
LEARNING TO RANK 
Claudio Lucchese 
claudio.lucchese@isti.cnr.it 



Ranking 

¨  Ranking is (one of) the most important challenges  
in Web Search 

¨  We define Ranking as the problem of sorting a set of 
documents according to their relevance to the user 
query. 



¨  Documents and queries are represented by a 
vector of term weights 
¤ weights could be binary, frequency, or something 

more complex… 

¨  Document and queries are points in a  
t-dimensional space 
¤ where t is the size of the lexicon 

Vector space model 



¨  Documents ranked by their distance/similarity 
from the query 

Vector space model 



¨  BM25 is a probabilistic model: 
¤ using term independence assumption to approximate 

the document probability of being relevant 

¤  IDFt=log(N/nt) is the inverse document frequency 
n N is the number of doc.s in the collection 
n nt is the number of doc.s containing t 

¤  frequent terms are not very specific, 
and their contribution is reduced 

BM25 

BM25(d, q) =
X

t

IDFt ⌧(Ft)



¨  ft,d is the frequency of term t in document d 
¨  ld is the length of document d 

¤  longer documents are less important 

¨  L is the average document length in the collection 
¨  b determines the importance of ld 

 
 

BM25 

BM25(d, q) =
X

t

IDFt ⌧(Ft)

Ft =
ft,d

1� b+ b · ld/L



 
 

¨  𝜏 is a smoothing function, modeling non-linearity of 
terms contribution 
¤  Note 1: let t1,t2,t3 have frequencies 0.1, 0.2, 0.3, the relative 

importance of t2 w.r.t. t1 is greater than t3 w.r.t. t2 

¤  Note 2: above a certain threshold the terms’ contribution 
are equally important and not so discriminative 

BM25 

BM25(d, q) =
X

t

IDFt ⌧(Ft)

⌧(Ft) =
Ft

k + Ft



¨  BM25 can be extended to handle structured 
(multi-field) documents 

n e.g., title, abstract, summary, author 
n e.g., title, url, body, anchor 

¨  The extended function is named BM25F: 

¤ ws is a weight of field s 
¤  ft,s is the frequency of term t in field s (of document d) 
¤  ls is the length of field s (of document d) 
¤ bs determines the importance of ls 
¤  Ls is the average length of field s in the collection 

BM25 and BM25F 

BM25F(d, q) =
X

t

IDFt ⌧(Ft) Ft =
X

s

ws · ft,s
1� bs + bs · ls/Ls



¨  BM25 has 2 free parameters:  
n b,k 

¨  BM25F has 2S+1 free parameters (S is the 
no. of fields) 

n ws,bs,k 

¨  How to find the best parameter of BM25(F) ? 

¨  Fit it into a learning-to-rank framework 

Need for tuning of BM25(F) 





¨  http://research.microsoft.com/en-us/projects/mslr/feature.aspx 

Some features 



¨  BM25F-SD, is a variant of BM25F including 
proximity 

¨  RankSVM uses a linear kernel 
¨  GBDT (Gradient Boosted Decision Tree) … you 

will see next 

Baselines of Yahoo! LtR Challenge 



We need: 

1.  To create a training set 
n  training queries, training results and their relevance 

annotation 

2.  To define an objective function to be 
optimized 
n how to define the quality of a result set? 

3.  To chose a machine learning algorithm 
n Gradient Descent, Neural Networks, Regression trees, 

Support Vector Machines, … 

Learning-to-Rank framework 



¨  Pointwise 
¤  Each query-document pair is associated with a score 
¤  The objective is to predict such score 

n  can be considered a regression problem 
¤  Does not consider the position of a document into the result list 

¨  Pairwise 
¤  We are given pairwise preferences, d1 is better than d2 for query q 
¤  The objective is to predict a score that preserves such 

preferences 
n  Can be considered a classification problem 

¤  It partially considers the position of a document into the result list 
¨  Listwise 

¤  We are given the ideal ranking of results for each query 
n  NB. It might not be trivial to produce such training set 

¤  Objective maximize the quality of the resulting ranked list 
n  We need some improved approach… 

Learning to Rank approaches 



¨  We have a training set of query/results 
n Each query has a set of candidate results 
n Each results was manually annotated with a relevance 

label (e.g. 1 to 5) 

¨  A very simple learning algorithm 
n Gradient Descent 

¨  We chose a specific quality function 
n Normalized Discounted Cumulative Gain @ K  

n  NDCG@K 

L-t-R applied to BM25F 



¨  Rationale: 
n Consider only the top-K ranked documents,  

and sum up (cumulate) their contribution 
n The contribution (gain) of a result depends on its 

relevance label 
n Contribution is diminished (discounted) if the result is in 

the “bottom” positions 
n Normalize between 0 and 1 

n  reli is the relevance label of the i-th result (e.g., 1..5) 
n  IDCG@k is the score of the ideal ranking 

NDCG @K 

DCG@k =

kX

i=1

2

reli � 1

log(i+ 1)

NDCG@k =
DCG@k

IDCG@k



¨  Given a query q and a set of documents D={d1,d2, …} 
¤  Results = retrieve (D|q) 

¨  We want to learn a model h that allows to rank the 
documents in D according to their relevance 
¤  Results = sort {h(d1), h(d2), …} 
¤  where the function h is BM25F with a proper parameter setθ 

¨  How to apply Gradient Descent ? 
¤  we need to compute the gradient of sort w.r.t. θ 
¤  but sort is not a continuous and derivable function! 
¤  We cannot apply gradient descent 

¨  One of the issues in LtR is how to optimize the sorted results 
“bypassing” the sort operation 

L-t-R applied to BM25F 



 

 train      test 
 
n  NDCG averaged over 512 queries 

NDCG on real-world data 



¨  We are given a collection R of document pairs (di,dj), 
for each pair we now that di is better dj  

¨  Our goal is to find the best ranking function r*, 
such that for every pair (di,dj)∈R, r*(di)>r*(dj), or such 
that the smallest number of such constraints is violated 

¨  This problem is known to be NP-Hard (rank aggregation),  
therefore, we need to find some smart approximation 

Pairwise approach 



¨  Let the training set be result pairs (d1,d2) where d1 is better than d2 
¤  we also say that the (true) probability that d1 is better d2 is T12=1  

¨  Let h(d) be the score of document d, computed by the learned model 

¨  We define the score difference Y=h(d2)-h(d1) 
¤  If Y<0 then the documents are ranked correctly 

¨  We map Y to the probability P12 that d1 is better d2 with a logistic function   
P12 = e-Y/(1+e-Y) 

¨  We measure the error of the model with cross entropy between P12 and T12: 
¤  C = -T12 log P12 – (1-T12)log(1-P12) 

n  Cross entropy can be thought as the number of bits needed to encode T12 given a coding 
scheme based on P12 

¨  Since T12=1 
¤  C = log(1+eY) 

RankNet 



¤ C = log(1+eY) 

¨  What did we get ? 
¤ C is minimum if all pairs are ranked in the proper 

order, therefore by minimizing C we improve 
NDCG 
n  this does not imply that the optimal solution for C is the 

optimal solution for NDCG or other quality measures 

¤ we can compute the gradient of C 
n  If h is differentiable then also Y and C are 

¨  We can directly apply steepest descent 
¤ Just need derivatives of BM25F 

RankNet 



 
 

  train 

L-t-R applied to BM25F 



¨  Our alternative formulation is a good proxy for NDCG 
optimization 

Evaluation 



¨  Line Search 
¤  It is a general-purpose optimization algorithm 
¤  It computes NDCG directly by varying “smartly” the 

parameters of BM25F 
¨  Start from an initial guessθ={θ1, θ2, …}  

¤  For each θi,  
n  consider n sample points zi within the interval [θi-w ,θi+w] 

n  keep fixed all other parameters 
n  compute NDCG for each sample point and store the best zi 

¤  Take the line connecting θ to Z={z1, z2, …} 
n  consider n sample points along this line 
n  compute NDCG for each sample point 

and take the best result θ’ 
¤  Repeat starting from θ’ 

n  reduce w at each iteration 
n  stop until convergence,  

or until the maximum number of iterations is reached 

L-t-R applied to BM25F (I) 



¨  Rationale:  
¤  apply Gradient Descent bypassing the sorting of results 

¨  Transform the training set into result pairs (d1,d2) where d1 has a 
larger label than d2 
¤  we also say that the (true) probability that d1 is better d2 is T12=1  

¨  We define Y=h(d2)-h(d1), and we model the probability P12 that d1 is 
better d2 with a logistic function  P12 = e-Y/(1+e-Y) 

¨  We measure the error of the model with cross entropy: 
¤  C = -T12 log P12 – (1-T12)log(1-P12) 

n  Cross entropy can be thought as the number of bits needed to encode T12 
given a coding scheme based on P12 

¨  Since T12=1 
¤  C = log(1+eY) 

L-t-R applied to BM25F (II) 



¤ C = log(1+eY) 

¨  What did we get ? 
¤ we can compute the gradient of C 

n C is a function of Y, and Y is a function of BM25F,  
and all are derivable 

¤ working with the gradient is much cheaper than 
re-ranking all results to compute the NDCG 

¤ C is minimum if all pairs are ranked in the proper 
order, therefore, by minimizing C we improve 
NDCG 
n  this does not imply that the optimal solution for C is the 

optimal solution for NDCG 

L-t-R applied to BM25F (II) 



¨  Line search: 
¤ Pros: it optimizes NDCG 
¤ Cons: It is expensive and therefore it may not scale 

to large features/training sets 

¨  Alternative optimization solution: 
¤ Pros: it can be fast by using a gradient descent 

method 
n  It scales with the number of features 
n  It might require some subsampling of the training pairs 

¤ Cons: it optimizes a different cost function 

Comparison 



¨  xk, is the k-th feature of document d 
¨  w and b are the weights and offset 
¨  g is a non–linear activation function, usually sigmoid 
¨  gradient descent is used to find w and b 

 

RankNet 

h(d) = g

0

@
X

j

wjg

 
X

k

wjkxk + bj

!
+ b

1

A

xk

wjk

w
j

g(·)

g(·)



¨  Overview of a genetic algorithm: 
1.  Generate a random population of solutions 
2.  Score each individual in the population 
3.  (reproduction) Select some of the best 

individuals  
4.  (crossover) Select pairs at random and “mix” 

their representation 
n  Repeat to get a sufficient number of individuals 

5.  Repeat from step 2 with the new population 
n  until a maximum number of iterations 

Genetic Algorithms 



¨  The trick is in the representation 

¨  Trees can represent complex functions, where 
nodes are operations and leaves are features 

¨  Crossover is performed by exchanging 
subtrees at random 

Genetic Algorithms 



¨  Operations: 
¤ +, *, /, log 

¨  Features 

Genetic Algorithms 



Query GA BM25 NN GA vs. BM25 GA vs. NN 

Short 0.25 0.23 0.11 +10.71% +130% 

Long 0.36 0.31 0.23 +17.01% +56% 

Some Results 

¨  Mean Average Precision  
¤ Precision is the number of relevant documents 

divided by the number of returned documents 
¤ Precision is computed whenever a new relevant 

document is found in the result list  
¤ Precision values are eventually averaged 



¨  The formula: 

¨  The authors claim this is somehow similar to BM25 
¤  ?? 

¨  Interestingly 
¤  Term frequency and inverse document frequency play 

an important role 
¤  The denominator is related to the the number of 

unique terms in the document (~length) and the max 
term frequency (~length ~specificity) 

Genetic Algorithm 



¨  Classification technique, aiming at maximizing 
the generalization power of its classification 
model 

¤ Given the above points in a 2D space, what is the 
line that best “separates” the squares from the 
circle? 

Support Vector Machines 



¨  We call margin the distance between closest instances of 
opposite classes along the  perpendicular direction to the 
selected decision boundary 
¤  The smaller the margin, the larger the misclassification risk 
¤  The instances determining the margin are named support vectors 

Support Vector Machines 



¨  A linear decision boundary is B:  
¤  wTx + b = 0 
¤  where w weighs the features of x 

¨  For objects “above” B: 
¤  wTx + b = k’, with k’>0 

¨  For objects “below” B: 
¤  wTx + b = k”, with k”<0 
¤  k’ and k” are proportional to the  

distances from the decision boundary 
¨  Let xs and xc be the closest objects of the two classes, 

we can rescale w and b such that 
¤  wTxs + b = 1     and     wTxc + b = -1      
¤  by definition, the distances ds and dC of xs and xC from wTx + b are: 

n  ds=|wTxs + b|/|w|2=1/|w|2    and     dC =|wTxC + b|/|w|2=1/|w|2  
¤  Therefore the margin d = dS+dC= 2/|w|2 

¨  To maximize the margin d, we should minimize |w|2 

Linear decision boundary 



¨  Let yi∈{+1,-1} be the class of the i-th instance,  
the (linear) SVM (binary) classification problem is: 
 
¤ Minimize       ½ |w|2 

¤  Subject to:   yi (wTxi + b) ≥ 1 

                  or:   yi (wTxi + b) -1 ≥ 0 

 
¤  Since the objective function is quadratic, and the 

constrains are linear in w and b, this is know to be a 
convex optimization problem. 

Linear SVM formulation 



¨  Standard technique of Lagrange multipliers. 
The problem is reformulated as: 

¤ Minimize:  

n  where λi ≥ 0 

¤  the first term is the old objective function 
¤  the second term comes from the previous constraints: 

n  If an instance is misclassified, the error generates an increment 
of the objective function 

Linear SVM solution 

LP =
1

2
kwk2 �

X

i

�i

�
yi(w

T
xi + b)� 1

�



¨  It is possible to show that: 
¤ λi ≠0 only if xi is a support vector 
¤ Minimizing LP is equivalent to maximizing 

n which involves only the data and the Lagrangians 
n LD is the dual Lagrangian formulation 

¤ LD can be solved with numerical methods 
¤ the decision boundary can be computed as: 

n which depends only on the support vectors 

Linear SVM solution 

LD =
X

i

�i �
1

2

X

ij

�i�jyiyjxixj

 
X

i

�iyixi · x

!
+ b = 0



¨  What if a decision boundary has a large margin 
and a small error rate ? 

¨  What if there is not an error-free decision 
boundary ? 
¤ Non-linearnly separable classes  

Soft margin 



¨  We need to relax the previous constraints, 
introducing slack variables 𝜉i ≥ 0 

 
¤ Minimize         ½ |w|2   +  C ∑ 𝜉i

 
i
 

¤  Subject to:     yi (wTxi + b) ≥  1 - 𝜉i 
                                                       𝜉i≥ 0 i≥ 0 

¤ At the same time, this relaxation must be 
minimized. 

¤ C defines the trade-off between training error and 
large margin 

¤ The problem has the same dual formulation as 
before, with addition constraint 0 ≤λi ≤ C 

Soft margin 



¨  How to deal with a non linear decision 
boundary ? 
 

Nonlinear SVM 



¨  Idea: 
¤ First transform the data, potentially mapping to a 

space with higher dimensionality, 
then use a linear decision boundary as before.  
 

¤ Minimize       ½ |w|2 

¤ Subject to:   yi (wTΦ(xi) + b) ≥ 1 

¤ The dual is: 

Nonlinear SVM 

LD =
X

i

�i �
1

2

X

ij

�i�jyiyj�(xi)�(xj)



¨  Observations: 
¤ We do not need Φ(xi),  

but the dot product Φ(xi)Φ(xj) 
¤ For some mapping functions Φ, the dot product 

can be computed directly without explicitly 
mapping to the new space 

¤ K(xi,xj) can be computed directly from the 
attributes of xi,xj 

¤ K is called kernel function 

The Kernel trick 

K(xi, xj) = �(xi)�(xj)



¨  Some kernel functions: 

The Kernel trick 



¨  1D, non linearly separable problem 

¨  After mapping to 2D, it is linearly separable 

Mapping to many dimensions 

0 x 

0 

x2 

x 



¨  In case of a linear combination of features: 
h(d) = wTd 

¨  Our objective is to find w, such that: 
¤  h(di) ≥ h(dj) 
¤  wTdi ≥ wTdj 
¤  wT(di – dj) ≥ 0 

¨  We approximate by adding slack variables 𝜉 and 
minimizing this “relaxation” 
¤  given the k-th document pair, find the weights w such that 

       
              wT(di – dj) ≥ 1-𝜉k        with  𝜉k≥ 0 
 
and 𝜉k is minimum 
 

(Linear) Ranking SVM 



¨  The full formulation of the problem is 

¤ Minimize         ½|w|2  +  C ∑k 𝜉k 

¤  Subject to      wT(di – dj) ≥ 1-𝜉k  
                                                      𝜉k≥ 0   

¤ where C allows to trade-off error between the margin 
(|w|2 ) and the training error 

¨  This is an SVM classification problem ! 
¤  Is convex, with no local optima, it can be generalized 

to non-linear functions of documents features. 

(Linear) Ranking SVM 



¨  We might not realized that 
some queries are really badly 
ranked 

¨  Top result pairs should be more 
important than other pairs 

¨  In general, the number of 
document pairs violations, 
might not be a good indicator 

Issues of the pairwise approach 


