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1 PROBLEM DEFINITION

Suppose that a messade = (s1, so, ..., s,) Of lengthn = | M| symbols is to be represented, where each
symbols; is an integer in the range < s; < U, for some upper limit/ that may or may not be known,
and may or may not be finite. Messages in this form are commibelyutput of some kind of modeling
step in a data compression system. The objective is to reqmrése message over a binary output alphabet
{0, 1} using as few as possible output bits. A special case of thelgmoarises when the elements of the
message are strictly increasing, < s;11. In this case the messagé can be thought of as identifying a
subset of{1,2,...,U}. Examples include storing sets of IP addresses or prodaesc@nd recording the
destinations of hyperlinks in the graph representatiomeftorld wide web.

A key restriction in this problem is that it may not be assurtired» > U. That is, it must be assumed
that M is too short (relative to the univergé) to warrant the calculation of ai/-specific code. Indeed,
in the strictly increasing case, < U is guaranteed. A message used as an example beld is=
(1,3,1,1,1,10,8,2,1,1). Note that any message/ can be converted to another messadé over the
alphabetU’ = Un by taking prefix sums. The transformation is reversible hwiite inverse operation
known as “taking gaps”.

2 KEY RESULTS

A key limit on static codes is expressed by the Kraft-McMillaequality (see [13]): if the codeword for a
symbolz is of length/,,, thenzgz1 2~t: < 1is required if the code is to be left-to-right decodeablahwi
no codeword a prefix of any other codeword. Another key bogrttie combinatorial cost of describing a

set. If ann-subset ofl . .. U is chosen at random, then a totallog, (Z) ~ nlog,(U/n) bits are required
to describe that subset.

Unary and Binary codes As a first example method, considénary coding in which the symbol: is
represented as — 1 bits that aret, followed by a singleo-bit. For example, the first three symbols of
messagée\/; would be coded by#-110-0", where the dashes are purely illustrative and do not form pa
of the coded representation. Because the Unary code i®exactlyz bits long, this code strongly favors
small integers, and has a corresponding ideal symbol pildigabstribution (the distribution for which this
particular pattern of codeword lengths yields the minimaksage length) given B8rob(z) = 27*.

Unary has the useful attribute of being an infinite code. Biless the messagdd is dominated by small
integers, Unary is a relatively expensive code. In pardicithe Unary-coded representation of a message



M = (s1...sy,) requiresy . s; bits, and when\/ is a gapped representation of a subset of. U, can be
as long ad’/ bits in total.
The best-known code in computingBsnary. If 2= < U < 2* for some integek;, then symbold <
s; < U can be represented in> log, U bits each. In this case, the coddirste, and the ideal probability
distribution is given byProb(z) = 27%. WhenU = 2%, this then implies thaProb(x) = 27 182" = 1/n.
WhenU is known precisely, and is not a power of tva¥, — U of the codewords can be shortened to
k — 1 bits long, in aMinimal Binary code. It is conventional to assign the short codewords tadbsjsn
1---2¥ — U. The codewords for the remaining symba% — U + 1) - - - U, remaink bits long.

Golomb codes In 1966 Solomon Golomb provided an elegant hybrid betweearyand Binary codes
(see [15]). He observed that if a randetysubset of the items- - - U was selected, then the gaps between
consecutive members of the subset were defined by a geomeihability distributionProb(z) = p(1 —
p)*~1, wherep = n /U is the probability that any selected item is a member of thssu

If bis chosen such thal — p)® = 0.5, this probability distribution suggests that the codewordz + b
should be one bit longer than the codewordifoll he solutiorb = log 0.5/ log(1—p) ~ 0.69/p =~ 0.69U /n
specifies a parametgthat defines th&olomb codeTo then represent integer calculatel + ((z—1) div b)
as a quotient, and code that part in Unary; and calcdlatg (x — 1) modb) as a remainder part, and code
it in Minimal Binary, against a maximum bound &f When concatenated, the two parts form the codeword
for integerxz. As an example, suppose that 5 is specified. Then the five Minimal Binary codewords for
the five possible binary suffix parts of the codewords a@,*“ 01", “ 10", “ 110", and “111”. The number
8 is thus coded as a Unary prefix of 0" to indicate a quotient part df, followed by a Minimal Binary
remainder of 10” representing3, to make an overall codeword 0f6-10".

Like Unary, the Golomb code is infinite; but by design is atjbte to different probability distributions.
Whenb = 2 for integerk a special case of the Golomb code arises, usually calRideicode

Eliascodes Peter Elias (again, see [15]) provided further hybrids leetwiUnary and Binary codes in work
published in 1975. This family of codes are defined reculgivath Unary being the simplest member.

To move from one member of the family to the next, the previoesnber is used to specify the number
of bits in the standard binary representation of the valbeing coded (that is, the valdet |log, x]); then,
once the length has been specified, the trailing bits, @fith the top bit suppressed, are coded in Binary.

For example, the second member of the Elias familg'js and can be thought of as a Unary-Binary
code: Unary to indicate the prefix part, being the magnitude; @nd then Binary to indicate the value of
x within the range specified by the prefix part. The first #€wcodewords are thug", “10-0", “10-1",
“110-00", and so on, where the dashes are again purely illustrativgeneral, the”, codeword for a value
x requiresl + [log, x| bits for the Unary prefix part, and a furthfiog, x| for the binary suffix part, and
the ideal probability distribution is thus given Byob(x) > 1/(222).

After C., the next member of the Elias family ¢s;. The only difference betweef, codewords and
the corresponding’s codewords is that in the latt&?., is used to store the prefix part, rather than Unary.
Further members of the family of Elias codes can be genetateapplying the same process recursively,
but for practical purpose§’s is the last useful member of the family, even for relativelyge values of.

To see why, note that’, (z)| < |Cs(x)| wheneverr < 31, meaning that; is longer than the next Elias
code only for values: > 232,

Fibonacci-based codes Another interesting code is derived from the Fibonacci seqa described (for
this purpose) ag; = 1, Fy = 2, F3 = 3, Fy = 5, F5 = 8, and so on. Th&eckendorfrepresentation
of a natural number is a list of Fibonacci values that add ubabnumber, with the restriction that no two
adjacent Fibonacci numbers may be used. For example, theerdmis the sum o2 + 8 = I, + Fs.

The simplesFibonaccicode is derived directly from the ordered Zeckendorf regméation of the target
value, and consists of @™ bit in the ith position (counting from the left) of the codewordAf does not
appear in the sum, and a™bit in that position if it does, with indices considered imcreasing order.
Because it is not possible for boffy and F; 1 to be part of the sum, the last two bits of this string must be
“01”. An appended 1” bit is thus sufficient to signal the end of each codeword. ksgs, the assumption



of monotonically decreasing symbol probabilities meais #hort codes are assigned to small values. The
code for integer one is1=1", and the next few codewords ar@1-1", “001-1", “101-1", “0001-1",
“1001-1", where, as before, the embedded dash is purely illus&ativ

BecauseF,, ~ ¢" where¢ is the golden ratiop = (1 + v/5)/2 ~ 1.61803, the codeword for: is
approximatelyl + log,x ~ 1 + 1.44log, x bits long, and is shorter thad, for all values except = 1.
It is also as good as, or better thary, over a wide range of practical values betw@eand Fig = 6,765.
Higher-order Fibonacci codes are also possible, with as®d minimum codeword lengths, and decreased
coefficients on the logarithmic term. Fenwick [8] providemd coverage of Fibonacci codes.

Byte Aligned codes Performing the necessary bit-packing and bit-unpackingratons to extract unre-
stricted bit sequences can be costly in terms of decodirqugfimput rates, and a whole class of codes that
operate on units of bytes rather then bits have been dewklofieeByte Alignedcodes.

The simplest Byte Aligned code is an interleaved eight-bilag of the Eliag”, mechanism. The top
bit in each byte is reserved for a flag that indicates (wh&h that “this is the last byte of this codeword”
and (when 1”) that “this is not the last byte of this codeword, take amotbne as well”. The other seven
bits in each byte are used for data bits. For example, the auiit84 is coded into two bytes,209-008",
and is reconstructed via the calculati@09 — 128 + 1) x 128" + (008 + 1) x 128! = 1,234.

In this simplest byte aligned code, a total8¢flog, x)/7] bits are used, which makes it more effective
asymptotically than thé + 2|log, x| bits required by the Elia€’, code. However, the minimum codeword
length of eight bits means that Byte Aligned codes are expens messages dominated by small values.

Byte Aligned codes are fast to decode. They also providehanaitseful feature — the facility to quickly
“seek” forwards in the compressed stream over a given nuofteEdewords. A third key advantage of byte
codes is that if the compressed message is to be searchedatich pattern can be rendered into a sequence
of bytes using the same code, and then any byte-based patétching utility be invoked [7]. The zero top
bit in all final bytes means that false matches are identifigd &single additional test.

An improvement to the simple Byte Aligned coding mechanisises from the observation that there
is nothing special about the valu@8 as the separating value between #tepperand continuer bytes,
and that different values lead to different tradeoffs inrallecodeword lengths [3]. In thege, C)-Byte
Aligned codes, values o$ and C' such thatS + C' = 256 are chosen, and each codeword consists of
a sequence of zero or more continuer bytes with values griiie or equal ta5, and ends with a final
stopper byte with a value less than Other variants include methods that use bytes as the caouitg) to
form Huffman codes, either using eight-bit coding symbaolsagged seven-bit units [7]; and methods that
partially permute the alphabet, but avoid the need for a ¢tetmpnapping [6]. Culpepper and Moffat [6]
also describe a byte aligned coding method that createsoéisgtie-based codewords with the property that
the first byte uniquely identifies the length of the codewdsimilarly, Nibble codes can be designed as a
4-bit analog of the Byte Aligned approach, where one bit ienesd for a stopper-continuer flag, and three
bits are used for data.

Other static codes There have been a wide range of other variants describea: ilitéhature. Several of
these adjust the code by altering the boundaries of the $etoibtshat define the code, and coding a value
x as a Unary bucket identifier, followed by a Minimal Binarys#t within the specified bucket (see [15]).

For example, the Eliag’, code can be regarded as being a Unary-Binary combinatiativelto a
vector of bucket sizeg2?, 21,22 23 24 ). Teuhola (see [15]) proposed a hybrid in which a parameter
k is chosen, and the vector of bucket sizes is giverfdfy2k+1 2k+2 2k+3 ) One way of setting the
parametetk is to take it to be the length in bits of the median sequenceeyalo that the first bit of each
codeword approximately halves the range of observed sywabobs. Another variant method is described
by Boldi and Vigna [2], who use a vectde” — 1, (2F — 1)2%, (2% —1)22F, (2% —1)23% ...} to obtain
a family of codes that are analytically and empirically walited to power-law probability distributions,
especially those associated with web-graph compressiothid methodk is typically in the range to 4,
and a Minimal Binary code is used for the suffix part.

Fenwick [8] provides detailed coverage of a wide range dfcstanding methods. Cheet al. [4] have
also recently considered the problem of coding messagespsaese alphabets.
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Indexi: Values; lo hi lo’ hi” s; —10’,hi’ =10 Binary MinBin

5 7 1 29 5 24 2,19 00010 0010
2 4 1 6 2 4 2,2 10 11
1 1 1 3 1 3 0, 2 00 0
3 5 5 6 5 5 0,0 -= -=
4 6 6 6 6 6 0,0 -= -=
8 27 8 29 10 27 17,17 01111 11111
6 17 8 26 8 25 9,17 01001 1001
7 25 18 26 18 26 7, 8 0111 1110
9 28 28 29 28 28 0,0 -= -=
10 29 29 29 29 29 0,0 -= -=

Table 1: Example encodings of messadde = (1,4,5,6,7,17,25,27,28,29) using the Interpolative code.
When a Minimal Binary code is used, a total2f bits are required. Whelo’ = hi’, no bits are output.

A context sensitivecode The static codes described in the previous sections usathe set of codeword
assignments throughout the encoding of the message. Bettgression can be achieved in situations in
which the symbol probability distribution is locally homa&geous, but not globally homogeneous.

Moffat and Stuiver [12] provided an off-line method that pesses the message holisticly, in this case
not because a parameter is computed (as is the case for theyRinde), but because the symbols are
coded in a non-sequential manner. THaterpolativecode is a recursive coding method that is capable of
achieving very compact representations, especially wineigaps are not independent of each other.

To explain the method, consider the subset form of the examgissage, as shown by sequehtein
Table 1. Suppose that the decoder is aware that the largest ivathe subset does not excezdl Then
every item inM is greater than or equal to = 1 and less than or equal to = 29, and the29 different
possibilities could be coded using Binary in fewer tHang,(29 — 1 + 1)] = 5 bits each. In particular,
the mid-value inMs, in this example the values = 7 (it doesn’'t matter which mid-value is chosen), can
certainly be transmitted to the decoder using five bits. Tbane the middle number is pinned down, all of
the remaining values can be coded within more precise raagesmight require fewer than five bits each.

Now consider in more detail the range of values that the maldescan span. Since there are= 10
numbers in the list overall, there are four distinct valled precedes, and another five that follow it. From
this argument a more restricted range dgican be inferredlo’ = lo + 4 andhi’ = hi — 5, meaning that the
fifth value of M (the numbef7) can be Minimal Binary coded as a value within the rafig€4] using just
4 bits. The first row of Table 1 shows this process.

Now there are two recursive subproblems — transmittingefiehrt, (1, 4, 5, 6), against the knowledge
that every value is greater theam= 1 andhi = 7—1 = 6; and transmitting the right part] 7, 25, 27, 28, 29),
against the knowledge that every value is greater than 7 + 1 = 8 and less than or equal to = 29.
These two sublists are processed recursively in the ordmwrsin the remainder of Table 1, again with
tighter rangeslo’, hi’] calculated and Minimal Binary codes emitted

One key aspect of the Interpolative code is that the sitnatém arise in which codewords that are zero
bits long are called for, indicated whés{ = hi". No bits need to be emitted in this case, since only one
value is within the indicated range and the decoder can infEpur of the symbols inl/; benefit from this
possibility. This feature means that the Interpolativeecizdparticularly effective when the subset contains
clusters of consecutive items, or localized subset regiomsre there is a high density. In the limit, if
the subset contains every element in the universal set,ta@ball are required ondg is known. More
generally, it is possible for dense sets to be representitvier than one bit per symbol.

Table 1 presents the Interpolative code using (in the finlalnen) Minimal Binary for each value within
its bounded range. A refinement is to use a Centered MininteBicode so that the short codewords are
assigned in the middle of the range rather than at the begjnnecognizing that the mid value in a set is
more likely to be near the middle of the range spanned by theses than it is to the ends of the range.



Adding this enhancement requires a trivial restructure ofial Binary coding, and tends to be beneficial
in practice. But improvement is not guaranteed, and, asristaut, on sequenck/, the use of a Centered
Minimal Binary code adds one bit to the length of the comprdsepresentation compared to the Minimal
Binary code shown in Table 1.

Chenget al. [5] describe in detail techniques for fast decoding of Iptéative codes.

Hybrid methods It was noted above that the message must be assumed to beedative to the total
possible universe of symbols, and thak: U. Fraenkel and Klein [9] observed that the sequence of symbol
magnitudeqthat is, the sequence of valu@leg, s;]) in the message must be over a much more compact
and dense range than the message itself, and it can be\effaxtise a principled code for the prefix parts
that indicate the magnitude, in conjunction with straighifard Binary codes for the suffix parts. That is,
rather than using Unary for the prefix part, a Huffman (mimmredundancy) code can be used.

In 1996 Peter Fenwick (see [13]) described a similar mednanising Arithmetic coding, and as well
incorporated an additional benefit. Hitructured Arithmeticoder makes use of adaptive probability es-
timation and two-part codes, being a magnitude and a suffity path both calculated adaptively. The
magnitude parts have a small range, and that code is allowvadapt its inferred probability distribution
quickly, to account for volatile local probability changeBhe resultant two-stage coding process has the
unique benefit of “smearing” probability changes acrosgearof values, rather than confining them to the
actual values recently processed.

Other coding methods Other recent context sensitive codes includeBheary Adaptive Sequentiabde
of Moffat and Anh [11]; and thd’acked Binarycodes of Anh and Moffat [1]. More generally, Wittet
al. [15] and Moffat and Turpin [13] provide details of the Huffmand Arithmetic coding techniques that
are likely to yield better compression when the length ofrtiesssagé\/ is large relative to the size of the
source alphabdt .

3 APPLICATIONS

A key application of compressed set representation tedlsids to the storage of inverted indexes in large
full-text retrieval systems of the kind operated by web seaompanies [15].

4 OPEN PROBLEMS

There has been recent work on compressed set represesitdiadrsupport operations suchrask andse-

lect, without requiring that the set be decompressed (see, fample, Guptaet al.[10, 14]). Improvements

to these methods, and balancing the requirements of effectimpression versus efficient data access, are
active areas of research.

5 EXPERIMENTAL RESULTS

Comparisons based on typical data sets of a realistic sgpmrting both compression effectiveness and
decoding efficiency are the norm in this area of work. Witteml. [15] give details of actual compression
performance, as do the majority of published papers.

6 DATA SETS

None is reported.



7 URL to CODE

The page a@ittp://www.csse.unimelb.edu.au/"alistair/codes/ provides a simple text-based “com-
pression” system that allows exploration of the variousesodiescribed here.
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