
Succinct Data Structures
Auto-completion as our target application

Rossano Venturini

Dataset?

Dataset? All the past queries

Dataset?
Searches?

All the past queries

Dataset?
Prefix searchSearches?
All the past queries

Dataset?
Prefix searchSearches?
All the past queries

Data structure?

Dataset?
Prefix searchSearches?
All the past queries

Data structure? Trie

Dataset?
Prefix searchSearches?
All the past queries

Data structure? Trie
How to find top-k efficiently?

Trie

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

Trie

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

Trie

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Trie

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Trie

O(n) nodes
O(n log n + m log σ) bits of space

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Trie

O(n) nodes
O(n log n + m log σ) bits of space

Find all the strings prefixed by
any pattern P in O(|P|) time

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
Trie

O(n) nodes
O(n log n + m log σ) bits of space

Find all the strings prefixed by
any pattern P in O(|P|) time

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
Trie

O(n) nodes
O(n log n + m log σ) bits of space

Find all the strings prefixed by
any pattern P in O(|P|) time

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Scan to find the maximum!

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Scan to find the maximum!

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Scan to find the maximum!

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Scan to find the maximum!

O(n) query time :-(

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Scan to find the maximum!

O(n) query time :-(

Better ideas?

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3 6,5

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3 6,5

6,5

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3 6,5

6,52,1

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3 6,5

6,52,1

7,0

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3 6,5

6,52,1

7,0

Preprocessing time: O(n)
!
Extra space: O(n log n) bits
!
Query time: O(1)

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3 6,5

6,52,1

7,0

Preprocessing time: O(n)
!
Extra space: O(n log n) bits
!
Query time: O(1)

Solving Top-k?
!
!
!

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Augment each node with
the max (and string id)

within its subtree!

4,3 6,5

6,52,1

7,0

Preprocessing time: O(n)
!
Extra space: O(n log n) bits
!
Query time: O(1)

Solving Top-k?
!
!
!

Finding Top-1

Solving Top-k?
!
- Extra space: O(k*n*log n) bits :-(
- You must know k at building time! :-(

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

7 2 1 4 1 6 2S

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Assume you have a Data Structure on top
of S answering in O(1) by using O(n) bits
!
RMQ(i,j) = position of the maximum in the
range S[i,j] 7 2 1 4 1 6 2S

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Assume you have a Data Structure on top
of S answering in O(1) by using O(n) bits
!
RMQ(i,j) = position of the maximum in the
range S[i,j] 7 2 1 4 1 6 2S

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Assume you have a Data Structure on top
of S answering in O(1) by using O(n) bits
!
RMQ(i,j) = position of the maximum in the
range S[i,j] 7 2 1 4 1 6 2S

RMQ(3,6) = 5

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Assume you have a Data Structure on top
of S answering in O(1) by using O(n) bits
!
RMQ(i,j) = position of the maximum in the
range S[i,j] 7 2 1 4 1 6 2S

RMQ(3,6) = 5
Can you solve Top-2?

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Assume you have a Data Structure on top
of S answering in O(1) by using O(n) bits
!
RMQ(i,j) = position of the maximum in the
range S[i,j] 7 2 1 4 1 6 2SCan you solve Top-2?

Finding Top-1

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

P = c
How to find Top-1?

Assume you have a Data Structure on top
of S answering in O(1) by using O(n) bits
!
RMQ(i,j) = position of the maximum in the
range S[i,j] 7 2 1 4 1 6 2SCan you solve Top-2?

Finding Top-1

Finding Top-k

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

5

3

6

1 1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree
It can be built top-down

with RMQ

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4
1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

Results 1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

Results 1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

10
Results 1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

Results 1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

Results

10

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

Results

10

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

10

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

7

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

8

7

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

8

7

7
7

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

8

7

7
7
7

7

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

8

7

7
7
7

7

Claim: we “touch” at most 2k nodes.
⇒ Query time O(k log k)

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

8

7

7
7
7

7

Claim: we “touch” at most 2k nodes.
⇒ Query time O(k log k)

Important: the cartesian tree is not built!

1

Finding Top-k

3 5 1 7 1 6 10S 9 8 7 1 4 2… …

10

7 9

85

3

6

1 7

4

1 2

Cartesian Tree

How to find Top-k?

Visit the node starting from
the root and try to insert
each visited node in a
max-Heap storing at most
k elements.
!
Extract (and report) the
maximum from the heap
and visit its children.

max-Heap

k=4

9
7

Results

107
9

8
7

8

7

7
7
7

7

Claim: we “touch” at most 2k nodes.
⇒ Query time O(k log k)

Important: the cartesian tree is not built!

1

Assume you have a Data Structure on top
of S answering in O(1) by using O(n) bits
!
RMQ(i,j) = position of the maximum in the
range S[i,j]

Range Maximum Query (1)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

Range Maximum Query (1)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n2 log n) bits
 Query time: O(1)

Range Maximum Query (1)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n2 log n) bits
 Query time: O(1)

Precompute the answer to any
possible query.
!
There are O(n2) distinct queries!

Range Maximum Query (1)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n2 log n) bits
 Query time: O(1)

M[i,j] = RMQ(i,j)

Precompute the answer to any
possible query.
!
There are O(n2) distinct queries!

Range Maximum Query (1)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n2 log n) bits
 Query time: O(1)

M 0 1 2 3 4 5 6 7 8 9 10 11
0
1

5

2
3
4

6
7
8
9

10
11

M[i,j] = RMQ(i,j)

Precompute the answer to any
possible query.
!
There are O(n2) distinct queries!

Range Maximum Query (1)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n2 log n) bits
 Query time: O(1)

M 0 1 2 3 4 5 6 7 8 9 10 11
0
1

5

2
3
4

6
7
8
9

10
11

M[i,j] = RMQ(i,j)

Precompute the answer to any
possible query.
!
There are O(n2) distinct queries!

3

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

Maximum in a interval is the
max between the maxima of any
its subintervals

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

Maximum in a interval is the
max between the maxima of any
its subintervals

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

Maximum in a interval is the
max between the maxima of any
its subintervals

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

?

Maximum in a interval is the
max between the maxima of any
its subintervals

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

?

Maximum in a interval is the
max between the maxima of any
its subintervals

9=1+23

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

?

Maximum in a interval is the
max between the maxima of any
its subintervals

9=1+23

6

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

Maximum of a interval is the
max between the maxima of any
its subintervals

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

Maximum of a interval is the
max between the maxima of any
its subintervals

RMQ(1,7) =

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

Maximum of a interval is the
max between the maxima of any
its subintervals

 argmax(S[M[1,1+22]], S[M[7-22,7]]) = 6RMQ(1,7) =

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

Maximum of a interval is the
max between the maxima of any
its subintervals

 argmax(S[M[1,1+22]], S[M[7-22,7]]) = 6RMQ(1,7) =

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

3

Maximum of a interval is the
max between the maxima of any
its subintervals

 argmax(S[M[1,1+22]], S[M[7-22,7]]) = 6RMQ(1,7) =

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

3

Maximum of a interval is the
max between the maxima of any
its subintervals

 argmax(S[M[1,1+22]], S[M[7-22,7]]) = 6RMQ(1,7) =

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

3

Maximum of a interval is the
max between the maxima of any
its subintervals

 argmax(S[M[1,1+22]], S[M[7-22,7]]) = 6RMQ(1,7) =

6

Range Maximum Query (2)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

 Space: O(n log2 n) bits
 Query time: O(1)

M[i,j] = RMQ(i,i+2j)

Precompute the answer to every
interval of size a power of 2.
!
There are O(log n) possible
intervals starting at any position i.

M 0 1 2 3 4
0
1

5

2
3
4

6
7
8
9

10
11

3

Maximum of a interval is the
max between the maxima of any
its subintervals

 argmax(S[M[1,1+22]], S[M[7-22,7]]) = 6RMQ(1,7) =

where len =⎣log (j-i+1)⎦
RMQ(i,j) = argmax(S[M[i,i+2len]], S[M[j-2len,j]])

6

Range Maximum Query (3)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

O(1) time

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

O(1) time

O(log n) time O(log n) time

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

O(1) time

O(log n) time O(log n) time

 Space: O(n log n) bits
 Query time: O(1)

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

O(1) time

O(log n) time O(log n) time

 Space: O(n log n) bits
 Query time: O(1)

O(1) time O(1) time

Range Maximum Query (3)
 Space: O(n log n) bits
 Query time: O(log n)

3 5 1 7 1 6 10S 9 8 7 1 4
0 1 2 3 4 5 6 7 8 9 10 11

log n
R 5 7 10 7

Use the previous solution on R!

 Space: ? bits
 Query time: O(1)
 Space: O(n log n) bits
 Query time: O(1)

RMQ(1,10) = ?

O(1) time

O(log n) time O(log n) time

 Space: O(n log n) bits
 Query time: O(1)

O(1) time O(1) time

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

Compute the top-k strings

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

Compute the top-k strings O(k log k) time

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

Compute the top-k strings O(k log k) time O(n) bits

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

Compute the top-k strings O(k log k) time O(n) bits

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

Compute the top-k strings O(k log k) time O(n) bits

3 months query log at Yahoo!
!
≈600 million of distinct (and clean)
queries

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

Compute the top-k strings O(k log k) time O(n) bits

3 months query log at Yahoo!
!
≈600 million of distinct (and clean)
queries

Trie requires ≈50 Gbytes!

D = { ab (4), bab (2), bca (1), cab (2), cac (1), cbac (3), cbba (2) }

n = |D|, m total length of strings in D

7

2 1

4 1 6 2

ab b

ab ca

c

a b

baacb c

Summary

Find the node “prefixed” by P O(|P|) time O(n log n + m log σ) bits

Compute the top-k strings O(k log k) time O(n) bits

3 months query log at Yahoo!
!
≈600 million of distinct (and clean)
queries

Trie requires ≈50 Gbytes!

We will see how to reduce to
≈5 Gbytes!

