
LARGE-SCALE
DATA PROCESSING WITH
MAPREDUCE

The Petabyte age

The Petabyte age

Plucking the diamond from the waste

  “Credit-card companies monitor every purchase and can
identify fraudulent ones with a high degree of accuracy,
using rules derived by crunching through billions of
transactions.”

  “Mobile-phone operators, meanwhile, analyse subscribers’
calling patterns to determine, for example, whether most of
their frequent contacts are on a rival network.”

  “[…] Cablecom, a Swiss telecoms operator. It has reduced
customer defections from one-fifth of subscribers a year to
under 5% by crunching its numbers.”

  “Retailers, offline as well as online, are masters of data mining.”

Commodity Clusters

  Web data sets can be very large
 Tens to hundreds of terabytes

  Cannot mine on a single server
  why? obviously …

  Standard architecture emerging:
 Cluster of commodity Linux nodes
 Gigabit ethernet interconnections

  How to organize computations on this architecture?
 Mask issues such as hardware failure

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch 1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

Stable storage

  First issue:
  if nodes can fail, how can we store data persistently?

  Answer: Distributed File System
 Provides global file namespace
 Google GFS; Hadoop HDFS; Kosmix KFS

  Typical usage pattern
 Huge files (100s of GB to TB)
 Data is rarely updated in place
 Reads and appends are common

Distributed File System

  Chunk Servers
  File is split into contiguous chunks
  Typically each chunk is 16-64MB
  Each chunk replicated (usually 2x or 3x)
  Try to keep replicas in different racks

  Master node
  a.k.a. Name Node in HDFS
  Stores metadata
 Might be replicated

  Client library for file access
  Talks to master to find chunk servers
 Connects directly to chunkservers to access data

MapReduce

  A “novel” programming paradigm.
  A different data type:

 Everything is built on top of <key,value> pairs
 Keys and values are user defined, they can be anything

  There are only two user defined functions:
 Map

 map(k1,v1) list(k2,v2)

 Reduce
  reduce(k2, list(v2)) list(v3)

MapReduce

  Two simple functions:

1.  map (k1,v1) � list(k2,v2)
  given the input data (k1,v1),

and produces some intermediate data (v2)
labeled with a key (k2)

2.  reduce (k2,list(v2)) � list(v3)
  given every data (list(v2)) associated with a key (k2),

produces the output of the algorithm list(v3)

MapReduce
  All in parallel:

  we have a set of mappers and a set of reducers

1.  map (k1,v1) � list(k2,v2)
  a mapper processes only a split of the input,

which may be distributed across several machines

2.  shuffle
  a middle phase transfers the data associated with a given key

from the mappers to the proper reducer.
  reducers will receive data sorted by key

3.  reduce (k2,list(v2)) � list(v3)
  a reducer produces only a portion of the output

associated with a given set of keys

Word Count using MapReduce

map(key, value):

// key: document name; value: text of document

 for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

 result = 0
 for each count v in values:
 result += v
 emit(result)

Word Count example

MapReduce

Coordination

  Master data structures
 Task status: (idle, in-progress, completed)
  Idle tasks get scheduled as workers become available
 When a map task completes, it sends the master the

location and sizes of its R intermediate files, one for
each reducer

 Master pushes this info to reducers

  Master pings workers periodically to detect failures

Process mapping

Failures

  Map worker failure
 Map tasks completed or in-progress at worker are reset to

idle
 Reduce workers are notified when task is rescheduled on

another worker

  Reduce worker failure
 Only in-progress tasks are reset to idle
 A different reducer may take the idle task over

  Master failure
 MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

  M map tasks, R reduce tasks
  Rule of thumb:

 Make M and R larger than the number of nodes in cluster
 One DFS chunk per map is common
  Improves dynamic load balancing and speeds recovery

from worker failure

  Usually R is smaller than M
 Having several reducers increases load balancing,

but generates multiple “waves” somehow delaying the
shuffling

 output is spread across R files

Combiners

  Often a map task will produce many pairs of the form
(k,v1), (k,v2), … for the same key k
 E.g., popular words in Word Count

  Can save network time by pre-aggregating at mapper
 Combine (k1, list(v1)) (k1,list(v2))
 Usually same as reduce function
  If reduce function is commutative and associative

Partition Function

  Inputs to map tasks are created by contiguous splits of
input file

  For reducer, we need to ensure that records with the
same intermediate key end up at the same worker

  System uses a default partition function
e.g., hash(key) mod R

Back-up Tasks

  Slow workers significantly lengthen completion time
 Other jobs consuming resources on machine
 Bad disks transfer data very slowly
 Weird things: processor caches disabled (!!)

  Solution: near end of phase,
 spawn backup copies of tasks
 Whichever one finishes first "wins"

  Effect: Dramatically shortens job completion time

MR-Sort (1800 nodes)
 Normal No back-up tasks 200 processes killed

Is MapReduce so good ?

  MapReduce is not for performance !!
  Every mapper writes to disk which creates huge overhead
  The shuffle step is usually the bottleneck

  Little coding time
  You just need to override two functions
  (sometimes you need to implement other stuff such as combiner,

partitioner, sort)
  But not everything can be implemented in terms of MR

  Fault tolerance:
 Drives avg lifetime is 3 years, if you have 3600 drives then

3 will go broken per day.
 How would you implement fault tolerance in MPI ??

  Data-parallel programming model helps

Hard to be implemented in MR

  All Pairs Similarity Search Problem:
 Given a collection of documents find any pairs of

documents with similarity greater than �
 With N documents, we have N2 candidates
 Some of experiments show that for 60MB worth of

documents, you generate 40GB of intermediate data to be
shuffled.

  Graph mining problems:
 Find communities, find leaders, PageRank
  In many cases you need to share the adjacency matrix,

but how to broadcast ?

Hadoop

  Hadoop is
 an Apache project
 providing a Java implementation of MapReduce

  Just need to copy java libs to each machine of your cluster

 HDFS Hadoop distributed file system
 Efficient and reliable

  Check on-line javadoc and “Hadoop the Definitive
Guide”

Uses of MapReduce/Hadoop

  “the New York Times a few years ago used cloud
computing and Hadoop to convert over 400,000
scanned images from its archives, from 1851 to 1922.
By harnessing the power of hundreds of computers, it
was able to do the job in 36 hours.”

  “Visa, a credit-card company, in a recent trial with
Hadoop crunched two years of test records, or 73
billion transactions, amounting to 36 terabytes of data.
The processing time fell from one month with traditional
methods to a mere 13 minutes.”

Dryad & DryadLINQ

  Written at Microsoft Research, Silicon Valley

  Deployed since 2006
  Running 24/7 on >> 104 machines
  Sifting through > 10Pb data daily
  Clusters > 3000 machines
  Jobs with > 105 processes each
  Platform for rich software ecosystem

2-D Piping

  MapReduce Pipe: 1-D
 grep | sed | sort | awk | perl

  Dryad: 2-D
 grep1000 | sed500 | sort1000 | awk500 | perl50

32

Real Example

Motion Capture
(ground truth)

Classifier

Training examples

Machine
learning

Rasterize

Large-Scale Machine Learning

  > 1022 objects
  Sparse, multi-dimensional data structures
  Complex datatypes

 (images, video, matrices, etc.)
  Complex application logic and dataflow

 >35000 lines of .Net
 140 CPU days
 > 105 processes
  30 TB data analyzed
 140 avg parallelism (235 machines)
 300% CPU utilization (4 cores/machine)

Result: XBOX Kinect

Connected components

  Input format:
  X Y (meaning that node X links to node Y)

  Iterative Algorithm:
1.  Initially node X belongs to component with id X
2.  Node X sends to its neighbours its own component id
3.  Node X receives a list of component ids and keeps the minimum
4.  Repeat until convergence

  Output:
  X C (meaning that X belongs to connected component C)

  Note: complexity is O(d), where d is the diameter

[U. Kang, Charalampos E. Tsourakakis, and C. Faloutsos. 2009. PEGASUS: A Peta-Scale Graph Mining System
Implementation and Observations. In Proc. of the 2009 Ninth IEEE Int. Conf. on Data Mining (ICDM '09).]

Connected components

1

2

3

4

5

 Node 1 Node 2 Node 3 Node 4 Node 5
Iter 0 1 2 3 4 5

Iter 1 (1) 2 (2) 1 3 (3) 2 (4) 5 (5) 4
 1 1 2 4 4

Iter 2 (1) 1 (1) 1 2 (2) 1 (4) 4 (4) 4
 1 1 1 4 4

Iter 3 (1) 1 (1) 1 1 (1) 1 (4) 4 (4) 4
 1 1 1 4 4

Connected Components: Hadoop Implementation

 public static class Pegasus_Mapper_first

 extends Mapper<LongWritable, Text,

 LongWritable, LongArrayWritable> {

 // Extend the Class Mapper

 // The four generic type are resp.

 // - the input key type

 // - the input value type

 // - the output key type

 // - the output value type

 // Any key should implement WritableComparable

 // Any value should implement Writable

Connected Components: Hadoop Implementation

 public static class Pegasus_Mapper_first

 extends Mapper<LongWritable, Text,

 LongWritable, LongArrayWritable> {

 @Override

 protected void map(LongWritable key, Text value,

 Context context)

 throws IOException, InterruptedException {

 // Override the map method

 // - by default it implements identity

 // Context provides the emit function

 // - and some other useful stuff

Connected Components: Hadoop Implementation

… … …

String [] values = value.toString().split(" ");

LongWritable node = new LongWritable(Long.parseLong(values[0]));

LongWritable neigh = new LongWritable(Long.parseLong(values[1]));

// Read the pair of nodes from the input

Connected Components: Hadoop Implementation

… … …

String [] values = value.toString().split(" ");

LongWritable node = new LongWritable(Long.parseLong(values[0]));

LongWritable neigh = new LongWritable(Long.parseLong(values[1]));

LongWritable[] singlet = new LongWritable[1];

singlet[0] = neigh;

context.write(node, new LongArrayWritable(singlet));

// Emit the pair <node, neighbor>

// i.e. tell to node who is its neighbor

// otherwise it will not know its neighbors in the following
iterations

Connected Components: Hadoop Implementation

… … …

String [] values = value.toString().split(" ");

LongWritable node = new LongWritable(Long.parseLong(values[0]));

LongWritable neigh = new LongWritable(Long.parseLong(values[1]));

LongWritable[] singlet = new LongWritable[1];

singlet[0] = neigh;

context.write(node, new LongArrayWritable(singlet));

singlet[0] = new LongWritable(-1-node.get());

context.write(node, new LongArrayWritable(singlet));

context.write(neigh, new LongArrayWritable(singlet));

// Tell to the neighbor and to the node itself

// what is the currently know smallest component id

// The component ids are made negative (-1)

Connected Components: Hadoop Implementation

 public static class Pegasus_Reducer

 extends Reducer<LongWritable, LongArrayWritable,
 LongWritable, LongArrayWritable> {

 @Override

 protected void reduce(LongWritable key,

 Iterable<LongArrayWritable> values,

 Context context)

 throws IOException, InterruptedException {

 // Extend the Class Reducer

 // Override the reduce method

 // (similarly to what we did for the mapper)

 // Note: reducer receives a list (Iterable) of values

Connected Components: Hadoop Implementation

… … …

LongWritable min = null;

Writable[] neighbors = null;

for(LongArrayWritable cluster : values) {

 Writable[] nodes = cluster.get();

 LongWritable first = (LongWritable) nodes[0];

 if (first.get()<0) { // This is a min !

 if (min==null) min = first;

 else if (min.compareTo(first)<0) {

 min = first;

 }

 } else { … … … …

// Scan the list of values received.

// Each value is an array of ids.

// If the first element is negative,

// this message contains a component id

// Keep the smallest! (absolute value)

Connected Components: Hadoop Implementation

… … …

} else { // This is the actual graph

 if (neighbors == null) neighbors = nodes;

 else {

 Writable[] aux = new Writable[neighbors.length +

 nodes.length];

 System.arraycopy(neighbors, 0, aux, 0, neighbors.length);

 System.arraycopy(nodes, 0, aux, neighbors.length,

 nodes.length);

 neighbors = aux;

 }

}

// If we received graph information

// (potentially from many nodes).

// store it a new array

Connected Components: Hadoop Implementation

… … …

int num_neigh = neighbors==null ? 0 : neighbors.length;

LongWritable[] min_nodes = new LongWritable[num_neigh + 1];

min_nodes[0] = min;

for (int i=0; i<num_neigh; i++)

 min_nodes[i+1] = (LongWritable) neighbors[i];

// send current min + graph

context.write(key, new LongArrayWritable(min_nodes));

// Create a vector where

// The first position is the current component id

// The rest is the list of neighbors

// “send” this information to the node

Connected Components: Hadoop Implementation

 public static class Pegasus_Mapper

 extends Mapper< LongWritable, LongArrayWritable,

 LongWritable, LongArrayWritable> {

 @Override

 protected void map(LongWritable key,
LongArrayWritable value,

 Context context)

 // In subsequent iterations:

 // the mapper receives the vector with the component id

 // and the set of neighbors.

 // - it propagates the id to the neighbors

 // - send graph information to the node

Connected Components: Hadoop Implementation

Path iter_input_path = null;

Path iter_output_path = null;

int max_iteration = 30;

// Pegasus Algorithm invocation

Configuration configuration = new Configuration();

FileSystem fs = FileSystem.get(configuration);

for (int iteration = 0; iteration<=max_iteration; iteration++) {

 Job jobStep = new Job(configuration, “PEGASUS iteration " +

 iteration);

 jobStep.setJarByClass(MRConnectedComponents.class);

// A MapReduce Job is defined by a Job object

// In each iteration we must update the “fields” of such object

Connected Components: Hadoop Implementation

// common settings

iter_input_path = new Path(intermediate_results, "iter"+iteration);

iter_output_path = new Path(intermediate_results, "iter"+

 (iteration+1));

Class mapper_class = Pegasus_Mapper.class;

Class reducer_class = Pegasus_Reducer.class;

Class output_class = LongArrayWritable.class;

Class output_format_class = SequenceFileOutputFormat.class;

Class input_format_class = SequenceFileInputFormat.class;

// Some parameters are the same at each iteration

Connected Components: Hadoop Implementation

// per iteration settings

if (iteration==0) {

 iter_input_path = input_dir;

 mapper_class = Pegasus_Mapper_first.class;

 input_format_class = TextInputFormat.class;

} else if (iteration == max_iteration) {

 mapper_class = Pegasus_Outputter.class;

 reducer_class = null;

 iter_output_path = output_dir;

 output_format_class = TextOutputFormat.class;

 output_class = LongWritable.class;

}

// The first and the last iterations are different

Connected Components: Hadoop Implementation

jobStep.setMapperClass(mapper_class);

if (reducer_class!=null) { jobStep.setReducerClass(reducer_class); }

jobStep.setOutputKeyClass(LongWritable.class);

jobStep.setOutputValueClass(output_class);

jobStep.setInputFormatClass(input_format_class);

jobStep.setOutputFormatClass(output_format_class);

FileInputFormat.setInputPaths(jobStep, iter_input_path);

FileOutputFormat.setOutputPath(jobStep, iter_output_path);

boolean success = jobStep.waitForCompletion(true);

// Set all parameters of the job and launch

Connected components: Hash-To-Min

  Iterative Algorithm:
1.  Initially node X “knows” cluster C=X plus its neighbors
2.  Node X sends C to the smallest node in C
3.  Node X sends the smallest node of C to any other node in C
4.  Node X receives creates a new C by merging all the received

messages
5.  Repeat until convergence

[Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, Anish Das Sarma: Finding Connected Components on
Map-reduce in Logarithmic Rounds. CoRR abs/1203.5387 (2012).]

Connected components: Hash-To-Min

1 2
3

4
5

 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Iter 0 1,2 1,2,3 2,3,4 3,4,5 4,5,6 5,6

Iter 1 (1,2) 1
 (1,2,3) 1 1
 (2,3,4) 2 2
 (3,4,5) 3 3
 (4,5,6) 4 4
 5,6 5
 1,2,3 1,2,3,4 1,2,3,4,5 2,3,4,5,6 3,4,5,6 4,5

6

Connected components: Hash-To-Min

1 2
3

4
5

 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Iter 1 1,2,3 1,2,3,4 1,2,3,4,5 2,3,4,5,6 3,4,5,6 4,5

Iter 2 (1,2,3) 1 1
 (1,2,3,4) 1 1 1
 (1,2,3,4,5) 1 1 1 1
 (2,3,4,5,6) 2 2 2 2
 (3,4,5,6) 3 3 3
 (4,5) 4
 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5 1,2,3,4 2,3

6

Connected components: Hash-To-Min

1 2
3

4
5

 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Iter 2 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5 1,2,3,4 2,3

Iter 3 (1,2,3,4,5) 1 1 1 1
 (1,2,3,4,5,6) 1 1 1 1 1
 (1,2,3,4,5,6) 1 1 1 1 1
 (1,2,3,4,5) 1 1 1 1
 (1,2,3,4) 1 1 1
 (2,3) 2
 1,2,3,4,5,6 1,2,3 1,2 1 1 1

6

Connected components: Hash-To-Min

1 2
3

4
5

 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Iter 3 1,2,3,4,5,6 1,2,3 1,2 1 1 1

Iter 4 (1,2,3,4,5,6) 1 1 1 1 1
 (1,2,3) 1 1
 (1,2) 1
 1
 1
 1
 1,2,3,4,5,6 1 1 1 1 1

  Note: complexity is O(log d), where d is the diameter

6

If you are interested in the following topics:
•  large-scale data processing
•  data mining
•  web search and mining

feel free to contact me/fabrizio at
claudio.lucchese@isti.cnr.it
fabrizio.silvestri@isti.cnr.it

… The end

