e^Y)

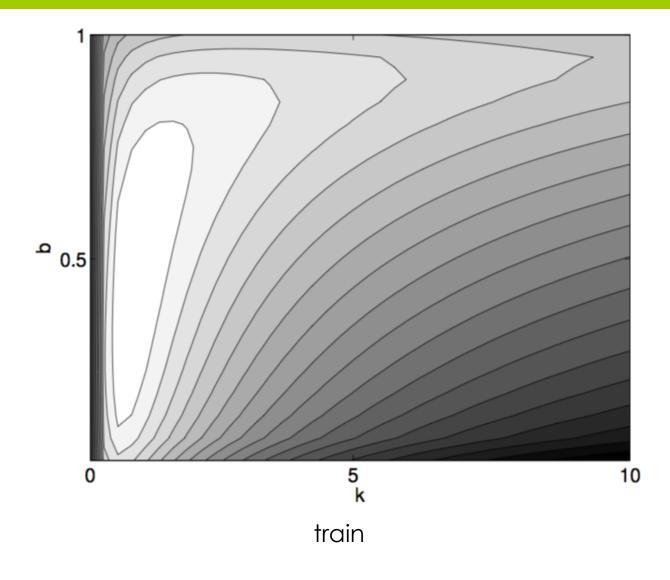
RankNet

C = log(1+e^Y)

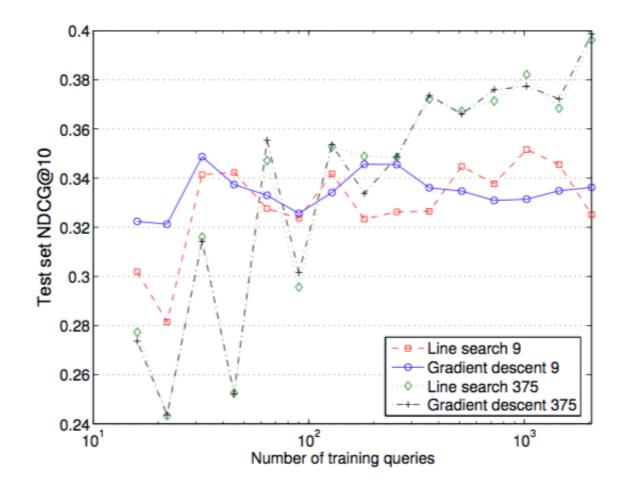
What did we get ?

- C is minimum if all pairs are ranked in the proper order, therefore by minimizing C we improve NDCG
 - this does <u>not</u> imply that the optimal solution for C is the optimal solution for NDCG or other quality measures
- we can compute the gradient of C
 - If h is differentiable then also Y and C are
- We can directly apply steepest descent
 - Just need derivatives of BM25F

L-t-R applied to BM25F



Evaluation



Our alternative formulation is a good proxy for NDCG optimization

L-t-R applied to BM25F (I)

Line Search

- It is a general-purpose optimization algorithm
- It computes NDCG directly by varying "smartly" the parameters of BM25F

□ Start from an initial guess $\theta = \{ \theta_1, \theta_2, ... \}$

- **D** For each θ_i ,
 - consider **n** sample points z_i within the interval [$\theta_i w$, $\theta_i + w$]
 - keep fixed all other parameters
 - compute NDCG for each sample point and store the best z_i
- **D** Take the line connecting θ to $Z=\{z_1, z_2, ...\}$
 - consider n sample points along this line
 - compute NDCG for each sample point and take the best result θ '
- **D** Repeat starting from θ '
 - reduce w at each iteration
 - stop until convergence, or until the maximum number of iterations is reached

L-t-R applied to BM25F (II)

- Rationale:
 - apply Gradient Descent bypassing the sorting of results
- Transform the training set into **result pairs** (d_1, d_2) where d_1 has a larger label than d_2
 - we also say that the (true) probability that d_1 is better d_2 is $T_{12}=1$
- We define $Y=h(d_2)-h(d_1)$, and we model the probability P_{12} that d_1 is better d_2 with a logistic function $P_{12} = e^{-Y}/(1+e^{-Y})$
- □ We measure the error of the model with cross entropy:

 $\Box C = -T_{12} \log P_{12} - (1 - T_{12}) \log(1 - P_{12})$

- Cross entropy can be thought as the number of bits needed to encode T_{12} given a coding scheme based on P_{12}
- □ Since $T_{12}=1$ □ C = log(1+e^Y)

L-t-R applied to BM25F (II)

C = log(1+e^Y)

- What did we get ?
 - we can compute the gradient of C
 - C is a function of Y, and Y is a function of BM25F, and all are derivable
 - working with the gradient is much cheaper than re-ranking all results to compute the NDCG
 - C is minimum if all pairs are ranked in the proper order, therefore, by minimizing C we improve NDCG
 - this does <u>not</u> imply that the optimal solution for C is the optimal solution for NDCG

Comparison

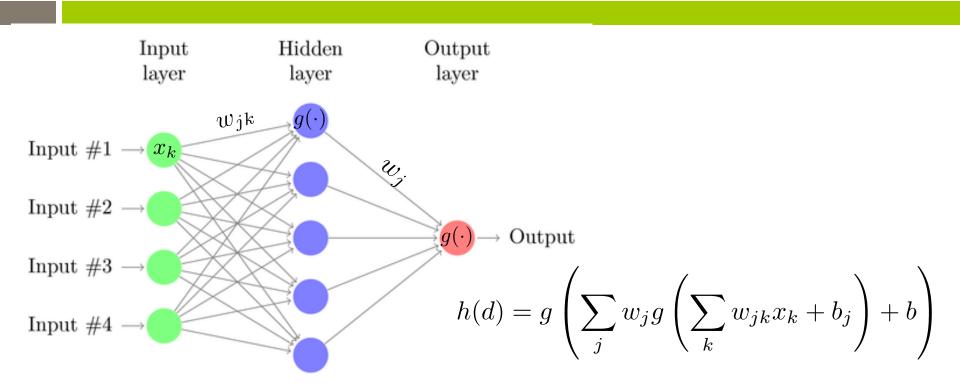
□ Line search:

- <u>Pros</u>: it optimizes NDCG
- <u>Cons</u>: It is expensive and therefore it may not scale to large features/training sets

Alternative optimization solution:

- <u>Pros</u>: it can be fast by using a gradient descent method
 - It scales with the number of features
 - It might require some subsampling of the training pairs
- <u>Cons</u>: it optimizes a different cost function

RankNet



- x_k , is the k-th feature of document d
- w and b are the weights and offset
- □ g is a non-linear activation function, usually sigmoid
- \Box gradient descent is used to find w and b

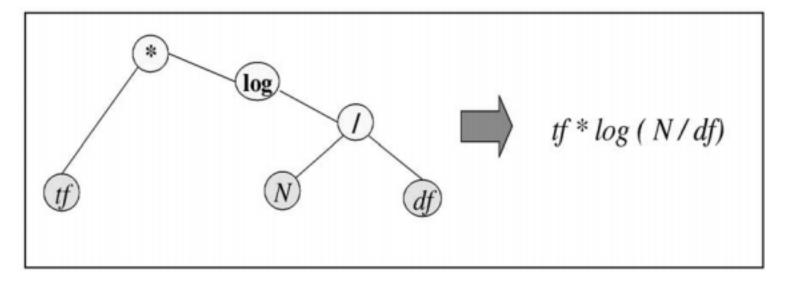
Genetic Algorithms

Overview of a genetic algorithm:

- 1. Generate a random population of solutions
- 2. Score each individual in the population
- (<u>reproduction</u>) Select some of the **best** individuals
- (<u>crossover</u>) Select pairs at random and "mix" their representation
 - Repeat to get a sufficient number of individuals
- 5. Repeat from step 2 with the new population
 - until a maximum number of iterations

Genetic Algorithms

The trick is in the representation



Trees can represent complex functions, where nodes are operations and leaves are features
 Crossover is performed by exchanging subtrees at random

Genetic Algorithms

Operations:

□ +, *, /, log

Features

Terminals	Statistical Meaning	
tf	Same as TF: how many times the term appeared in a document	
tf_max	The maximum tf for a document	
tf_avg	The average tf for a document	
tf_doc_max	The maximum tf in the entire document collection	
df	Same as DF: the number of unique documents the term appeared	
df_max	The maximum df for the entire collection	
N	The total number of documents in the entire text collection	
length	The length of a document	
length_avg	The average length of a documents in the entire collection	
R	The real constant number randomly generated by the GP system	
n	The number of unique terms in a document	

Some Results

Query	GA	BM25	NN	GA vs. BM25	GA vs. NN
Short	0.25	0.23	0.11	+10.71%	+130%
Long	0.36	0.31	0.23	+17.01%	+56%

Mean Average Precision

- Precision is the number of relevant documents divided by the number of returned documents
- Precision is computed whenever a new relevant document is found in the result list
- Precision values are eventually averaged

Genetic Algorithm

The formula:

$$\frac{\log\left(tf \times \left(tf_avg + \frac{tf}{\log(tf^2 \times tf_avg)} + \frac{tf \times N}{df} \times \frac{tf_avg \times (tf_doc_max+n)}{df}\right)\right)}{n + 2 \times tf_doc_max + 0.373}$$

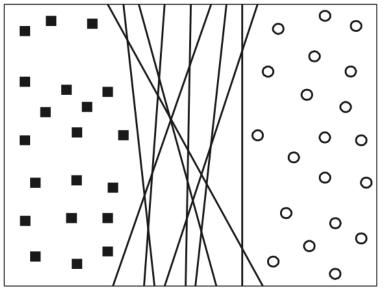
The authors claim this is somehow similar to BM25
 ??

□ Interestingly

- Term frequency and inverse document frequency play an important role
- The denominator is related to the the number of unique terms in the document (~length) and the max term frequency (~length ~specificity)

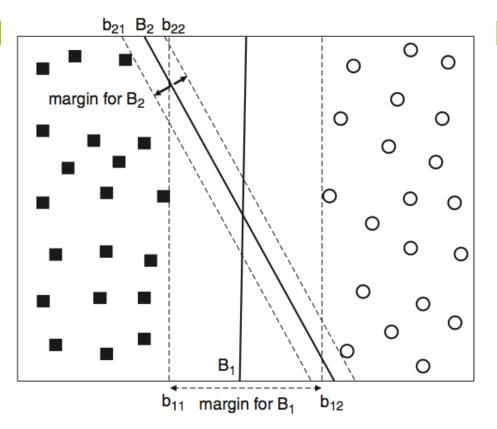
Support Vector Machines

 Classification technique, aiming at maximizing the generalization power of its classification model



Given the above points in a 2D space, what is the line that best "separates" the squares from the circle?

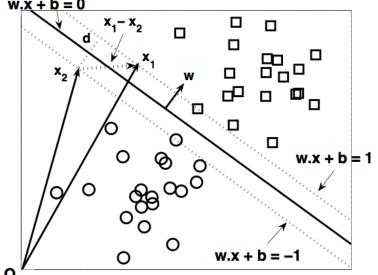
Support Vector Machines



- We call *margin* the distance between closest instances of opposite classes along the *perpendicular* direction to the selected decision boundary
 - The smaller the margin, the larger the misclassification risk
 - The instances determining the margin are named support vectors

Linear decision boundary

- A linear decision boundary is B:
 w^Tx + b = 0
 where w weighs the features of x
- □ For objects "above" B:
 - $w^T x + b = k'$, with k' > 0
- □ For objects "below" B:
 - $w^{T}x + b = k''$, with k'' < 0
 - k' and k" are proportional to the distances from the decision boundary



Let x_s and x_c be the closest objects of the two classes, we can rescale w and b such that

• $w^T x_s + b = 1$ and $w^T x_c + b = -1$

- by definition, the distances d_s and d_c of x_s and x_c from $w^T x + b$ are:
 - $d_{s} = |w^{T}x_{s} + b| / |w|_{2} = 1 / |w|_{2} \text{ and } d_{C} = |w^{T}x_{C} + b| / |w|_{2} = 1 / |w|_{2}$
- Therefore the margin $d = d_s + d_c = 2/|w|_2$
- \square To maximize the margin d, we should minimize $\|w\|_2$

Linear SVM formulation

Let y_i ∈{+1,-1} be the class of the *i*-th instance,
 the (linear) SVM (binary) classification problem is:

■ Minimize $\frac{1}{2} |w|^2$ ■ Subject to: $y_i (w^T x_i + b) \ge 1$

or:
$$y_i (w^T x_i + b) - 1 \ge 0$$

Since the objective function is quadratic, and the constrains are linear in w and b, this is know to be a convex optimization problem.

Linear SVM solution

Standard technique of Lagrange multipliers.
 The problem is reformulated as:

Demonstrate:
$$L_P = \frac{1}{2} \|w\|^2 - \sum_i \lambda_i \left(y_i (w^T x_i + b) - 1 \right)$$

• where $\lambda_i \ge 0$

- the first term is the old objective function
- the second term comes from the previous constraints:
 - If an instance is misclassified, the error generates an increment of the objective function

Linear SVM solution

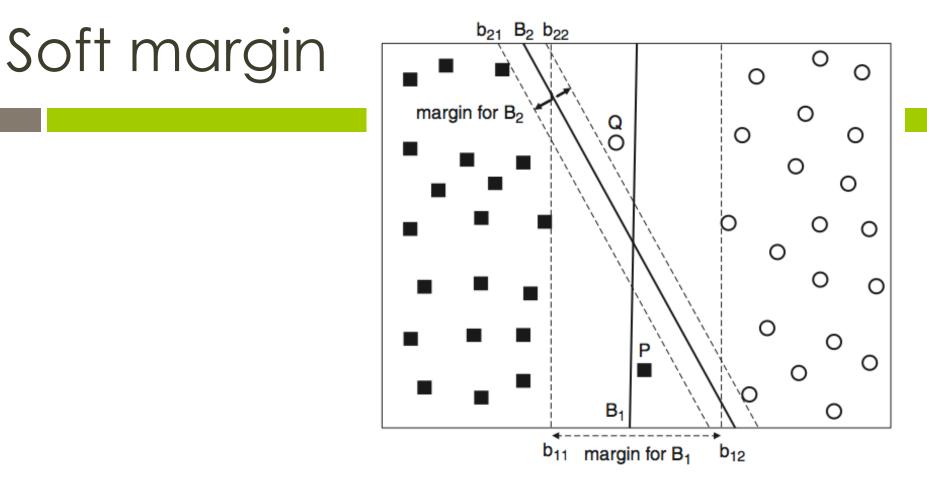
 \square It is possible to show that:

■ $\lambda_i \neq 0$ only if x_i is a support vector ■ Minimizing L_P is equivalent to maximizing

$$L_D = \sum_i \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i \lambda_j y_i y_j x_i x_j$$

which involves only the data and the Lagrangians
L_D is the dual Lagrangian formulation
L_D can be solved with numerical methods
The decision boundary can be computed as:
(\sum_i \lambda_i y_i x_i \cdot x\right) + b = 0

which depends only on the support vectors



- What if a decision boundary has a large margin and a small error rate ?
- What if there is not an error-free decision boundary ?
 - Non-linearnly separable classes

Soft margin

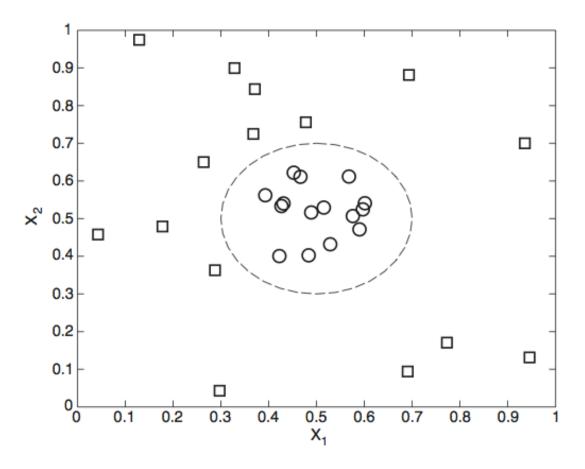
□ We need to relax the previous constraints, introducing slack variables $\xi_i \ge 0$

Minimize
$$\frac{1}{2} |w|^2 + C \sum \xi_i$$
 Subject to: $y_i (w^T x_i + b) \ge 1 - \xi_i$
 $\xi_i \ge 0$

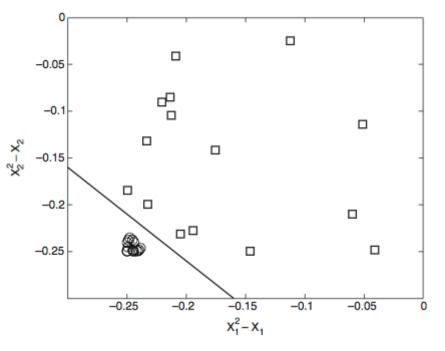
- At the same time, this relaxation must be minimized.
- C defines the trade-off between training error and large margin
- The problem has the same dual formulation as before, with addition constraint $0 \le \lambda_i \le C$

Nonlinear SVM

How to deal with a non linear decision boundary ?



Nonlinear SVM



🗆 Idea:

First transform the data, potentially mapping to a space with higher dimensionality, then use a linear decision boundary as before.

■ Minimize $\frac{1}{2} |w|^2$ ■ Subject to: $y_i (w^T \Phi(x_i) + b) \ge 1$

• The dual is: $L_D = \sum_i \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i \lambda_j y_i y_j \Phi(x_i) \Phi(x_j)$

The Kernel trick

$$K(x_i, x_j) = \Phi(x_i)\Phi(x_j)$$

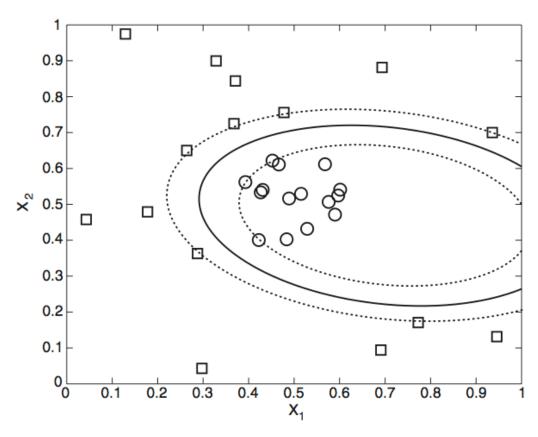
Observations:

- We do not need $\Phi(x_i)$, but the dot product $\Phi(x_i) \Phi(x_i)$
- For some mapping functions \$\varPhi\$, the dot product can be computed directly without explicitly mapping to the new space
- K(x_i, x_j) can be computed directly from the attributes of x_i, x_j
- K is called kernel function

The Kernel trick

Some kernel functions:

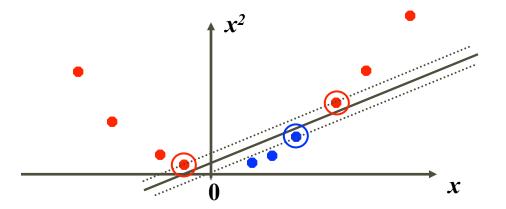
$$egin{aligned} K(\mathbf{x},\mathbf{y}) &= (\mathbf{x}\cdot\mathbf{y}+1)^p \ K(\mathbf{x},\mathbf{y}) &= e^{-\|\mathbf{x}-\mathbf{y}\|^2/(2\sigma^2)} \ K(\mathbf{x},\mathbf{y}) &= anh(k\mathbf{x}\cdot\mathbf{y}-\delta) \end{aligned}$$



Mapping to many dimensions

□ 1D, non linearly separable problem

□ After mapping to 2D, it is linearly separable



(Linear) Ranking SVM

- □ In case of a linear combination of features: $h(d) = w^{T}d$
- □ Our objective is to find w, such that: □ $h(d_i) \ge h(d_j)$ □ $w^T d_i \ge w^T d_j$ □ $w^T (d_i - d_j) \ge 0$
- We approximate by adding slack variables ξ and minimizing this "relaxation"
 given the k-th document pair, find the weights w such that

$$w^{T}(d_{i}-d_{j}) \geq 1-\xi_{k}$$
 with $\xi_{k} \geq 0$

and ξ_k is minimum

(Linear) Ranking SVM

$\hfill \ensuremath{\square}$ The full formulation of the problem is

- Minimize $\frac{1}{2} |w|^2 + C \sum_k \xi_k$
- Subject to $w^T(d_i d_j) \ge 1 \xi_k$ $\xi_k \ge 0$
- where C allows to trade-off error between the margin (|w|²) and the training error
- □ This is an SVM classification problem !
 - Is convex, with no local optima, it can be generalized to non-linear functions of documents features.

Issues of the pairwise approach

- We might not realized that some queries are really badly ranked
- Top result pairs should be more important than other pairs
- In general, the number of document pairs violations, might not be a good indicator

