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The Petabyte age 



The Petabyte age 



Plucking the diamond from the waste 

  “Credit-card companies monitor every purchase and can 
identify fraudulent ones with a high degree of accuracy, 
using rules derived by crunching through billions of 
transactions.”  

  “Mobile-phone operators, meanwhile, analyse subscribers’ 
calling patterns to determine, for example, whether most of 
their frequent contacts are on a rival network.” 

  “[…] Cablecom, a Swiss telecoms operator. It has reduced 
customer defections from one-fifth of  subscribers a year to 
under 5% by crunching its numbers.” 

  “Retailers, offline as well as online, are masters of  data mining.” 



Commodity Clusters 

  Web data sets can be very large  
 Tens to hundreds of terabytes 

  Cannot mine on a single server 
   why? obviously … 

  Standard architecture emerging: 
 Cluster of commodity Linux nodes 
 Gigabit ethernet interconnections 

  How to organize computations on this architecture? 
 Mask issues such as hardware failure 
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Stable storage 

  First issue:  
  if nodes can fail, how can we store data persistently?  

  Answer: Distributed File System 
 Provides global file namespace 
 Google GFS; Hadoop HDFS; Kosmix KFS 

  Typical usage pattern 
 Huge files (100s of GB to TB) 
 Data is rarely updated in place 
 Reads and appends are common 



Distributed File System 

  Chunk Servers 
  File is split into contiguous chunks 
  Typically each chunk is 16-64MB 
  Each chunk replicated (usually 2x or 3x) 
  Try to keep replicas in different racks 

  Master node 
  a.k.a. Name Node in HDFS 
  Stores metadata 
 Might be replicated 

  Client library for file access 
  Talks to master to find chunk servers  
 Connects directly to chunkservers to access data 



MapReduce 

  A “novel” programming paradigm. 
  A different data type: 

 Everything is built on top of <key,value> pairs 
 Keys and values are user defined, they can be anything 

  There are only two user defined functions: 
 Map 

 map(k1,v1)  list(k2,v2) 

 Reduce 
  reduce(k2, list(v2))  list(v3) 



MapReduce 

  Two simple functions: 

1.  map      (k1,v1)      �  list(k2,v2) 
  given the input data (k1,v1), 

and produces some intermediate data (v2)  
labeled with a key (k2) 

2.  reduce  (k2,list(v2))   �  list(v3) 
  given every data (list(v2)) associated with a key (k2), 

produces the output of the algorithm list(v3) 



MapReduce 
  All in parallel: 

  we have a set of mappers and a set of reducers 

1.  map      (k1,v1)      �  list(k2,v2) 
  a mapper processes only a split of the input, 

which may be distributed across several machines 

2.  shuffle 
  a middle phase transfers the data associated with a given key 

from the mappers to the proper reducer. 
  reducers will receive data sorted by key 

3.  reduce  (k2,list(v2))   �  list(v3) 
  a reducer produces only a portion of the output 

associated with a given set of keys 



Word Count using MapReduce 

map(key, value): 

// key: document name; value: text of document 

 for each word w in value: 
  emit(w, 1) 

reduce(key, values): 
// key: a word; value: an iterator over counts 

 result = 0 
 for each count v in values: 
  result += v 
 emit(result) 



Word Count example 



MapReduce 



Coordination 

  Master data structures 
 Task status: (idle, in-progress, completed) 
  Idle tasks get scheduled as workers become available 
 When a map task completes, it sends the master the 

location and sizes of its R intermediate files, one for 
each reducer 

 Master pushes this info to reducers 

  Master pings workers periodically to detect failures 



Process mapping 



Failures 

  Map worker failure 
 Map tasks completed or in-progress at worker are reset to 

idle 
 Reduce workers are notified when task is rescheduled on 

another worker 

  Reduce worker failure 
 Only in-progress tasks are reset to idle 
 A different reducer may take the idle task over 

  Master failure 
 MapReduce task is aborted and client is notified 



How many Map and Reduce jobs? 

  M map tasks, R reduce tasks 
  Rule of thumb: 

 Make M and R larger than the number of nodes in cluster 
 One DFS chunk per map is common 
  Improves dynamic load balancing and speeds recovery 

from worker failure 

  Usually R is smaller than M 
 Having several reducers increases load balancing,  

but generates multiple “waves” somehow delaying the 
shuffling 

 output is spread across R files 



Combiners 

  Often a map task will produce many pairs of the form 
(k,v1), (k,v2), … for the same key k 
 E.g., popular words in Word Count 

  Can save network time by pre-aggregating at mapper 
 Combine (k1, list(v1))  (k1,list(v2)) 
 Usually same as reduce function 
  If reduce function is commutative and associative 



Partition Function 

  Inputs to map tasks are created by contiguous splits of 
input file 

  For reducer, we need to ensure that records with the 
same intermediate key end up at the same worker 

  System uses a default partition function  
e.g., hash(key) mod R 



Back-up Tasks 

  Slow workers significantly lengthen completion time 
 Other jobs consuming resources on machine 
 Bad disks transfer data very slowly 
 Weird things: processor caches disabled (!!) 

  Solution: near end of phase,  
             spawn backup copies of tasks 
 Whichever one finishes first "wins" 

  Effect: Dramatically shortens job completion time 



MR-Sort (1800 nodes) 
  Normal    No back-up tasks  200 processes killed 



Is MapReduce so good ? 

  MapReduce is not for performance !! 
  Every mapper writes to disk which creates huge overhead 
  The shuffle step is usually the bottleneck 

  Little coding time 
  You just need to override two functions 
  (sometimes you need to implement other stuff such as combiner, 

partitioner, sort) 
  But not everything can be implemented in terms of MR 

  Fault tolerance: 
 Drives avg lifetime is 3 years, if you have 3600 drives then 

3 will go broken per day. 
 How would you implement fault tolerance in MPI ?? 

  Data-parallel programming model helps 



Hard to be implemented in MR 

  All Pairs Similarity Search Problem: 
 Given a collection of documents find any pairs of 

documents with similarity greater than � 
 With N documents, we have N2 candidates 
 Some of experiments show that for 60MB worth of 

documents, you generate 40GB of intermediate data to be 
shuffled. 

  Graph mining problems: 
 Find communities, find leaders, PageRank 
  In many cases you need to share the adjacency matrix, 

but how to broadcast ? 



Hadoop 

  Hadoop is  
 an Apache project 
 providing a Java implementation of MapReduce 

  Just need to copy java libs to each machine of your cluster 

 HDFS Hadoop distributed file system 
 Efficient and reliable  

  Check on-line javadoc and “Hadoop the Definitive 
Guide” 



Uses of MapReduce/Hadoop 

  “the New York Times a few years ago used cloud 
computing and Hadoop to convert over 400,000 
scanned images from its archives, from 1851 to 1922. 
By harnessing the power of hundreds of computers, it 
was able to do the job in 36 hours.” 

  “Visa, a credit-card company, in a recent trial with 
Hadoop crunched two years of test records, or 73 
billion transactions, amounting to 36 terabytes of data. 
The processing time fell from one month with traditional 
methods to a mere 13 minutes.” 



Dryad & DryadLINQ 

  Written at Microsoft Research, Silicon Valley 

  Deployed since 2006 
  Running 24/7 on >> 104 machines 
  Sifting through > 10Pb data daily 
  Clusters > 3000 machines 
  Jobs with > 105 processes each 
  Platform for rich software ecosystem 



2-D Piping 

  MapReduce Pipe: 1-D 
  grep |  sed  | sort | awk |  perl 

  Dryad: 2-D 
  grep1000 |  sed500  | sort1000 | awk500 |  perl50 

32 



Real Example 
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Large-Scale Machine Learning 

  > 1022 objects 
  Sparse, multi-dimensional data structures 
  Complex datatypes  

 (images, video, matrices, etc.) 
  Complex application logic and dataflow 

 >35000 lines of .Net 
 140 CPU days  
 > 105 processes 
   30 TB data analyzed 
 140 avg parallelism (235 machines) 
 300% CPU utilization (4 cores/machine) 



Result: XBOX Kinect 



Connected components 

  Input format: 
  X Y  (meaning that node X links to node Y) 

  Iterative Algorithm: 
1.  Initially node X belongs to component with id X 
2.  Node X sends to its neighbours its own component id 
3.  Node X receives a list of component ids and keeps the minimum 
4.  Repeat until convergence 

  Output: 
  X C (meaning that X belongs to connected component C) 

  Note: complexity is O(d), where d is the diameter 

[ U. Kang, Charalampos E. Tsourakakis, and C. Faloutsos. 2009. PEGASUS: A Peta-Scale Graph Mining System 
Implementation and Observations. In Proc. of the 2009 Ninth IEEE Int. Conf. on Data Mining (ICDM '09). ] 



Connected components 
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  Node 1  Node 2  Node 3  Node 4  Node 5 
Iter 0   1   2   3   4   5 

Iter 1   (1) 2  (2) 1 3  (3) 2  (4) 5  (5) 4 
   1   1   2   4   4 

Iter 2   (1) 1  (1) 1 2  (2) 1  (4) 4  (4) 4 
   1   1   1   4   4 

Iter 3   (1) 1  (1) 1 1  (1) 1  (4) 4  (4) 4 
   1   1   1   4   4 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Mapper_first  

    extends Mapper<LongWritable, Text,  

                   LongWritable, LongArrayWritable> { 

 // Extend the Class Mapper  

 // The four generic type are resp. 

 //  - the input key type 

 //  - the input value type 

 //  - the output key type 

 //  - the output value type 

 // Any key should implement WritableComparable 

 // Any value should implement Writable 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Mapper_first  

    extends Mapper<LongWritable, Text,  

                   LongWritable, LongArrayWritable> { 

 @Override 

 protected void map(LongWritable key, Text value,  

    Context context)  

   throws IOException, InterruptedException { 

 // Override the map method 

 //  - by default it implements identity  

 // Context provides the emit function 

 //  - and some other useful stuff 



Connected Components: Hadoop Implementation 

… … … 

String [] values = value.toString().split(" "); 

LongWritable node  = new LongWritable( Long.parseLong(values[0]) ); 

LongWritable neigh = new LongWritable( Long.parseLong(values[1]) ); 

// Read the pair of nodes from the input 



Connected Components: Hadoop Implementation 

… … … 

String [] values = value.toString().split(" "); 

LongWritable node  = new LongWritable( Long.parseLong(values[0]) ); 

LongWritable neigh = new LongWritable( Long.parseLong(values[1]) ); 

LongWritable[] singlet = new LongWritable[1]; 

singlet[0] = neigh; 

context.write(node, new LongArrayWritable(singlet) ); 

// Emit the pair <node, neighbor> 

// i.e. tell to node who is its neighbor 

// otherwise it will not know its neighbors in the following 
iterations 



Connected Components: Hadoop Implementation 

… … … 

String [] values = value.toString().split(" "); 

LongWritable node  = new LongWritable( Long.parseLong(values[0]) ); 

LongWritable neigh = new LongWritable( Long.parseLong(values[1]) ); 

LongWritable[] singlet = new LongWritable[1]; 

singlet[0] = neigh; 

context.write(node, new LongArrayWritable(singlet) ); 

singlet[0] = new LongWritable(-1-node.get()); 

context.write(node, new LongArrayWritable(singlet) ); 

context.write(neigh, new LongArrayWritable(singlet) ); 

// Tell to the neighbor and to the node itself 

//      what is the currently know smallest component id 

// The component ids are made negative (-1) 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Reducer  

  extends Reducer<LongWritable, LongArrayWritable, 
   LongWritable, LongArrayWritable> { 

 @Override 

 protected void reduce(LongWritable key,  

    Iterable<LongArrayWritable> values, 

     Context context)  

     throws IOException, InterruptedException { 

 // Extend the Class Reducer 

 // Override the reduce method 

 //  ( similarly to what we did for the mapper) 

 // Note: reducer receives a list (Iterable) of values 



Connected Components: Hadoop Implementation 

… … … 

LongWritable min = null; 

Writable[] neighbors = null; 

for(LongArrayWritable cluster : values) { 

 Writable[] nodes = cluster.get(); 

 LongWritable first = (LongWritable) nodes[0]; 

 if (first.get()<0) { // This is a min ! 

  if (min==null) min = first; 

  else if (min.compareTo(first)<0) { 

   min = first; 

  } 

 } else { … … … …  

// Scan the list of values received. 

// Each value is an array of ids. 

// If the first element is negative,  

//   this message contains a component id 

//   Keep the smallest! (absolute value) 



Connected Components: Hadoop Implementation 

… … … 

} else { // This is the actual graph 

 if (neighbors == null) neighbors = nodes; 

 else { 

  Writable[] aux = new Writable[neighbors.length + 

       nodes.length]; 

  System.arraycopy(neighbors, 0, aux, 0, neighbors.length); 

  System.arraycopy(nodes, 0, aux, neighbors.length,  

        nodes.length); 

  neighbors = aux; 

 } 

} 

// If we received graph information 

// (potentially from many nodes). 

// store it a new array 



Connected Components: Hadoop Implementation 

… … … 

int num_neigh = neighbors==null ? 0 : neighbors.length; 

LongWritable[] min_nodes = new LongWritable[num_neigh + 1]; 

min_nodes[0] = min; 

for (int i=0; i<num_neigh; i++) 

 min_nodes[i+1] = (LongWritable) neighbors[i]; 

// send current min + graph 

context.write(key, new LongArrayWritable(min_nodes)); 

// Create a vector where 

// The first position is the current component id 

// The rest is the list of neighbors 

// “send” this information to the node 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Mapper  

  extends Mapper< LongWritable, LongArrayWritable,  

    LongWritable, LongArrayWritable> { 

 @Override 

     protected void map(LongWritable key, 
LongArrayWritable value, 

      Context context)  

 // In subsequent iterations: 

 // the mapper receives the vector with the component id 

 // and the set of neighbors. 

 //  - it propagates the id to the neighbors 

 //  - send graph information to the node  



Connected Components: Hadoop Implementation 

Path iter_input_path = null; 

Path iter_output_path = null; 

int max_iteration = 30; 

// Pegasus Algorithm invocation 

Configuration configuration = new Configuration();   

FileSystem fs = FileSystem.get(configuration); 

for (int iteration = 0; iteration<=max_iteration; iteration++ ) { 

 Job jobStep = new Job(configuration, “PEGASUS iteration " +  

        iteration); 

 jobStep.setJarByClass(MRConnectedComponents.class); 

// A MapReduce Job is defined by a Job object 

// In each iteration we must update the “fields” of such object 



Connected Components: Hadoop Implementation 

// common settings 

iter_input_path = new Path(intermediate_results, "iter"+iteration); 

iter_output_path = new Path(intermediate_results, "iter"+  

       (iteration+1)); 

Class mapper_class        = Pegasus_Mapper.class; 

Class reducer_class       = Pegasus_Reducer.class; 

Class output_class        = LongArrayWritable.class; 

Class output_format_class = SequenceFileOutputFormat.class; 

Class input_format_class  = SequenceFileInputFormat.class; 

// Some parameters are the same at each iteration 



Connected Components: Hadoop Implementation 

// per iteration settings 

if (iteration==0) { 

 iter_input_path     = input_dir; 

 mapper_class        = Pegasus_Mapper_first.class; 

 input_format_class  = TextInputFormat.class; 

} else if (iteration == max_iteration) { 

 mapper_class        = Pegasus_Outputter.class; 

 reducer_class       = null; 

 iter_output_path    = output_dir; 

 output_format_class = TextOutputFormat.class; 

 output_class        = LongWritable.class; 

}  

// The first and the last iterations are different 



Connected Components: Hadoop Implementation 

jobStep.setMapperClass(mapper_class); 

if (reducer_class!=null) { jobStep.setReducerClass(reducer_class); } 

jobStep.setOutputKeyClass(LongWritable.class); 

jobStep.setOutputValueClass(output_class); 

jobStep.setInputFormatClass(input_format_class); 

jobStep.setOutputFormatClass(output_format_class); 

FileInputFormat.setInputPaths(jobStep, iter_input_path); 

FileOutputFormat.setOutputPath(jobStep, iter_output_path); 

boolean success = jobStep.waitForCompletion(true); 

// Set all parameters of the job and launch 



Connected components: Hash-To-Min 

  Iterative Algorithm: 
1.  Initially node X “knows” cluster C=X plus its neighbors 
2.  Node X sends C to the smallest node in C 
3.  Node X sends the smallest node of C to any other node in C 
4.  Node X receives creates a new C by merging all the received 

messages 
5.  Repeat until convergence 

[Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, Anish Das Sarma: Finding Connected Components on 
Map-reduce in Logarithmic Rounds. CoRR abs/1203.5387 (2012). ] 



Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 0  1,2    1,2,3   2,3,4   3,4,5   4,5,6   5,6 

Iter 1  (1,2)   1      
  (1,2,3)   1    1   
     (2,3,4)   2    2 
        (3,4,5)   3    3 
           (4,5,6)   4    4 
              5,6    5 
  1,2,3   1,2,3,4   1,2,3,4,5  2,3,4,5,6  3,4,5,6   4,5   

6 



Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 1  1,2,3   1,2,3,4   1,2,3,4,5  2,3,4,5,6  3,4,5,6   4,5 

Iter 2  (1,2,3)   1    1     
  (1,2,3,4)   1    1    1 
  (1,2,3,4,5)  1    1    1    1 
     (2,3,4,5,6)  2    2    2    2 
        (3,4,5,6)   3    3    3 
           (4,5)   4 
  1,2,3,4,5  1,2,3,4,5,6  1,2,3,4,5,6  1,2,3,4,5  1,2,3,4   2,3 
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Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 2  1,2,3,4,5  1,2,3,4,5,6  1,2,3,4,5,6  1,2,3,4,5  1,2,3,4   2,3 

Iter 3  (1,2,3,4,5)  1    1    1    1 
  (1,2,3,4,5,6)  1    1    1    1    1 
  (1,2,3,4,5,6)  1    1    1    1    1 
  (1,2,3,4,5)  1    1    1    1 
  (1,2,3,4)   1    1    1 
     (2,3)   2 
  1,2,3,4,5,6  1,2,3   1,2    1    1    1 

    

6 



Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 3  1,2,3,4,5,6  1,2,3   1,2    1    1    1 

Iter 4  (1,2,3,4,5,6)  1    1    1    1    1 
  (1,2,3)   1    1 
  (1,2)   1 
  1 
  1 
  1 
  1,2,3,4,5,6  1    1    1    1    1 

  Note: complexity is O(log d), where d is the diameter 
    

6 



If you are interested in the following topics: 
•  large-scale data processing 
•  data mining 
•  web search and mining 

feel free to contact me/fabrizio at   
claudio.lucchese@isti.cnr.it 
fabrizio.silvestri@isti.cnr.it 

… The end 


