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1 PROBLEM DEFINITION

Suppose that a messageM = 〈s1, s2, . . . , sn〉 of lengthn = |M | symbols is to be represented, where each
symbolsi is an integer in the range1 ≤ si ≤ U , for some upper limitU that may or may not be known,
and may or may not be finite. Messages in this form are commonlythe output of some kind of modeling
step in a data compression system. The objective is to represent the message over a binary output alphabet
{0, 1} using as few as possible output bits. A special case of the problem arises when the elements of the
message are strictly increasing,si < si+1. In this case the messageM can be thought of as identifying a
subset of{1, 2, . . . , U}. Examples include storing sets of IP addresses or product codes, and recording the
destinations of hyperlinks in the graph representation of the world wide web.

A key restriction in this problem is that it may not be assumedthatn ≫ U . That is, it must be assumed
that M is too short (relative to the universeU ) to warrant the calculation of anM -specific code. Indeed,
in the strictly increasing case,n ≤ U is guaranteed. A message used as an example below isM1 =
〈1, 3, 1, 1, 1, 10, 8, 2, 1, 1〉. Note that any messageM can be converted to another messageM ′ over the
alphabetU ′ = Un by taking prefix sums. The transformation is reversible, with the inverse operation
known as “taking gaps”.

2 KEY RESULTS

A key limit on static codes is expressed by the Kraft-McMillan inequality (see [13]): if the codeword for a
symbolx is of lengthℓx, then

∑U
x=1 2−ℓx ≤ 1 is required if the code is to be left-to-right decodeable, with

no codeword a prefix of any other codeword. Another key bound is the combinatorial cost of describing a

set. If ann-subset of1 . . . U is chosen at random, then a total oflog2

(

U

n

)

≈ n log2(U/n) bits are required

to describe that subset.

Unary and Binary codes As a first example method, considerUnary coding, in which the symbolx is
represented asx − 1 bits that are1, followed by a single0-bit. For example, the first three symbols of
messageM1 would be coded by “0-110-0”, where the dashes are purely illustrative and do not form part
of the coded representation. Because the Unary code forx is exactlyx bits long, this code strongly favors
small integers, and has a corresponding ideal symbol probability distribution (the distribution for which this
particular pattern of codeword lengths yields the minimal message length) given byProb(x) = 2−x.

Unary has the useful attribute of being an infinite code. But unless the messageM is dominated by small
integers, Unary is a relatively expensive code. In particular, the Unary-coded representation of a message
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M = 〈s1 . . . sn〉 requires
∑

i si bits, and whenM is a gapped representation of a subset of1 . . . U , can be
as long asU bits in total.

The best-known code in computing isBinary. If 2k−1 < U ≤ 2k for some integerk, then symbols1 ≤
si ≤ U can be represented ink ≥ log2 U bits each. In this case, the code isfinite, and the ideal probability
distribution is given byProb(x) = 2−k. WhenU = 2k, this then implies thatProb(x) = 2− log

2
n = 1/n.

WhenU is known precisely, and is not a power of two,2k − U of the codewords can be shortened to
k − 1 bits long, in aMinimal Binary code. It is conventional to assign the short codewords to symbols
1 · · · 2k − U . The codewords for the remaining symbols,(2k − U + 1) · · ·U , remaink bits long.

Golomb codes In 1966 Solomon Golomb provided an elegant hybrid between Unary and Binary codes
(see [15]). He observed that if a randomn-subset of the items1 · · ·U was selected, then the gaps between
consecutive members of the subset were defined by a geometricprobability distributionProb(x) = p(1 −
p)x−1, wherep = n/U is the probability that any selected item is a member of the subset.

If b is chosen such that(1− p)b = 0.5, this probability distribution suggests that the codewordfor x + b
should be one bit longer than the codeword forx. The solutionb = log 0.5/ log(1−p) ≈ 0.69/p ≈ 0.69U/n
specifies a parameterb that defines theGolomb code. To then represent integerx, calculate1+((x−1) div b)
as a quotient, and code that part in Unary; and calculate1 + ((x − 1) modb) as a remainder part, and code
it in Minimal Binary, against a maximum bound ofb. When concatenated, the two parts form the codeword
for integerx. As an example, suppose thatb = 5 is specified. Then the five Minimal Binary codewords for
the five possible binary suffix parts of the codewords are “00”, “ 01”, “ 10”, “ 110”, and “111”. The number
8 is thus coded as a Unary prefix of “10” to indicate a quotient part of2, followed by a Minimal Binary
remainder of “10” representing3, to make an overall codeword of “10-10”.

Like Unary, the Golomb code is infinite; but by design is adjustable to different probability distributions.
Whenb = 2k for integerk a special case of the Golomb code arises, usually called aRice code.

Elias codes Peter Elias (again, see [15]) provided further hybrids between Unary and Binary codes in work
published in 1975. This family of codes are defined recursively, with Unary being the simplest member.

To move from one member of the family to the next, the previousmember is used to specify the number
of bits in the standard binary representation of the valuex being coded (that is, the value1+ ⌊log2 x⌋); then,
once the length has been specified, the trailing bits ofx, with the top bit suppressed, are coded in Binary.

For example, the second member of the Elias family isCγ , and can be thought of as a Unary-Binary
code: Unary to indicate the prefix part, being the magnitude of x; and then Binary to indicate the value of
x within the range specified by the prefix part. The first fewCγ codewords are thus “0”, “ 10-0”, “ 10-1”,
“110-00”, and so on, where the dashes are again purely illustrative.In general, theCγ codeword for a value
x requires1 + ⌊log2 x⌋ bits for the Unary prefix part, and a further⌊log2 x⌋ for the binary suffix part, and
the ideal probability distribution is thus given byProb(x) ≥ 1/(2x2).

After Cγ , the next member of the Elias family isCδ. The only difference betweenCγ codewords and
the correspondingCδ codewords is that in the latterCγ is used to store the prefix part, rather than Unary.
Further members of the family of Elias codes can be generatedby applying the same process recursively,
but for practical purposesCδ is the last useful member of the family, even for relatively large values ofx.
To see why, note that|Cγ(x)| ≤ |Cδ(x)| wheneverx ≤ 31, meaning thatCδ is longer than the next Elias
code only for valuesx ≥ 232.

Fibonacci-based codes Another interesting code is derived from the Fibonacci sequence described (for
this purpose) asF1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, and so on. TheZeckendorfrepresentation
of a natural number is a list of Fibonacci values that add up tothat number, with the restriction that no two
adjacent Fibonacci numbers may be used. For example, the number10 is the sum of2 + 8 = F2 + F5.

The simplestFibonaccicode is derived directly from the ordered Zeckendorf representation of the target
value, and consists of a “0” bit in the ith position (counting from the left) of the codeword ifFi does not
appear in the sum, and a “1” bit in that position if it does, with indices considered in increasing order.
Because it is not possible for bothFi andFi+1 to be part of the sum, the last two bits of this string must be
“01”. An appended “1” bit is thus sufficient to signal the end of each codeword. As always, the assumption
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of monotonically decreasing symbol probabilities means that short codes are assigned to small values. The
code for integer one is “1-1”, and the next few codewords are “01-1”, “ 001-1”, “ 101-1”, “ 0001-1”,
“1001-1”, where, as before, the embedded dash is purely illustrative.

BecauseFn ≈ φn whereφ is the golden ratioφ = (1 +
√

5)/2 ≈ 1.61803, the codeword forx is
approximately1 + logφ x ≈ 1 + 1.44 log2 x bits long, and is shorter thanCγ for all values exceptx = 1.
It is also as good as, or better than,Cδ over a wide range of practical values between2 andF19 = 6,765.
Higher-order Fibonacci codes are also possible, with increased minimum codeword lengths, and decreased
coefficients on the logarithmic term. Fenwick [8] provides good coverage of Fibonacci codes.

Byte Aligned codes Performing the necessary bit-packing and bit-unpacking operations to extract unre-
stricted bit sequences can be costly in terms of decoding throughput rates, and a whole class of codes that
operate on units of bytes rather then bits have been developed – theByte Alignedcodes.

The simplest Byte Aligned code is an interleaved eight-bit analog of the EliasCγ mechanism. The top
bit in each byte is reserved for a flag that indicates (when “0”) that “this is the last byte of this codeword”
and (when “1”) that “this is not the last byte of this codeword, take another one as well”. The other seven
bits in each byte are used for data bits. For example, the number1,234 is coded into two bytes, “209-008”,
and is reconstructed via the calculation(209− 128 + 1) × 1280 + (008 + 1) × 1281 = 1,234.

In this simplest byte aligned code, a total of8⌈(log2 x)/7⌉ bits are used, which makes it more effective
asymptotically than the1 + 2⌊log2 x⌋ bits required by the EliasCγ code. However, the minimum codeword
length of eight bits means that Byte Aligned codes are expensive on messages dominated by small values.

Byte Aligned codes are fast to decode. They also provide another useful feature – the facility to quickly
“seek” forwards in the compressed stream over a given numberof codewords. A third key advantage of byte
codes is that if the compressed message is to be searched, thesearch pattern can be rendered into a sequence
of bytes using the same code, and then any byte-based patternmatching utility be invoked [7]. The zero top
bit in all final bytes means that false matches are identified with a single additional test.

An improvement to the simple Byte Aligned coding mechanism arises from the observation that there
is nothing special about the value128 as the separating value between thestopperand continuerbytes,
and that different values lead to different tradeoffs in overall codeword lengths [3]. In these(S,C)-Byte
Aligned codes, values ofS and C such thatS + C = 256 are chosen, and each codeword consists of
a sequence of zero or more continuer bytes with values greater than or equal toS, and ends with a final
stopper byte with a value less thanS. Other variants include methods that use bytes as the codingunits to
form Huffman codes, either using eight-bit coding symbols or tagged seven-bit units [7]; and methods that
partially permute the alphabet, but avoid the need for a complete mapping [6]. Culpepper and Moffat [6]
also describe a byte aligned coding method that creates a setof byte-based codewords with the property that
the first byte uniquely identifies the length of the codeword.Similarly, Nibble codes can be designed as a
4-bit analog of the Byte Aligned approach, where one bit is reserved for a stopper-continuer flag, and three
bits are used for data.

Other static codes There have been a wide range of other variants described in the literature. Several of
these adjust the code by altering the boundaries of the set ofbucketsthat define the code, and coding a value
x as a Unary bucket identifier, followed by a Minimal Binary offset within the specified bucket (see [15]).

For example, the EliasCγ code can be regarded as being a Unary-Binary combination relative to a
vector of bucket sizes〈20, 21, 22, 23, 24, . . .〉. Teuhola (see [15]) proposed a hybrid in which a parameter
k is chosen, and the vector of bucket sizes is given by〈2k, 2k+1, 2k+2, 2k+3, . . .〉. One way of setting the
parameterk is to take it to be the length in bits of the median sequence value, so that the first bit of each
codeword approximately halves the range of observed symbolvalues. Another variant method is described
by Boldi and Vigna [2], who use a vector

〈

2k − 1, (2k − 1)2k, (2k − 1)22k, (2k − 1)23k, . . .
〉

to obtain
a family of codes that are analytically and empirically well-suited to power-law probability distributions,
especially those associated with web-graph compression. In this methodk is typically in the range2 to 4,
and a Minimal Binary code is used for the suffix part.

Fenwick [8] provides detailed coverage of a wide range of static coding methods. Chenet al. [4] have
also recently considered the problem of coding messages over sparse alphabets.
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Indexi Valuesi lo hi lo′ hi′ si − lo′, hi′ − lo′ Binary MinBin
5 7 1 29 5 24 2,19 00010 0010

2 4 1 6 2 4 2, 2 10 11

1 1 1 3 1 3 0, 2 00 0

3 5 5 6 5 5 0, 0 -- --

4 6 6 6 6 6 0, 0 -- --

8 27 8 29 10 27 17,17 01111 11111

6 17 8 26 8 25 9,17 01001 1001

7 25 18 26 18 26 7, 8 0111 1110

9 28 28 29 28 28 0, 0 -- --

10 29 29 29 29 29 0, 0 -- --

Table 1: Example encodings of messageM2 = 〈1, 4, 5, 6, 7, 17, 25, 27, 28, 29〉 using the Interpolative code.
When a Minimal Binary code is used, a total of20 bits are required. Whenlo′ = hi′, no bits are output.

A context sensitive code The static codes described in the previous sections use the same set of codeword
assignments throughout the encoding of the message. Bettercompression can be achieved in situations in
which the symbol probability distribution is locally homogeneous, but not globally homogeneous.

Moffat and Stuiver [12] provided an off-line method that processes the message holisticly, in this case
not because a parameter is computed (as is the case for the Binary code), but because the symbols are
coded in a non-sequential manner. TheirInterpolativecode is a recursive coding method that is capable of
achieving very compact representations, especially when the gaps are not independent of each other.

To explain the method, consider the subset form of the example message, as shown by sequenceM2 in
Table 1. Suppose that the decoder is aware that the largest value in the subset does not exceed29. Then
every item inM is greater than or equal tolo = 1 and less than or equal tohi = 29, and the29 different
possibilities could be coded using Binary in fewer than⌈log2(29 − 1 + 1)⌉ = 5 bits each. In particular,
the mid-value inM2, in this example the values5 = 7 (it doesn’t matter which mid-value is chosen), can
certainly be transmitted to the decoder using five bits. Then, once the middle number is pinned down, all of
the remaining values can be coded within more precise ranges, and might require fewer than five bits each.

Now consider in more detail the range of values that the mid-value can span. Since there aren = 10
numbers in the list overall, there are four distinct values that precedes5, and another five that follow it. From
this argument a more restricted range fors5 can be inferred:lo′ = lo + 4 andhi′ = hi − 5, meaning that the
fifth value ofM2 (the number7) can be Minimal Binary coded as a value within the range[5, 24] using just
4 bits. The first row of Table 1 shows this process.

Now there are two recursive subproblems – transmitting the left part,〈1, 4, 5, 6〉, against the knowledge
that every value is greater thanlo = 1 andhi = 7−1 = 6; and transmitting the right part,〈17, 25, 27, 28, 29〉,
against the knowledge that every value is greater thanlo = 7 + 1 = 8 and less than or equal tohi = 29.
These two sublists are processed recursively in the order shown in the remainder of Table 1, again with
tighter ranges[lo′, hi′] calculated and Minimal Binary codes emitted

One key aspect of the Interpolative code is that the situation can arise in which codewords that are zero
bits long are called for, indicated whenlo′ = hi′. No bits need to be emitted in this case, since only one
value is within the indicated range and the decoder can inferit. Four of the symbols inM2 benefit from this
possibility. This feature means that the Interpolative code is particularly effective when the subset contains
clusters of consecutive items, or localized subset regionswhere there is a high density. In the limit, if
the subset contains every element in the universal set, no bits at all are required onceU is known. More
generally, it is possible for dense sets to be represented infewer than one bit per symbol.

Table 1 presents the Interpolative code using (in the final column) Minimal Binary for each value within
its bounded range. A refinement is to use a Centered Minimal Binary code so that the short codewords are
assigned in the middle of the range rather than at the beginning, recognizing that the mid value in a set is
more likely to be near the middle of the range spanned by thoseitems than it is to the ends of the range.
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Adding this enhancement requires a trivial restructure of Minimal Binary coding, and tends to be beneficial
in practice. But improvement is not guaranteed, and, as it turns out, on sequenceM2 the use of a Centered
Minimal Binary code adds one bit to the length of the compressed representation compared to the Minimal
Binary code shown in Table 1.

Chenget al. [5] describe in detail techniques for fast decoding of Interpolative codes.

Hybrid methods It was noted above that the message must be assumed to be shortrelative to the total
possible universe of symbols, and thatn ≪ U . Fraenkel and Klein [9] observed that the sequence of symbol
magnitudes(that is, the sequence of values⌈log2 si⌉) in the message must be over a much more compact
and dense range than the message itself, and it can be effective to use a principled code for the prefix parts
that indicate the magnitude, in conjunction with straightforward Binary codes for the suffix parts. That is,
rather than using Unary for the prefix part, a Huffman (minimum-redundancy) code can be used.

In 1996 Peter Fenwick (see [13]) described a similar mechanism using Arithmetic coding, and as well
incorporated an additional benefit. HisStructured Arithmeticcoder makes use of adaptive probability es-
timation and two-part codes, being a magnitude and a suffix part, with both calculated adaptively. The
magnitude parts have a small range, and that code is allowed to adapt its inferred probability distribution
quickly, to account for volatile local probability changes. The resultant two-stage coding process has the
unique benefit of “smearing” probability changes across ranges of values, rather than confining them to the
actual values recently processed.

Other coding methods Other recent context sensitive codes include theBinary Adaptive Sequentialcode
of Moffat and Anh [11]; and thePacked Binarycodes of Anh and Moffat [1]. More generally, Wittenet
al. [15] and Moffat and Turpin [13] provide details of the Huffman and Arithmetic coding techniques that
are likely to yield better compression when the length of themessageM is large relative to the size of the
source alphabetU .

3 APPLICATIONS

A key application of compressed set representation techniques is to the storage of inverted indexes in large
full-text retrieval systems of the kind operated by web search companies [15].

4 OPEN PROBLEMS

There has been recent work on compressed set representations that support operations such asrank andse-
lect, without requiring that the set be decompressed (see, for example, Guptaet al. [10, 14]). Improvements
to these methods, and balancing the requirements of effective compression versus efficient data access, are
active areas of research.

5 EXPERIMENTAL RESULTS

Comparisons based on typical data sets of a realistic size, reporting both compression effectiveness and
decoding efficiency are the norm in this area of work. Wittenet al. [15] give details of actual compression
performance, as do the majority of published papers.

6 DATA SETS

None is reported.
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7 URL to CODE

The page athttp://www.csse.unimelb.edu.au/~alistair/codes/provides a simple text-based “com-
pression” system that allows exploration of the various codes described here.
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