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9.2.2 Clustering Using Mixture Models

This section considers clustering based on statistical models. It is often con-
venient and effective to assume that data has been generated as a result of
a statistical process and to describe the data by finding the statistical model
that best fits the data, where the statistical model is described in terms of a
distribution and a set of parameters for that distribution. At a high level, this
process involves deciding on a statistical model for the data and estimating
the parameters of that model from the data. This section describes a par-
ticular kind of statistical model, mixture models, which model the data by
using a number of statistical distributions. Each distribution corresponds to
a cluster and the parameters of each distribution provide a description of the
corresponding cluster, typically in terms of its center and spread.

The discussion in this section proceeds as follows. After providing a de-
scription of mixture models, we consider how parameters can be estimated for
statistical data models. We first describe how a procedure known as maxi-
mum likelihood estimation (MLE) can be used to estimate parameters
for simple statistical models and then discuss how we can extend this approach
for estimating the parameters of mixture models. Specifically, we describe the
well-known Expectation-Maximization (EM) algorithm, which makes an
initial guess for the parameters, and then iteratively improves these estimates.
We present examples of how the EM algorithm can be used to cluster data by
estimating the parameters of a mixture model and discuss its strengths and
limitations.

A firm understanding of statistics and probability, as covered in Appendix
C, is essential for understanding this section. Also, for convenience in the
following discussion, we use the term probability to refer to both probability
and probability density.

Mixture Models

Mixture models view the data as a set of observations from a mixture of differ-
ent probability distributions. The probability distributions can be anything,
but are often taken to be multivariate normal, since this type of distribution
is well understood, mathematically easy to work with, and has been shown
to produce good results in many instances. These types of distributions can
model ellipsoidal clusters.

Conceptually, mixture models correspond to the following process of gen-
erating data. Given several distributions, usually of the same type, but with
different parameters, randomly select one of these distributions and generate
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an object from it. Repeat the process m times, where rn is the number of
objects.

More formally, assume that there are K distributions and m objects, ,{ :
{*t, . . . ,x*}. Let the 7rh distribution have parameters 0i, and let O be the set
of al l  parameters, i .e. ,  @ : {0r, . . . ,0x}.  Then, prob(x,101) is the probabi l i ty
of the ith object if it comes from the 7'h distribution. The probability that
the jth distribution is chosen to generate an object is given by the weight u7,
I < j < 1(, where these weights (probabilities) are subject to the constraint
that they sum to one, i.e., Ditul: 1. Then, the probability of an object x
is given by Equation 9.5.

If the objects are generated in an independent manner) then the probability
of the entire set of objects is just the product of the probabilities of each
individual x;.

K
prob(xl}): t wpi@lli)

j : t

prob(x l@) : fin,ou(4 l@) - iIi w ip i @,10 1)
i :1  i : l  i : 7

prob(r,ll): + ,-\#
v zlTo

(e.5)

(e.6)

For mixture models, each distribution describes a different group, i.e., a
different cluster. By using statistical methods, we can estimate the parame-
ters of these distributions from the data and thus describe these distributions
(clusters). We can also identify which objects belong to which clusters. How-
ever, mixture modeling does not produce a crisp assignment of objects to
clusters, but rather gives the probability with which a specific object belongs
to a particular cluster.

Example 9.2 (Univariate Gaussian Mixture). We provide a concrete
illustration of a mixture model in terms of Gaussian distributions. The prob-
ability density function for a one-dimensional Gaussian distribution at a point
r i s

(e.7)

The parameters of the Gaussian distribution are given by 0 : (p,o), where
p is the mean of the distribution and o is the standard deviation. Assume
that there are two Gaussian distributions, with a common standard deviation
of 2 and means of -4 and 4, respectively. Also assume that each of the two
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(a) Probability density function for
the mixture model.
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(b) 20,000 points generated from the
mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.

distribrrtions is selected with equal probability, i.e., wy : w2 : 0.5. Then
Equation 9.5 becomes the following:

1  -  t r t 4 t 2  1  _
D r o b ( r l t O )  : - c  8  +  _ e' 

2\/2iT 2t/2r
.  (e.8)

Figure 9.2(a) shows a plot of the probability density function of this mix-
ture m,rdel, while Figure 9.2(b) shows the histogram for 20,000 points gener-
ated from this mixture model.

Estimiating Model Parameters Using Maximum Likelihood

Given ix statistical model for the data, it is necessary to estimate the param-
eters of that model. A standard approach used for this task is maximum
likelihc'od estimation, which we now explain.

To begin, consider a set of rn points that are generated from a one-
dimensional Gaussian distribution. Assuming that the points are generated
independently, the probability of these points is just the product of their in-
dividual probabilities. (Again, we are dealing with probability densities, but
to keep our terminology simple, we will refer to probabilities.) Using Equa-
tion 9.7, we can write this probability as shown in Equation 9.9. Since this
probability would be a very small number, we typically will work with the log
probability, as shown in Equation 9.10.
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We would like to find a procedure to estimate z and o if they are unknown.
One approach is to choose the values of the parameters for which the data is
most probable (most likely). In other words, choose the p and o that maximize
Equation 9.9. This approach is known in statistics as the maximum like-
lihood principle, and the process of applying this principle to estimate the
parameters of a statistical distribution from the data is known as maximum
likelihood estimation (MtE).

The principle is called the maximum likelihood principle because, given a
set of data, the probability of the data, regarded as a function of the parame-
ters, is called a likelihood function. To illustrate, we rewrite Equation 9.9
as Equation 9.11 to emphasize that we view the statistical parameters p, and
o as our variables and that the data is regarded as a constant. For practical
reasons, the log likelihood is more commonly used. The log likelihood func-
tion derived from the log probability of Equation 9.10 is shown in Equation
9.72. Note that the parameter values that maximize the log likelihood also
maximize the likelihood since log is a monotonically increasing function.

! -  |  t ,  i - u t 2prob(Xl@): I I  , ;  e--" ;z-
.  a  v  a ^ u

a : l

! \  (r - ut2Ios prob(X lO) : - Lt;+ - 0.5m1og2tr - mlogo
i = I

m 1 .

ti,ketihood,(@lx) : L(@lx) : TI + " "EttL L  ^  / r * ^
.  1  v  a t t v

(e.e)

(e.10)

(e.11)

los ti,kelihood(Olx) : l(OlX): - t ry 
- 0.bmlog2tr - mlogo (9.12)

z--I

Example 9.3 (Maximum Likelihood Parameter Estimation). We pro-
vide a concrete illustration of the use of MLE for finding parameter values.
Suppose that we have the set of 200 points whose histogram is shown in Figure
9.3(a). Figure 9.3(b) shows the maximum log likelihood plot for the 200 points
under consideration. The values of the parameters for which the log probabil-
ity is a maximum are LL- -4.1 and o:2.1, which are close to the parameter
values of the underlying Gaussian distribution, LL : -4.0 and o : 2.0. r
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(a) Ilistogram of 200 points from a
Gaussian distribution.

(b) Log likelihood plot of the 200 points for
different values of the mean and standard
deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.

Graphing the likelihood of the data for different values of the parameters is
not practical, at least if there are more than two parameters. Thus, standard
statisrbical procedure is to derive the maximum likelihood estimates of a statis-
tical parameter by taking the derivative of likelihood function with respect to
that parameter, setting the result equal to 0, and solving. In particular, for a
Gauss;ian distribution, it can be shown that the mean and standard deviation
of the sample points are the maximum likelihood estimates of the correspond-
ing peurameters of the underlying distribution. (See Exercise 9 on 648.) Indeed,
for the 200 points considered in our example, the parameter values that max-
imized the log likelihood were precisely the mean and standard deviation of
the  200 po in ts ,  i .e . ,  u :  -4 .1and o  :2 .1 .

Estinnating Mixture Model Parameters Using Maximum Likelihood:
The .EM Algorithm

We cia,n also use the maximum likelihood approach to estimate the model
parameters for a mixture model. In the simplest case, we know which data
objecl;s come from which distributions, and the situation reduces to one of
estimrating the parameters of a single distribution given data from that distri-
bution. For most common distributions, the maximum likelihood estimates of
the parameters are calculated from simple formulas involving the data.

1 5
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In a more general (and more realistic) situation, we do not know which
points were generated by which distribution. Thus, we cannot directly cal-
culate the probability of each data point, and hence, it would seem that we
cannot use the maximum likelihood principle to estimate parameters. The
solution to this problem is the EM algorithm, which is shown in Algorithm
9.2. Briefly, given a guess for the parameter values, the EM algorithm cal-
culates the probability that each point belongs to each distribution and then
uses these probabilities to compute a new estimate for the parameters. (These
parameters are the ones that maximize the likelihood.) This iteration con-
tinues until the estimates of the parameters either do not change or change
very little. Thus, we stil employ maximum likelihood estimation, but via an
iterative search.

4:

Algorithm 9.2 EM algorithm.

z :

J :

Select an initial set of model parameters.
(As with K-means, this can be done randomly or in a variety of ways.)
repeat

Expectation Step For each object, calculate the probability
that each object belongs to each distribution, i.e., calculate
pr ob(di  str ibut ion, lx i ,  O).
Maximization Step Given the probabilities from the expectation step,
find the new estimates of the parameters that maximize the expected
likelihood.

5: until The parameters do not change.
(Alternatively, stop if the change in the parameters is below a specified
threshold.)

The trM algorithm is similar to the K-means algorithm given in Section
8.2.1. Indeed, the K-means algorithm for Euclidean data is a special case of the
EM algorithm for spherical Gaussian distributions with equal covariance ma-
trices, but different means. The expectation step corresponds to the K-means
step of assigning each object to a cluster. Instead, each object is assigned
to every cluster (distribution) with some probability. The maximization step
corresponds to computing the cluster centroids. Instead, all the parameters of
the distributions, as well as the weight parameters, are selected to maximize
the likelihood. This process is often straightforward, as the parameters are
typically computed using formulas derived from maximum likelihood estima-
tion. For instance, for a single Gaussian distribution, the MLE estimate of the
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mean is the mean of the objects in the distribution. In the context of mixture
models and the trM algorithm, the computation of the mean is modified to
account for the fact that every object belongs to a distribution with a certain
probability. This is illustrated further in the following example.

Example 9.a (Simple Example of EM Algorithm). This example illus-
trates how EM operates when applied to the data in Figure 9.2. To keep the
example as simple as possible) we assume that we know that the standard
deviation of both distributions is 2.0 and that points were generated with
equal probability from both distributions. We will refer to the left and right
distributions as distributions 1 and 2, respectively.

We begin the EM algorithm by making initial guesses for p,1 and p,2) say)
Ft : -2 and p,2 : 3. Thus, the initial parameters,0 : (Lt,o), for the
two distributions are? respectively, 01 : (-2,2) and 02: (3,2). The set of
parameters for the entire mixture model is O: {0t,02}.For the expectation
step of EM, we want to compute the probability that a point came from
a particular distribution; i.e., we want to compute prob(di,stri,bution 1lr;, O)
and prob(di,stri,bution 2lri,O). These values can be expressed by the following
equation, which is a straightforward application of Bayes rule (see Appendix
c),

pr ob(distribution j l, i, 0) :
0.5 prob(r.il?i) (e.13)

0.5 prob(ri l?t) + 0.5 prob(ri l?2)'

where 0.5 is the probability (weight) of each distribution and j is 7 or 2.
For instance, assume one of the points is 0. Using the Gaussian den-

sity function given in Equation 9.7, we compute that prob(010t) : 0.12 and
prob(0102): 0.06. (Again, we are really computing probability densities.) Us-
ing these values and Equation 9.13, we find that prob(di,stribution 110, O) :
0.12 I Q.12+ 0.06) : 0.66 and pr ob(distri,buti,on 210, O) : 0.06/(0. 12 + 0.06) :
0.33. This means that the point 0 is twice as likely to belong to distribution 1
as distribution 2 based on the current assumptions for the parameter values.

After computing the cluster membership probabilities for all 20,000 points,
we compute new estimates for pr,1 and pt2 (using Equations 9.14 and 9.15) in
the maximization step of the EM algorithm. Notice that the new estimate for
the mean of a distribution is just a weighted average of the points, where the
weights are the probabilities that the points belong to the distribution, i.e.,
the pr ob(di,stri,buti,on 7 | 16 ) values.

p r obldi,stri but ion 1 | r;, O) (e.14)' 
D}foo p, ob(d,i stri but ion Llr ;, Q)

20,000
\-

1 4 :  )  .  r
i :7
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Table 9.1. First few iterations of the EM algorithm for the simple example.

20,000
\-
L

Iteration l-rt Hz
0
1

.l

4

-2.00
,  a A

-3.94
-3.97
-3.98
-3.98

3.00
4. r0
4.07
4.04
4.03
4.03

U 2 : (e.15)

We repeat these two steps until the estimates of p1 and p,2 either don't
change or change very little. Table 9.1 gives the first few iterations of the EM
algorithm when it is applied to the set of 20,000 points. For this data, we
know which distribution generated which point, so we can also compute the
mean of the points from each distribution. The means are p1 : -3.98 and
l tz :  4 .03 .  I

Example 9.5 (The EM Algorithm on Sample Data Sets). We give
three examples that illustrate the use of the EM algorithm to find clusters
using mixture models. The first example is based on the data set used to
illustrate the finzy c-means algorithm-see Figure 9.1. We modeled this data
as a mixture of three two-dimensional Gaussian distributions with different
means and identical covariance matrices. We then clustered the data using
the EM algorithm. The results are shown in Figure 9.4. Each point was
assigned to the cluster in which it had the largest membership weight. The
points belonging to each cluster are shown by different marker shapes, while
the degree of membership in the cluster is shown by the shading. Membership
in a cluster is relatively weak for those points that are on the border of the two
clusters, but strong elsewhere. It is interesting to compare the membership
weights and probabilities of Figures 9.4 and 9.1. (See Exercise 11 on page
648.)

For our second example, we apply mixture model clustering to data that
contains clusters with different densities. The data consists of two natural
clusters, each with roughly 500 points. This data was created by combining
two sets of Gaussian data, one with a center at (-4,1) and a standard deviation
of 2, and one with a center at (0,0) and a standard deviation of 0.5. Figure 9.5
shows the clustering produced by the EM algorithm. Despite the differences
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in the density, the EM algorithm is quite successful at identifying the original
clusters.

For our third example, we use mixture model clustering on a data set that
K-means cannot properly handle. Figure 9.6(a) shows the clustering produced
by a mixture model algorithm, while Figure 9.6(b) shows the K-means cluster-
ing of the same set of 1000 points. For mixture model clustering, each point
has been assigned to the cluster for which it has the highest probability. In
both figures, different markers are used to distinguish different clusters. Do
not confuse the 'f' and 'x' markers in Figure 9.6(a).

Advantages and Limitations of Mixture Model Clustering Using the
EM Algorithm

Finding clusters by modeling the data using mixture models and applying the
EM algorithm to estimate the parameters of those models has a variety of
advantages and disadvantages. On the negative side, the trM algorithm can
be slow, it is not practical for models with large numbers of components, and
it does not work well when clusters contain only a few data points or if the
data points are nearly co-linear. There is also a problem in estimating the
number of clusters or7 more generally, in choosing the exact form of the model
to use. This problem typically has been dealt with by applying a Bayesian
approach, which, roughly speaking, gives the odds of one model versus another,
based on an estimate derived from the data. Mixture models may also have
difficulty with noise and outliers, although work has been done to deal with
this problem.

On the positive side, mixture models are more general than K-means or
finzy c-means because they can use distributions of various types. As a result,
mixture models (based on Gaussian distributions) can find clusters of different
sizes and elliptical shapes. AIso, a model-based approach provides a disciplined
way of eliminating some of the complexity associated with data. To see the
patterns in data, it is often necessary to simplify the data, and fitting the data
to a model is a good way to do that if the model is a good match for the data.
Furthermore, it is easy to characterize the clusters produced, since they can
be described by a small number of parameters. Finally, many sets of data are
indeed the result of random processes) and thus should satisfy the statistical
assumptions of these models.
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Figure 9.4. EM clustering of a two-dimensional point set with three clusters.
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Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.



9,2 Prototype-Based Clustering

*
X X

x *
*
rx +*: *

l<
x **

*
)e

X<
{ x( , \x

x

+ +
. +

f l
T

+ + ' t  * , r'  +T +TJ+]- +
+ -+=

x ? ( x
: X

*
a < **

(a) Clusters produced by mixture model clustering.

;r

*
h,(

*

*x *
,x ,t*

* : x)(
* **

(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.
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