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Abstract—We present a method to explain the decisions of
black box models for time series classification. The explanation
consists of factual and counterfactual shapelet-based rules reveal-
ing the reasons for the classification, and of a set of exemplars
and counter-exemplars highlighting similarities and differences
with the time series under analysis. The proposed method first
generates exemplar and counter-exemplar time series in the latent
feature space and learns a local latent decision tree classifier.
Then, it selects and decodes those respecting the decision rules
explaining the decision. Finally, it learns on them a shapelet-tree
that reveals the parts of the time series that must, and must not,
be contained for getting the returned outcome from the black
box. A wide experimentation shows that the proposed method
provides faithful, meaningful and interpretable explanations.

Index Terms—Explainable AI; Time Series Classification;
Shapelet-based Rules; Exemplars and Counter-Exemplars;

I. INTRODUCTION

The increasing availability of data stored in the form of

time series such as electrocardiogram records, motion sensors

data, climate measurements, stock indices, etc., contributed

to the diffusion of a wide range of time series classifiers [1]

employed on a broad array of applications: from the automated

detection of heart diseases to the identification of stock market

anomalies. There are various distinct groups of time series

classifiers: similarity-based and interval-based [2], dictionary-

based [3], shapelet-based [4], [5], [6], [7], and deep leaning-

based [8], [9]. The advent of deep architectures such as Resid-

ual [10] and Convolutional [11] Neural Networks has brought

significant advantages in terms of accuracy and resistance to

noise. Indeed, the best time series classifiers, are proved to

be deep neural networks or ensemble-based classifiers using a

hierarchical structure with probabilistic voting [9].

The drawback of neural networks or complex ensembles lies

in the inherent opaqueness of this kind of classifiers, often

referred to as “black box” models [12], due to the hidden

internal structure and complex decision process which is not

human understandable [13]. However, in high-stakes decision

making, such as clinical diagnosis, the explanation aspect
of automated time series classifiers adopted by AI systems

becomes the crucial building brick of a trustworthy interaction

between the human expert and the machine. Meaningful ex-

planations [14] of time series classification would augment the

cognitive ability of human experts, such as medical doctors,

to make informed and accurate decisions, better support their

accountability and responsibility in the decision making.

A line of research exploring interpretable, transparent-

by-design and efficient time series classifiers is based on

shapelets [4]. Shapelet decision trees [4] and shapelet trans-

forms [5] extract the shapelets from the time series of the

training set by selecting the sub-sequences with high discrim-

inatory power, and exploit them for the classification process.

In [7] an approach is proposed that extracts shapelet trees by

solving an optimization problem. Other interpretable shapelet-

based classifiers [15], [16] can manage multivariate/different

length time series. Alternative approaches for mining discrim-

inatory subsequences are the Matrix Profile [17] and SAX

approximation [18], [19]. Unfortunately, all such methods are

heavily behind black-box time series classifiers in terms of

accuracy and stability, especially in presence of noisy data [9].

In this paper, we investigate the problem of black-box
explanation for time series classifiers. We propose LASTS

(Local Agnostic Subsequence-based Time Series explainer),

an explainable AI method unveiling the logic of any black

box classifiers operating on time series. In particular, LASTS

is a local model-agnostic shapelet-based explanation method.

Given a specific time series x labelled with class y by

the black-box, LASTS returns as explanation a factual and

counterfactual shapelet-based rule that shows the reasons for

the classification of x in terms of logic conditions, indicating

the sub-sequences that must, and must not, be contained in x to

obtain the outcome y returned by the black box. In addition,

the explanation consists of a set of exemplar and counter-
exemplar time series. Exemplars are instances classified with

the same label of the specific time series being explained

and highlight similarities and common parts responsible for

the classification. On the other hand, counter-exemplars are

instances similar to the one explained but with a different

label, and provide evidence of how the time series should be

“morphed” for being classified with a different label.

In line with recent studies on explanation [20], [21], we

tackle the time series black box outcome explanation problem

by deriving a local explanation from the understanding of the

behavior of the black box in the neighborhood of the instance

to explain [22]. Inspired by [23], we overcome state-of-the-art

limitations by exploiting (i) autoencoders [24] for generating,

encoding and decoding the local neighborhood, (ii) a latent de-

cision tree for selecting exemplars and counter-exemplars [25],

and (iii) a shapelet tree [7] for designing an explanation which

is meaningful, useful and easy to understand.

We emphasize that the counterfactual components of

LASTS’s explanation, i.e., counter-exemplars and counterfac-

tual rules, are becoming an essential ingredient in explainable

AI methods [26], [27], [28]. While factual, direct explanations

such as decision rules [29], and features importance [20], [21],

are crucial for understanding the reasons for a certain outcome,
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a counterfactual reveals what should change in a given instance

to obtain a different classification outcome [26]. The impor-

tance of counterfactuals is that they help people in reasoning

on the cause-effect relations between observed features and

classification outcome. For instance, [23] proposes counter-

exemplar images highlighting the similarities and differences

between same-class and other-class instances. Our objective is

to provide the user with an explanation equipped with factual

and counterfactual rules, and with exemplar and counter-

exemplar time series, offering an in-depth understanding of

the local decision of the black box.

We present a wide experimentation on four datasets of

univariate time series and three black box classifiers. We

empirically demonstrate that LASTS overtakes existing expla-

nation methods [30], [20], [21] based on feature importance

(re-adapted for time series) providing faithful, stable, useful

and really understandable explanations.

The rest of the paper is organized as follows. Section II dis-

cusses related works. Section III formalizes the problem faced

and introduces basic concepts for the explanation method,

which is described in Section IV. Section V presents the

experiments. Finally, Section VI summarizes our contribution,

its limitations, and future research directions.

II. RELATED WORK

Research on black box explanation has recently received

much attention [31], [32], [22]. Such an increasing interest

is driven by the idea of adopting into AI systems opaque

classifiers accompanied by explanation methods such that

high performance and explainability can coexist. Explanation

methods can be categorized with respect to two aspects.

Model-specific vs model-agnostic, depending on whether the

explanation method exploits knowledge of the internal struc-

ture of the black box or not. Local vs global, depending on

whether the explanation is provided for any specific instance

or for the logic of the black box as a whole. The proposed

explanation method LASTS extends a line of research on local,
model-agnostic methods originated with [20] and extended in

different directions by [33] and by [25], [23].

LIME and SHAP are two of the most well known model and

data agnostic local explanation methods. LIME [20] randomly

generates instances “around” the instance to explain creating

a local neighborhood. Then, it trains a linear model on

the neighborhood labeled with the black box analyzed. The

explanation consists of the feature importance of the linear

model. The user-determined number of features required by

LIME is a clear limitation of the method. SHAP [21] connects

game theory with local explanations and overcomes LIME’s

limitations exploiting the Shapley values of a conditional

expectation function of the black box providing for each

feature the unique additive importance.

Besides being model-agnostic, LIME and SHAP are also

theoretically not tied to a specific type of data. Indeed in [30],

LIME and SHAP are employed for time series explanation after

an a-priori segmentation of the time series that can cause a loss

of information. On the other hand, the proposed explanation

method LASTS is specifically designed for time series and does

not require any a-priori segmentation or discretization.

Besides, we advance the state-of-the-art by providing rich

explanations made of shapelet-based rules that highlight the

classification reasons, and exemplars/counter-exemplars pro-

viding further evidence for the observed outcome.

III. SETTING THE STAGE

We address the black box outcome explanation problem [22]

in the domain of time series classification. A classification

dataset X,Y consists of a set X = {x1, x2, . . . , xn} ∈ R
n×m

of univariate time series with l labels (or classes) assigned to

each time series in the vector Y ∈ N
n. A time series x consists

of m time points x = {t1, t2, . . . , tm} ∈ R
m. For instance,

a time series can model an EEG and different labels can

indicate the presence/absence of an epileptic seizure. Given

a not interpretable, i.e., black box, time series classifier b and

a time series x classified by b, i.e., b(x) = y, our aim is to

provide an explanation e for the decision b(x) = y. We use the

notation b(X) = Y as a shorthand for {b(x) | x ∈ X} = Y .

We assume that b can be queried at will. More formally, we

aim to address the following problem:

Definition 3.1: Let b be a not interpretable time series
classifier, and x a time series whose decision y = b(x) has to
be explained, the time series black box outcome explanation

problem consists in finding an explanation e ∈ E belonging
to a human-interpretable domain E.

In order to keep our paper self-contained, we summarize

in the following key definitions and concepts necessary to

comprehend the proposed explanation method.

A. Autoencoders

In an explanation process it is crucial to respect the distribu-

tions of real data in synthetically generated examples created

for studying the black box behavior in the neighborhood of

the instance to explain. We ensure this property by using

autoencoders (AE) [24]. An AE is a type of neural network

trained for learning a representation that reduces the dimen-

sionality from m to k and captures non-linear relationships.

An encoder ζ : Rm→R
k, and a decoder decoder η : Rk→R

m

are simultaneously learnt with the objective of minimizing the

reconstruction loss. Starting from the encoding z = ζ(x), the

autoencoder tries to reconstruct a representation as close as

possible to its original input x � x̃ = η(z). After the learn-

ing, the decoder can be used to reconstruct instances never

observed, aiming to be used as a generative model. In the liter-

ature, there exist several variants designed to guarantee useful

properties on the learnt representations such as Generative

Adversarial Network (GAN) [34], Variational Autoencoders

(VAE), and Adversarial Autoencoders (AAE) [35].

B. Local Rule-based Explanation

Explainable AI methods are increasingly using counterfac-

tuals for helping people to trust explanations by ensuring they

identify cause-effect relations between events [27]. Indeed, the

local rule-based explanation returned by LORE [25] consists of
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Fig. 1. LASTS architecture. LASTS takes as input the time series x, the black box b and some knowledge on time series A. It uses the AE ζ and η for
generating Z and for selecting exemplars and counter-exemplars Z̃∗. From Z̃∗ it extracts the shapelets S and retrieves the shapelet-based rules rs,Φs. The
output explanation e = 〈rs,Φs, Z̃∗〉 is contained in the black dashed rectangles.

(i) a factual rule r, corresponding to the path in the surrogate

tree that explains why x has been labeled as y by b, and (ii)
a set of counterfactual rules Φ, explaining which changes in

x would invert the class y assigned by b. LORE learns on the

synthetic neighborhood Z of x an interpretable local decision

tree that reproduces the behavior of b. The neighborhood Z is

generated through a genetic algorithm to account for instances

similar to x and with the same label, i.e., y = b(x), and for

instances similar to x but with a different label, i.e., y �= b(x).
The local explanation including factual and counterfactual

rules is derived from the structure of the tree.

C. Time-Series Shapelets and Shapelet Trees

Providing meaningful, useful and usable explanations is

fundamental for an explanation method [14], [32]. We try to

satisfy these requirements by exploiting time series shapelets.

The scientific literature has shown that methods based on

shapelets, besides being fast [6], [36], can also be inter-

pretable [4]. Thus, we employ shapelet discovery to capture

the reasons for the classification of a time series x with a

certain label, i.e., y = b(x). Shapelets are discriminative sub-

sequences of time series that best predict the target class

value [7]. A shapelet s = {t1, . . . , tm′} of length m′ < m
is an ordered sequence of values. We indicate with S the h-

most informative shapelets with respect to a dataset X,Y , and

we define the distance between a time series series xi and a

shapelet sj as the minimum distance wi,j among the distances

between the shapelet sj and each sub-sequence of xi with

length m′ [4], [37]. In turn, each distance value is the average

squared difference between each point in the shapelet sj and

the aligned point in the sub-sequence of xi.

The method proposed in [7] learns an optimal set of

shapelets S without exploring all possible candidates. Every

shapelet in S can have a different length, and the number of

shapelts h is obtained using an heuristic [7]. The procedure

starts with rough initial guesses for the shapelets in S, and

then iteratively optimizes the shapelets by minimizing a clas-

sification loss function. In particular, shapelets are updated in

a stochastic gradient descent optimization fashion, by taking

steps towards maximal prediction accuracy. The minimum

distances to the shapelets S can be used to transform [5] the

time series X ∈ R
n×m into a new representation Ξ̂ ∈ R

n×h.

In other words, a time series xi can be represented with a

vector ξ̂i = {v1, . . . , vh} ∈ R
h where each value vj ∈ ξ̂i is

the minimum distance of x with the shapelet sj ∈ S. Hence,

existing classification methods [7] can be trained on Ξ̂, Y .

IV. EXPLAINING TIME SERIES CLASSIFIERS

LASTS is a Local Agnostic Subsequence-based Time Series

explainer solving the black box outcome explanation prob-

lem. Given a black box b and a time series x, the human-

interpretable explanation e ∈ E returned by LASTS for the

classification y = b(x) is composed of (i) a shapelet-based
rule and a set of shapelet-based counterfactual rules, (ii) a

set of exemplars and counter-exemplars. The shapelet-based

rule shows the shapelets contained (and not contained) in

x responsible for the class y, vice-versa, the counterfactuals

highlight how x should have been changed in order to have

a different class value. Exemplar and counter-exemplar time

series illustrate instances classified with the same and with

a different outcome than x. They can be visually analyzed

to understand the reasons for the classification and make

comparisons between x and them. Therefore, the explanations

returned by LASTS satisfy the requirements of counterfactua-

bility, usability, and meaningfulness [27], [14], [32].

Besides, the black box b and the time series x to explain,

LASTS requires as input: (i) an encoder ζ and decoder η for

modeling times series in a simplified representation, (ii) a

set of known time series A for the neighborhood generation

process. The explanation process described in Algorithm 1

and in Figure 1 involves the following steps. First, LASTS

generates a neighborhood in the latent feature space exploiting

the AE. Then, it learns a latent decision tree on that latent

neighborhood providing local decision and counter-factual

rules. Such rules are used to identify exemplars and counter-

exemplars and the corresponding reconstructed time series

are used to learn shapelets. Finally, a shapelet-based decision
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Algorithm 1: LASTS(x, b, ζ, η, A)

Input : x - time series, b - black box, ζ - encoder,

η - decoder, A - known time series

Output: e - explanation

1 z ← ζ(x); Ω← ζ(A); // encode data into the latent space

2 Z ← neighgen(z, b, ζ, η,Ω); // generate latent neighborhood

3 Z̃ ← η(Z); Y ← b(Z̃); // decode and classify neighborhood

4 ldt ← learnTree(Z, Y ); // learn latent decision tree

5 r,Φ← extractRules(z, ldt); // extract latent rules

6 Z̃∗, Y ∗ ← exCex (r,Φ, Z, Z̃, Y ); // sel (counter-)exemplars

7 S ← shapelets(Z̃∗, Y ∗); // learn shapelet

8 ξ ← ς(z̃, S); Ξ← ς(Z̃∗, S); // data as shapelet presence

9 sdt ← learnTree(Ξ, Y ∗); // learn shapelet-based tree

10 rs,Φs ← extractRules(ξ, sdt); // extract shapelet rules

11 return e = 〈rs,Φs, Z̃
∗〉; // return explanation

tree is learned on the reconstructed exemplars and counter-

exemplars and used to retrieve the shapelet-based factual rule

and counterfactual rules completing the explanation. Details

of each step are presented in the following. The explanation

of the time series x in Figure 2 is used as running example.

A. Latent Encoding

The time series x ∈ R
m is passed to the encoder z = ζ(x)

of a trained AE (line 1). It returns the latent representation

z ∈ R
k using k latent features with k 	 m. k is kept low

to avoid possible high dimensionality problems. To capture

sequential, nonlinear, and temporal relationships between dif-

ferent time points of the time series, we need AEs based on

convolutional layers for both the encoder ζ and decoder η
(used in lines 1-3). Although traditionally developed for two-

dimensional image data, convolutional neural networks can

be used to model univariate time series [9]. Inspired by [9],

we model the structure of the encoder ζ and decoder η as

illustrated in Figure 3. A convolutional layer operates over a

one-dimensional sequence, i.e., a time series, and it is followed

by other convolutional layers. We use a total of g + 1 layers.

The last convolutional layer aggregates the output of previous

layers. Finally, a dense fully connected layer distills the m
features extracted into the k latent space. A flatten layer

transposes the convolutional layer as input for the dense layer.

The convolution basically applies a sliding filter or kernel with

length d over a time series x. The filter can be seen as a generic

nonlinear transformation of x. The result of a convolution can

be considered as a univariate time series v that passes through

a filtering process. If u filters are applied the result of a layer

is a multivariate time series V ∈ R
m×u whose dimensions

are equal to the number u of filters used. For each layer we

use an increasing (decreasing) number of filters u=2i∈[1, g],
and decreasing (increasing) kernel sizes d. The time series x
of Figure 2 with length m=128 is represented with a latent

space with k = 2 in the blue cross in Figure 5. Similarly

to [23], the idea of using a latent representation, and therefore

of an AE, is to boost the neighborhood generation process

Fig. 2. Time series x classified as b(x) = bell.

Fig. 3. Structure of the convolutional encoder ζ mapping the times series
x ∈ R

m into the latent space z ∈ R
k . The decoder has the opposite structure.

such that variations to few latent features can generate time

series which are both realistic and synthetic and depends of a

limited number of latent features that can be controlled.

B. Neighborhood Generation

Exploiting z, b and the set of known time series A, LASTS

generates a set Z of N instances in the latent feature space

with characteristics close to those of z. The neighborhood

generation neighgen (line 2) can be implemented adopting

different strategies ranging from a pure random approach like

in LIME [20] to using a given distribution and a genetic algo-

rithm maximizing a fitness function like in LORE [25]. LASTS

uses the genetic approach that guarantees a higher density

around the instance to explain z. The genetic neighborhood

generation neighgen requires (i) the distribution of the latent

features that is extracted from Ω = ζ(A) (line 1) to perform

the random mutations, and (ii) the black box b for querying b
with the synthetic reconstructed instances. As a consequence,

neighgen also uses the decoder η. The goal of neighgen is to

find instances similar to z with different class values such that

we can learn on Z a simple predictor able to locally simulate

the behavior of b. Hence, Z is composed of instances with

different classes, i.e., Z = Z=∪Z �= such that b(η(z′)) = b(x)
for instances z′ ∈ Z=, and b(η(z′)) �= b(x) for z′ ∈ Z �=. Since

neighgen exploits a knowledge A of time series for generating

Z̃ = η(Z) (line 3) then, time series in Z̃ are admissible by

design, i.e., they are obtained from latent instances taking

values from a valid domain because their generation happens

in a domain with distributions drawn from Ω = ζ(A). The fact

that the autoencoder is fundamental to generate meaningful

time series is shown in Section V.

Figure 5 (left) shows the latent neighborhood Z highlighting

in green the instances Z= labelled as bell, and in red the

instances Z �= labelled with a different class value. We observe

how the latent space perfectly summarizes the separation of

the different class values unveiling a decision boundary easy
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Fig. 4. Exemplars Z̃∗ (in green) and counter-exemplars Z̃∗
= (in red) respecting the latent rules r,Φ, respectively.

Fig. 5. Left: latent neighborhood Z with class equals to x in green Z=, with
different to x in red Z �=. Right: latent (counter-)exemplars Z respecting r,Φ.

Fig. 6. Exemplar/counter-exemplar morphing matrix showing the time series
shapes and class changes (green same class, red different class).

to detect with a simple classifier. Moreover, both Z= and Z �=
forming the neighborhood surround in a dense way x, yet

helping to capture the black box behavior “locally” around x.

C. Local Latent Rules and Exemplars

Given the local latent neighborhood Z and Y = b(Z̃) (line

3), LASTS builds a latent decision tree to locally mimic the

behavior of b (line 4). Querying ldt with z allows to extract

the latent decision rule r and counter-factual rules Φ (line

5). The premise p of the rule r=p→y is the conjunction of

the splitting conditions in the tree that is satisfied by z. For

Φ, LASTS selects q as the conjunction of splitting conditions

labeling an instance with ŷ �= y and minimizing the number

of falsified splitting conditions w.r.t. p. In our example r =
{−2.15<z0≤0.10∧ z1≤−0.22} → bell, Φ = {{z0>0.18} →
funnel, {z0≤− 0.67 ∧ 0.12<z1≤2.92} → cylinder}.

Exemplars and counter-exemplars are identified by the

exCex module (line 6). Indeed, exCex selects from Z= the

latent instances respecting r, namely Z∗
=, and from Z �= the

latent instances respecting one of the counterfactual rules in Φ,

Fig. 7. Top: Set of shapelets S. Bottom: Shapelet matrix Ξ. Each column
represents a time series. For each row, if the shapelet is not contained, the
cell is white; it is green if it is an exemplar, red if it is a counter-exemplar.

namely Z∗
�=. The reconstructed time series in Z̃ corresponding

to the instances in Z∗
= and Z∗

�= form the exemplars Z̃∗
= and

Z̃∗
�= counter-exemplars Z̃∗

�=. Figure 5 (right) shows the latent

neighborhood Z∗ containing only the instances respecting r or

Φ. Selecting only these instances the local decision boundary

becomes very clear. Figure 4 illustrates the exemplars (in

green) and counter-exemplars (in red). Exemplars have a slope

very similar to x and with very low noise. funnel counter-

exemplars can have either a completely different slope with

low noise or a slope similar to the one of a bell with very

high noise. The few cylinder counter-exemplars have a very

different trend. The exemplars and counter-exemplars Z̃∗ are a

powerful prototype-based part of the explanation e that allows

us to understand when a time series morphs from a class to

another one. In Figure 6 we horizontally vary the latent feature

z0 and vertically vary feature z1. In line with the previous

observations, increasing values of z0 increases the noise that

leads to a change of slope (1st and 2nd rows) towards the class

funnel. Increasing values of z1 rises the left part of the time

series morphing the class into cylinder (1st and 2nd columns).

D. Shapelets Mining and Rules Extraction

Given the exemplars and counter-exemplars Z̃∗ and the

labels Y ∗, (line 7) LASTS extracts the shapelets S using the

shapelet module [7] that learns the h most discriminative

shapelets S with respect to Y ∗. Figure 7 (left) shows the

shapelets S of our example. As an alternative, we plan to

implement the shapelet module using the Matrix Profile [17],

[38] or SAX [18], [19] for shapelet discovery. On top of S,

LASTS performs the shapelet transformation ς encoding a time

series into a space of presence/absence of shapelets (line 8). ς
encodes in the matrix Ξ̂ ∈ R

n×h the minimum distances of the
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Fig. 8. Top: factual rule. Bottom: counterfactual rule. All the shapelets in the
rules are shown at their best alignment.

Fig. 9. Left: SHAPP explanation. Right: SHAPS explanation. cbf dataset. The
darker the color the higher the importance.

shapelet sj ∈ S from the time series z̃i ∈ Z̃∗. Then, it analyzes

the distances in Ξ̂, sets a threshold τ , and returns Ξ such that

Ξi,j = 1, if Ξ̂i,j ≤ τ , and 0 otherwise. The matrix Ξ for

our running example is reported in Figure 7 (bottom). Each

column represents a time series in Z̃∗. For each row, a colored

cell indicates the presence of the corresponding shapelet, while

a white cell indicates the shapelet absence. Exemplars contain

shapelets 0, 1, 2, 3, 5, 8, funnel counter-exemplars are similar

but without 0, 5 and with 6, 7; cylinder counter-exemplars

only contains shapelets 0, 3, 5, 8.

Given Ξ and Y ∗, LASTS trains a shapelet-based decision tree

classifier sdt that allows to identify shapelet-based (counter-

)factual rules rS ,ΦS (lines 9 - 10). LASTS adopts decision

trees because (i) decision rules can be naturally derived from

a root-leaf path in a decision tree; and, (ii) counter-factual rules

can be extracted by symbolic reasoning [25]. In our example

we have: rs = {s1 ∈ x∧s2 ∈ x∧s7 �∈ x} → bell, Φ = {{s1 ∈
x∧ s2 �∈ x∧ s7 �∈ x} → funnel}. The corresponding rules are

shown in Figure 8. The visual rules illustrate the position of

the shapelets1 that must be contained and which are those

that must not be contained (at their best alignment with x).

Looking at the rules, a user can truly understand the reasons

for the classification and how the time series should have been

for having another outcome. LASTS adopts decision trees in

both the latent and shapelet space for two different reasons: (i)
the latent decision tree filters exemplars and counter-exemplars

clearing the local decision boundary, (ii) the shapelet-based

decision tree is used to retrieve the shapelet-based factual and

counter factual explanation rules.

1Alignments can be preformed only moving the shapelets along the x-axis.

TABLE I
DATASETS DESCRIPTION AND BLACK BOX MODELS ACCURACY.

dataset n m l |Xbb| |Xae| |Xe| RES CNN KNN
cbf 600 128 3 268 115 36 1.00 1.00 1.00
esr 4,600 178 2 2,060 706 50 .978 .972 .865
har 10,299 561 6 4,116 1,411 50 .952 .891 .901
poc 2,658 80 2 1,008 345 50 .829 .768 .783

X

Xb

Xbb

train validation

test

Xa

Xae

train validation

test,K,Xe

70%

80%

20% 80%

20%

30%

80% 20%

80% 20%

Fig. 10. Datasets partitioning.

V. EXPERIMENTS

In this section we show the faithfulness, stability, and

meaningfulness of LASTS explanations2.

We experimented LASTS on four datasets: cylinder-bell-
funnel [39] (cbf, used in our example) has time series with

three classes having different shapes, epileptic seizure recogni-
tion [40] (esr) is composed of EEG records with two classes

indicating the presence/absence of an epileptic seizure, human
activity recognition [41] (har) [41] contains signals recorded

from a smartphone while performing six different activities,

phalanges outlines correct [42] (poc) contains time series

outlining hand bones of the images published in [43]. We name

Xbb the partition of the dataset used for training the black

boxes, Xae the partition used for training the autoencoders,

and Xe the partition from which we selected the instances to

explain in the experiments. Datasets details are in Table I.

We partitioned each dataset X as illustrated in Figure 10.

70% of X , namely Xb, was dedicated to the black boxes, the

remaining 30%, namely Xa, to the explainers. We used 80%

of Xb, called Xbb, for training the black boxes and the 20%,

called for testing the black boxes. In turn, 80% of Xbb is used

for training and 20% for validation. On the other hand, we

used 80% of Xa for training the autoencoders, namely Xae,

80% of which was used for the training and the remaining

20% for validation. The remaining 20% of Xa was used for

(i) testing the autoencoders, (ii) providing knowledge A to the

explainers, and (iii) selecting a set Xe of instance to explain.

We trained and explained the following black box classifiers:

RES, CNN, KNN3. ResNet (RES), introduced in [10], was

implemented in keras according to [44]. It is composed of

three residual blocks each one containing three convolutional

layers, a global average pooling layer, and a dense layer.

In particular, the layers inside each residual block have re-

spectively 64, 128, 256 filters, of size 8, 5, 3. We trained RES

with a batch size of 16, monitoring the loss, with a patience

2Code available at: https://github.com/fspinna/TS AgnosticLocalExplainer
3https://bit.ly/2uEEMke, https://keras.io/, https://scikit-learn.org/.
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TABLE II
AES RECONSTRUCTION ERROR IN TERMS OF MSE.

dataset AE VAE AAE AEL
cbf 1.050 1.050 1.260 6.810
esr 1e+04 3e+04 2e+04 6e+04
har 0.009 0.024 0.008 0.071
poc 0.001 0.022 0.001 0.008

parameter of 50 epochs. As optimizer we selected Adam,

with the default keras parameters: learning rate = 0.001,

β1 = 0.9, β2 = 0.999, minimizing the sparse categorical

crossentropy. The Convolutional Neural Network [9] (CNN)

was implemented in keras and it is composed of three

convolutional layers with ReLu activation function, each one

followed by batch normalization and a dropout layer, and

a final average global pooling layer followed by a dense

layer to output the class4. The dropout rate is 0.3. The

remaining parameters are the same as for RES. Finally, we

tested K-Nearest Neighbor [45] (KNN) as implemented by

scikit-learn. The k value was selected via grid search

using the scikit-learn package, searching from a value

k ∈ [1, |Xbb|]. In the grid search we also tested two kind of

weighted distances: Euclidean and Manhattan. The best results

were obtained using the euclidean distance, while the best k
are 1 for cbf and esr, 4 for har and poc. Classification

performance are reported in Table I. RES has higher and more

stable performance across the various datasets.

We experimented standard (AE), variational (VAE) and

adversarial autoencoders (AAE) with the structure illustrated

in Figure 3 and an AE using one LSTM [9] layer (AEL).

AE, VAE and AAE have g = 8 layers for the encoder ζ and

g = 8 layers5 for the decoder η. As activation functions: ReLu
for har and Elu for cbf, esr and poc. The autoencoders

built for poc have a maxpooling layer instead of a dense layer

before the latent space. This choice, together with the need of a

large latent space for poc if compared with the other datasets,

is due to the the difficulty of reconstruction that is in turn

probably connected to the different nature of the dataset that is

obtained as transformations from image processing. We trained

all the autoencoders for 2000 epochs, with a batch size equals

to 16. As optimizer we selected Adam with default keras
parameters: learning rate = 0.001, β1 = 0.9, β2 = 0.999,

minimizing the Mean Squared Error (MSE), with the exception

of the AAE and VAE. The AAEs discriminator is a network

with two layers of 100 units each with ReLU activation

functions, Adam optimizer, and minimizes the MSE for the

autoencoder, and the binary crossentropy for the discriminator.

The autoencoder is trained with default keras parameters,

while the discriminator with learning rate = 0.0002, β1 =
0.5, β2 = 0.999. The loss weight are to 0.999 and 0.001. In the

VAE the loss functions are the MSE and the Kullback–Leibler

loss. Finally, for the LSTM autoencoder we used LeakyReLu

4In particular the layers have respectively 16, 32, 64 filters, of size 8, 5, 3.
5The encoder has u ∈ {2, 4, 8, 16, 32, 64, 128, 256} filters of size

d ∈ {21, 18, 15, 13, 11, 8, 5, 3} per layer, respectively. The decoder has a
symmetric structure with the parameters in the reverse order.

TABLE III
CLASSIFICATION ACCURACY FOR RECONSTRUCTED INSTANCES.

dataset black box AE VAE AAE AEL

e
s
r

RES .955 .941 .923 .511
CNN .964 .959 .937 .502
KNN .959 .801 .869 .602

h
a
r

RES .950 .776 .946 .337
CNN .910 .771 .912 .170
KNN .968 .769 .955 .394

p
o
c

RES .972 .639 .926 .676
CNN .972 .500 .981 .769
KNN .963 .648 .963 .778

activation function with α = 0.1 for all the datasets. We

measured the performance of the autoencoders by means of

the reconstruction error between the original and reconstructed

time series in terms of Mean Squared Error (MSE, the lower

the better), and in terms of accuracy of the classifiers on the

reconstructed time series (the higher the better). We selected

the dimension k of latent space by starting with k = 2 and

iteratively building autoencoders with an increasing value of

k until the accuracy for the reconstructed instances increases

and reaches 0.9, but also keeping k ≤ m/2. This process6

lead to the usage of the following values for the number of

latent features k for the various datasets: cbf k = 2, esr
k = 30, har k = 50, poc k = 40. In Tables II and III we

report the MSE and the accuracy on reconstructed time series7.

We observe that the AE has on average the best performance

across the various datasets and classifiers. As consequence,

we selected AE as autoencoder for LASTS and we used the

corresponding encoder ζ and decoder η.

For LASTS we adopted the following hyper-parameters. The

neighborhood generation neighgen is run with neighborhood

size equals to N = 1000 latent instances, 10 generations, the

normalized Euclidean distance was used for the genetic fitness

function, probability of mutation equals to 0.5, probability

of crossover equals to 0.7. The shapelet extraction module

shapelet is implemented using the tslearn python pack-

age8. For the shapelet learning we selected the Stochastic
Gradient Descent optimizer with a training of 50 epochs

implemented according to [7]. We selected the number h and

length of the shapelets using the the heuristic proposed in [7]

which takes as parameters the size of the data set, the length

of the time series, the number of classes, and α, the fraction of

the length of time series to be used for base shapelet length,

and β, the number of different shapelet lengths to use. As

suggested in [7], we used α=0.1 and β=2. We transformed

the distances Ξ̂ into shapelet presence/absence Ξ choosing a

threshold distance τ . We adopted a grid-search strategy with

the hyper-parameters of the sklearn decision tree9.

6We also plan to test the dimensionality estimation proposed in [46].
7cbf is missing from Table III because nearly all the accuracy are one.
8https://bit.ly/2GDV6o1, https://bit.ly/2U7ERaU
9τ tested for the deciles of the distribution of all the distances

in Ξ̂ from 0.1 to 0.9 with 0.1 step-length, min samples split ∈
{0.002, 0.01, 0.05, 0.1, 0.2}, min samples leaf ∈ {0.001, 0.01, 0.05,
0.1, 0.2}, max depth ∈ {None, 2, 4, 6, 8, 10, 12, 16}.

173

Authorized licensed use limited to: University of Pisa. Downloaded on November 30,2021 at 10:44:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 11. 1st: shapelet rule. 2nd: shapelet counterfactual applied to counter-
exemplar. 3rd: exemplars. 4th: counter-exemplars. esr dataset. b = RES.

A. Comparing Time Series Explanations

Before assessing quantitatively the effectiveness of LASTS,

we compare LASTS explanations with those returned by

SHAP [21] employed to solve the time series black box

outcome explanation problem as in [30]. In particular, we

instantiate SHAP as: SHAPP every time point in the time

series becomes a feature and SHAP is run as for tabular data,

and SHAPS an a-priori segmentation with predefined length is

performed on the time series and a linear interpolation (similar

to image explanation) is used as base value by SHAP.

In Figure 9 we show the explanations of SHAPP and SHAPS.

The punctual explanation of SHAPP (top) is similar to a

saliency maps highlighting pixels, and therefore it is very diffi-

cult to understand. It seems that time points between 30 and 60

are important for recognizing the class bell. The explanation

returned by SHAPS (top) highlights various segments and puts

more importance on the first and penultimate sequence not

considering that also a cylinder can respect this explanation

rising in the second or third segment.

Besides the visual utility demonstrated by exemplars and

counter-exemplars in Figure 4, it is evident that the shapelet-

based rules of LASTS clarifies better than the explanations of

SHAP the reasons for the bell classification. The factual rule

visualized in Figure 8 tells that a bell time series must have

an increasing central part (s1, s2) between 50 and 80, and not

have an increasing part (s7) in the same interval. Indeed, the

shapelet-based counterfactual shows that if s2 is missing the

black box recognize the time series as a funnel.
Figures 11 and 12 allow to compare the explanations

obtained using LASTS, SHAPP and SHAPS for an instance of

esr. Observing the exemplars, counter-exemplars, shapelet-

based rule, and a counter-exemplar respecting a counterfactual

rule in Figure 11 we can grasp the reasons for which x (in

blue in the plots) has been labelled as seizure. The rule shows

that the cause lies in the presence of s3 with a sharp decrease

of the EEG signal and, how highlighted by the counterfactual,

by the absence of s5 that would have meant the existence

of a large bell generally representing healthy subjects. The

statement above is confirmed by the exemplars with many

sharp fluctuations and by the counterfactuals, which, on the

Fig. 12. Left: SHAPP. Right: SHAPS. esr dataset. b = RES.

Fig. 13. 1-NN accuracy varying n (counter-)exemplars.

contrary, have more relaxed and irregular EEG signals. From

the explanations in Figure 12, we understand that the reasons

for the class seizure are mainly related to the lowest values

in the EEG according to SHAPP, or to the valleys according

to SHAPS. However, also time series with no seizure have low

values and valleys. This is why SHAP-based explanation can

be not entirely meaningful or useful.

B. Are (Counter-)Exemplars Useful?

Since we cannot validate the usefulness of exemplars and

counter-exemplars with an experiment involving humans, in-

spired by [47], we tested their effectiveness replacing humans

with a memory-based machine learning technique, i.e., a k-NN

classifier. This experiment gives an objective and indirect esti-

mation of the usefulness of exemplars and counter-exemplars.

For each instance x∈Xe, we randomly select n exemplars and

counter-exemplars, one each for each class. Then, we use the

selected (counter-)exemplars to train a 1-NN and we classify

x. We compare this approach with a 1-NN trained on n real
time series per class randomly selected from Xe − {x}. As

distance function we use in both cases the Euclidean distance.

The average accuracy of the two approaches named LASTS

and real is reported in Figure 13 observed varying n for

each x ∈ Xe. We notice that LASTS clearly overcomes real.
Indeed, exemplars and counter-exemplars help in discovering

the decision boundary and in highlighting similarities and

differences. The performance of LASTS are on average high

and constant in every datasets revealing the also few exemplars

and counter-exemplars are a good proxy for recognizing the

classification outcome. On the other hand, the accuracy of real
only increases for esr with increasing n. This result shows

that not every time series is suitable for recognizing a class,

but they are as such only if carefully selected like LASTS does.

C. Are Surrogates Faithful to the Black Box?

We evaluate the faithfulness [12], [22] of the surrogates

adopted by LASTS by measuring the ability of the shapelet-

based decision tree sdt of mimicking the behavior of the

black box b. We measure the fidelity comparing Y = b(Xe)
and Y ′ = {y′|∀x ∈ Xe, y

′ = sdtx(ς(η(ζ(x))))} in terms
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TABLE IV
FIDELITY. HIGHEST VALUES ARE UNDERLINED.

dataset black box LASTS RLASTS SBGDT
c
b
f

RES 1.00 1.00 1.00
CNN .889 .917 1.00
KNN 1.00 1.00 1.00

e
s
r

RES 1.00 .500 .960
CNN 1.00 .500 .960
KNN .940 .820 .920

h
a
r

RES .980 .460 .420
CNN .860 .440 .400
KNN .980 .400 .380

p
o
c

RES .500 .400 .660
CNN .960 .400 .660
KNN .940 .440 .740

TABLE V
MEDIAN INCOHERENCE. LOWEST VALUES ARE UNDERLINED.

RES CNN KNN
LASTS SHAPP SHAPS LASTS SHAPP SHAPS LASTS SHAPP SHAPS

cbf .16 .99 .94 .52 .99 .94 .03 .99 .94
esr 1.0 .99 .92 .81 .99 .98 .87 .99 .94
har .68 .99 .99 .77 1.0 1.0 .23 1.0 .99
poc .90 .99 .98 .85 .99 .97 .58 .99 .99

of accuracy where sdtx is the local shapelet-based decision

tree learned for x. We compare LASTS against RLASTS that,

similarly to LIME, uses a random neighborhood generation.

In addition, we show that extracting an explanation from

the neighborhood of a given instance is a winning strategy

compared to an approach that builds a single global inter-

pretable classifier. Thus, we compare LASTS with a shapled-

based global decision tree classifier (SBGDT) trained on the

partition Xae used by LASTS for training the autoencoders.

In this case the fidelity is calculated as the accuracy between

Y = b(Xe) and Y ′ = sbgdt(Xe).

Table IV reports the values of the fidelity. We observe that

LASTS outperforms both RLASTS and SBGDT. Indeed, the

genetic approach allows to better explore the neighborhood

than a random one, while the global approach fails for datasets

like har and poc in discovering the local discriminative

boundaries. The non-parametric Friedman test compares the

average ranks of explanation methods over multiple datasets

and black boxes w.r.t. the fidelity. The null hypothesis that all

methods are equivalent is rejected (p−value < 0.01).

D. Are the Explanations Coherent?

Explainers stability is a fundamental property to gain the

user trust and to guarantee a reliable service [48]. We asses

the stability of LASTS in terms of coherence: similar time

series labelled with the same class should get similar expla-

nations [23]. Inspired by the local Lipschitz estimation [49]

we design the incoherence of an explanation e for a time

series x as: INx
(x) = sim(ex(f) , ex)/sim(ex(c) , ex) where

Nx = {xi∈Xe | dist(xi, x) ≤ ε} is the neighborhood of x
defined in terms of a distance function dist , x(c) and x(f)

are respectively the closest and furthest time series to x in

Nx in terms of dist , ex, ex(c) , ex(f) are their explanations, and

Fig. 14. Boxplots of incoherence for har and poc.

sim is a similarity function between explanations10. Thus, the

lower is the incoherence I, the more stable is the explanation.

Values lower than one indicates that the similarity between the

explanations of similar instances is higher than the similarity

between dissimilar instances. We compare the stability of

LASTS with SHAPP and SHAPS11. The similarity sim in the

incoherence formula is calculated as 1/(1− d). For LASTS d
is the average distance between couple of shapelets contained

and not contained in the shapelet-based rule12. For SHAP d is

the difference in absolute values between shap values13.

Table V reports the median incoherence. Results show

that LASTS returns explanations much more coherent than

those returned by SHAP and with values markedly lower.

The non-parametric Friedman test for the incoherence re-

jected the null hypothesis that all methods are equivalent

(p−value < 0.0001). Figure 14 reports the box plots showing

all the incoherence values for the har dataset. We notice that

incoherence of LASTS explanations can vary a lot, while the

incoherence of SHAP explanations is stably around one. This

fact is not necessarily a weakness because indicates that also

among similar time series LASTS finds a variegate array of

similar explanations but with different causes.

VI. CONCLUSION

We have presented LASTS, a local model-agnostic

subsequence-based explainer exploiting shapelets for black

box classifiers working on time series. LASTS succeeds in

addressing the time series black box outcome explanation

10For Nx, instead of setting a radius ε, we required that |Nx| ≤ k with
k = 30. Thus, x(f) is the k-th closest instance to x.

11For SHAPS we consider each time series with segments having length 16.
12Due to cases in which a rule has only shapelets contained or not contained.
13As distance dist we used the Euclidean distance. For both LASTS and

SHAP we calculated the similarity as 1/(1 − d) where d is the distance
between two explanations. We used two different distances d because of
the different nature of the explanations returned by LASTS and SHAP. For
LASTS d(e(1), e(2)) is the average distance between the Euclidean distances
among the couple of shapelets in the rules r(1) r(2) which are contained
in the respective time series x(1) and x(2), and among those which are not
contained. If there are not correspondences a default infinite distance is set
penalizing the result. For SHAPP and SHAPS d(e(1), e(2)) is the Euclidean dis-
tance of the vectors between shap values. We can compare the incoherence for
explanations with different nature because the measure is normalized w.r.t. the
similarity of the explanations between x and the furthest time series in Nx.
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problem exploiting two data representations: the latent space

and the shapelets. The latent space leverages a smart neigh-

borhood generation that permits to observe the black box

behavior with similar and different time series. The shapelets

allow understanding the logic of the classification showing the

reasons for the outcome in terms of subsequences that must,

and must not, be contained. An extensive experimentation

shows that LASTS outperforms existing explainers in returning

meaningful, useful, faithful, and coherent explanations.

The method has some limitations. The shapelet-based rules

do not consider multiple alignments of the same shapelet

in different points of the time series. Multiple occurrences

could help for better explaining a predictive phenomenon.

Moreover, LASTS only works for univariate and multi-class

time series classifiers. A challenge is to extend LASTS to make

it also work for multivariate time series and multilabel [50]

classification. Also, technical and conceptual extensions are

possible. First, extending LASTS for different types of se-

quential data like text and shopping transactions. Second,

studying the relationship between the latent space and the

shapelet space. Third, empowering the expressiveness of the

explanations and enabling higher levels of abstraction with

grammar-based decision trees [51]. Finally, a human decision-

making task driven by LASTS explanations could objectively

evaluate the real effectiveness of the explanations.
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