9.2.2 Clustering Using Mixture Models

This section considers clustering based on statistical models. It is often convenient and effective to assume that data has been generated as a result of a statistical process and to describe the data by finding the statistical model that best fits the data, where the statistical model is described in terms of a distribution and a set of parameters for that distribution. At a high level, this process involves deciding on a statistical model for the data and estimating the parameters of that model from the data. This section describes a particular kind of statistical model, **mixture models**, which model the data by using a number of statistical distributions. Each distribution corresponds to a cluster and the parameters of each distribution provide a description of the corresponding cluster, typically in terms of its center and spread.

The discussion in this section proceeds as follows. After providing a description of mixture models, we consider how parameters can be estimated for statistical data models. We first describe how a procedure known as **maximum likelihood estimation (MLE)** can be used to estimate parameters for simple statistical models and then discuss how we can extend this approach for estimating the parameters of mixture models. Specifically, we describe the well-known **Expectation-Maximization (EM) algorithm**, which makes an initial guess for the parameters, and then iteratively improves these estimates. We present examples of how the EM algorithm can be used to cluster data by estimating the parameters of a mixture model and discuss its strengths and limitations.

A firm understanding of statistics and probability, as covered in Appendix C, is essential for understanding this section. Also, for convenience in the following discussion, we use the term probability to refer to both probability and probability density.

Mixture Models

Mixture models view the data as a set of observations from a mixture of different probability distributions. The probability distributions can be anything, but are often taken to be multivariate normal, since this type of distribution is well understood, mathematically easy to work with, and has been shown to produce good results in many instances. These types of distributions can model ellipsoidal clusters.

Conceptually, mixture models correspond to the following process of generating data. Given several distributions, usually of the same type, but with different parameters, randomly select one of these distributions and generate

an object from it. Repeat the process m times, where m is the number of objects.

More formally, assume that there are K distributions and m objects, $\mathcal{X} = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$. Let the j^{th} distribution have parameters θ_j , and let Θ be the set of all parameters, i.e., $\Theta = \{\theta_1, \ldots, \theta_K\}$. Then, $prob(\mathbf{x}_i|\theta_j)$ is the probability of the i^{th} object if it comes from the j^{th} distribution. The probability that the j^{th} distribution is chosen to generate an object is given by the weight w_j , $1 \leq j \leq K$, where these weights (probabilities) are subject to the constraint that they sum to one, i.e., $\sum_{j=1}^{K} w_j = 1$. Then, the probability of an object \mathbf{x} is given by Equation 9.5.

$$prob(\mathbf{x}|\Theta) = \sum_{j=1}^{K} w_j p_j(\mathbf{x}|\theta_j)$$
(9.5)

If the objects are generated in an independent manner, then the probability of the entire set of objects is just the product of the probabilities of each individual \mathbf{x}_i .

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} prob(\mathbf{x}_i|\Theta) = \prod_{i=1}^{m} \sum_{j=1}^{K} w_j p_j(\mathbf{x}_i|\theta_j)$$
(9.6)

For mixture models, each distribution describes a different group, i.e., a different cluster. By using statistical methods, we can estimate the parameters of these distributions from the data and thus describe these distributions (clusters). We can also identify which objects belong to which clusters. However, mixture modeling does not produce a crisp assignment of objects to clusters, but rather gives the probability with which a specific object belongs to a particular cluster.

Example 9.2 (Univariate Gaussian Mixture). We provide a concrete illustration of a mixture model in terms of Gaussian distributions. The probability density function for a one-dimensional Gaussian distribution at a point x is

$$prob(x_i|\Theta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
(9.7)

The parameters of the Gaussian distribution are given by $\theta = (\mu, \sigma)$, where μ is the mean of the distribution and σ is the standard deviation. Assume that there are two Gaussian distributions, with a common standard deviation of 2 and means of -4 and 4, respectively. Also assume that each of the two

(a) Probability density function for the mixture model.

(b) 20,000 points generated from the mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively. Both distributions have a standard deviation of 2.

distributions is selected with equal probability, i.e., $w_1 = w_2 = 0.5$. Then Equation 9.5 becomes the following:

$$prob(x|\Theta) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x+4)^2}{8}} + \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-4)^2}{8}}.$$
 (9.8)

Figure 9.2(a) shows a plot of the probability density function of this mixture model, while Figure 9.2(b) shows the histogram for 20,000 points generated from this mixture model.

Estimating Model Parameters Using Maximum Likelihood

Given a statistical model for the data, it is necessary to estimate the parameters of that model. A standard approach used for this task is maximum likelihood estimation, which we now explain.

To begin, consider a set of m points that are generated from a onedimensional Gaussian distribution. Assuming that the points are generated independently, the probability of these points is just the product of their individual probabilities. (Again, we are dealing with probability densities, but to keep our terminology simple, we will refer to probabilities.) Using Equation 9.7, we can write this probability as shown in Equation 9.9. Since this probability would be a very small number, we typically will work with the log probability, as shown in Equation 9.10.

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i-u)^2}{2\sigma^2}}$$
(9.9)

$$\log \ prob(\mathcal{X}|\Theta) = -\sum_{i=1}^{m} \frac{(x_i - u)^2}{2\sigma^2} - 0.5m \log 2\pi - m \log \sigma$$
(9.10)

We would like to find a procedure to estimate u and σ if they are unknown. One approach is to choose the values of the parameters for which the data is most probable (most likely). In other words, choose the μ and σ that maximize Equation 9.9. This approach is known in statistics as the **maximum likelihood principle**, and the process of applying this principle to estimate the parameters of a statistical distribution from the data is known as **maximum likelihood estimation (MLE)**.

The principle is called the maximum likelihood principle because, given a set of data, the probability of the data, regarded as a function of the parameters, is called a **likelihood function**. To illustrate, we rewrite Equation 9.9 as Equation 9.11 to emphasize that we view the statistical parameters μ and σ as our variables and that the data is regarded as a constant. For practical reasons, the log likelihood is more commonly used. The log likelihood function derived from the log probability of Equation 9.10 is shown in Equation 9.12. Note that the parameter values that maximize the log likelihood also maximize the likelihood since log is a monotonically increasing function.

$$likelihood(\Theta|\mathcal{X}) = L(\Theta|\mathcal{X}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$
(9.11)

$$\log \ likelihood(\Theta|\mathcal{X}) = \ell(\Theta|\mathcal{X}) = -\sum_{i=1}^{m} \frac{(x_i - \mu)^2}{2\sigma^2} - 0.5m \log 2\pi - m \log \sigma \qquad (9.12)$$

Example 9.3 (Maximum Likelihood Parameter Estimation). We provide a concrete illustration of the use of MLE for finding parameter values. Suppose that we have the set of 200 points whose histogram is shown in Figure 9.3(a). Figure 9.3(b) shows the maximum log likelihood plot for the 200 points under consideration. The values of the parameters for which the log probability is a maximum are $\mu = -4.1$ and $\sigma = 2.1$, which are close to the parameter values of the underlying Gaussian distribution, $\mu = -4.0$ and $\sigma = 2.0$.

440

(a) Histogram of 200 points from a Gaussian distribution.

(b) Log likelihood plot of the 200 points for different values of the mean and standard deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter values.

Graphing the likelihood of the data for different values of the parameters is not practical, at least if there are more than two parameters. Thus, standard statistical procedure is to derive the maximum likelihood estimates of a statistical parameter by taking the derivative of likelihood function with respect to that parameter, setting the result equal to 0, and solving. In particular, for a Gaussian distribution, it can be shown that the mean and standard deviation of the sample points are the maximum likelihood estimates of the corresponding parameters of the underlying distribution. (See Exercise 9 on 648.) Indeed, for the 200 points considered in our example, the parameter values that maximized the log likelihood were precisely the mean and standard deviation of the 200 points, i.e., u = -4.1 and $\sigma = 2.1$.

Estimating Mixture Model Parameters Using Maximum Likelihood: The EM Algorithm

We can also use the maximum likelihood approach to estimate the model parameters for a mixture model. In the simplest case, we know which data objects come from which distributions, and the situation reduces to one of estimating the parameters of a single distribution given data from that distribution. For most common distributions, the maximum likelihood estimates of the parameters are calculated from simple formulas involving the data.

In a more general (and more realistic) situation, we do not know which points were generated by which distribution. Thus, we cannot directly calculate the probability of each data point, and hence, it would seem that we cannot use the maximum likelihood principle to estimate parameters. The solution to this problem is the EM algorithm, which is shown in Algorithm 9.2. Briefly, given a guess for the parameter values, the EM algorithm calculates the probability that each point belongs to each distribution and then uses these probabilities to compute a new estimate for the parameters. (These parameters are the ones that maximize the likelihood.) This iteration continues until the estimates of the parameters either do not change or change very little. Thus, we still employ maximum likelihood estimation, but via an iterative search.

Algorithm 9.2 EM algorithm.

- 1: Select an initial set of model parameters.
 - (As with K-means, this can be done randomly or in a variety of ways.)
- 2: repeat
- 3: **Expectation Step** For each object, calculate the probability that each object belongs to each distribution, i.e., calculate $prob(distribution \ j | \mathbf{x}_i, \Theta)$.
- 4: **Maximization Step** Given the probabilities from the expectation step, find the new estimates of the parameters that maximize the expected likelihood.
- 5: **until** The parameters do not change.
 - (Alternatively, stop if the change in the parameters is below a specified threshold.)

The EM algorithm is similar to the K-means algorithm given in Section 8.2.1. Indeed, the K-means algorithm for Euclidean data is a special case of the EM algorithm for spherical Gaussian distributions with equal covariance matrices, but different means. The expectation step corresponds to the K-means step of assigning each object to a cluster. Instead, each object is assigned to every cluster (distribution) with some probability. The maximization step corresponds to computing the cluster centroids. Instead, all the parameters of the distributions, as well as the weight parameters, are selected to maximize the likelihood. This process is often straightforward, as the parameters are typically computed using formulas derived from maximum likelihood estimation. For instance, for a single Gaussian distribution, the MLE estimate of the

mean is the mean of the objects in the distribution. In the context of mixture models and the EM algorithm, the computation of the mean is modified to account for the fact that every object belongs to a distribution with a certain probability. This is illustrated further in the following example.

Example 9.4 (Simple Example of EM Algorithm). This example illustrates how EM operates when applied to the data in Figure 9.2. To keep the example as simple as possible, we assume that we know that the standard deviation of both distributions is 2.0 and that points were generated with equal probability from both distributions. We will refer to the left and right distributions as distributions 1 and 2, respectively.

We begin the EM algorithm by making initial guesses for μ_1 and μ_2 , say, $\mu_1 = -2$ and $\mu_2 = 3$. Thus, the initial parameters, $\theta = (\mu, \sigma)$, for the two distributions are, respectively, $\theta_1 = (-2, 2)$ and $\theta_2 = (3, 2)$. The set of parameters for the entire mixture model is $\Theta = \{\theta_1, \theta_2\}$. For the expectation step of EM, we want to compute the probability that a point came from a particular distribution; i.e., we want to compute $prob(distribution \ 1|x_i, \Theta)$ and $prob(distribution \ 2|x_i, \Theta)$. These values can be expressed by the following equation, which is a straightforward application of Bayes rule (see Appendix C):

$$prob(distribution \ j|x_i, \theta) = \frac{0.5 \ prob(x_i|\theta_j)}{0.5 \ prob(x_i|\theta_1) + 0.5 \ prob(x_i|\theta_2)}, \tag{9.13}$$

where 0.5 is the probability (weight) of each distribution and j is 1 or 2.

For instance, assume one of the points is 0. Using the Gaussian density function given in Equation 9.7, we compute that $prob(0|\theta_1) = 0.12$ and $prob(0|\theta_2) = 0.06$. (Again, we are really computing probability densities.) Using these values and Equation 9.13, we find that $prob(distribution 1|0,\Theta) =$ 0.12/(0.12+0.06) = 0.66 and $prob(distribution 2|0,\Theta) = 0.06/(0.12+0.06) =$ 0.33. This means that the point 0 is twice as likely to belong to distribution 1 as distribution 2 based on the current assumptions for the parameter values.

After computing the cluster membership probabilities for all 20,000 points, we compute new estimates for μ_1 and μ_2 (using Equations 9.14 and 9.15) in the maximization step of the EM algorithm. Notice that the new estimate for the mean of a distribution is just a weighted average of the points, where the weights are the probabilities that the points belong to the distribution, i.e., the prob(distribution $j|x_i$) values.

$$\mu_1 = \sum_{i=1}^{20,000} x_i \frac{\operatorname{prob}(\operatorname{distribution}\ 1|x_i,\Theta)}{\sum_{i=1}^{20,000} \operatorname{prob}(\operatorname{distribution}\ 1|x_i,\Theta)}$$
(9.14)

Iteration	μ_1	μ_2
0	-2.00	3.00
1	-3.74	4.10
2	-3.94	4.07
3	-3.97	4.04
4	-3.98	4.03
5	-3.98	4.03

Table 9.1. First few iterations of the EM algorithm for the simple example.

$$\mu_2 = \sum_{i=1}^{20,000} x_i \frac{\operatorname{prob}(\operatorname{distribution}\ 2|x_i,\Theta)}{\sum_{i=1}^{20,000} \operatorname{prob}(\operatorname{distribution}\ 2|x_i,\Theta)}$$
(9.15)

We repeat these two steps until the estimates of μ_1 and μ_2 either don't change or change very little. Table 9.1 gives the first few iterations of the EM algorithm when it is applied to the set of 20,000 points. For this data, we know which distribution generated which point, so we can also compute the mean of the points from each distribution. The means are $\mu_1 = -3.98$ and $\mu_2 = 4.03$.

Example 9.5 (The EM Algorithm on Sample Data Sets). We give three examples that illustrate the use of the EM algorithm to find clusters using mixture models. The first example is based on the data set used to illustrate the fuzzy c-means algorithm—see Figure 9.1. We modeled this data as a mixture of three two-dimensional Gaussian distributions with different means and identical covariance matrices. We then clustered the data using the EM algorithm. The results are shown in Figure 9.4. Each point was assigned to the cluster in which it had the largest membership weight. The points belonging to each cluster are shown by different marker shapes, while the degree of membership in the cluster is shown by the shading. Membership in a cluster is relatively weak for those points that are on the border of the two clusters, but strong elsewhere. It is interesting to compare the membership weights and probabilities of Figures 9.4 and 9.1. (See Exercise 11 on page 648.)

For our second example, we apply mixture model clustering to data that contains clusters with different densities. The data consists of two natural clusters, each with roughly 500 points. This data was created by combining two sets of Gaussian data, one with a center at (-4,1) and a standard deviation of 2, and one with a center at (0,0) and a standard deviation of 0.5. Figure 9.5 shows the clustering produced by the EM algorithm. Despite the differences

in the density, the EM algorithm is quite successful at identifying the original clusters.

For our third example, we use mixture model clustering on a data set that K-means cannot properly handle. Figure 9.6(a) shows the clustering produced by a mixture model algorithm, while Figure 9.6(b) shows the K-means clustering of the same set of 1000 points. For mixture model clustering, each point has been assigned to the cluster for which it has the highest probability. In both figures, different markers are used to distinguish different clusters. Do not confuse the '+' and 'x' markers in Figure 9.6(a).

Advantages and Limitations of Mixture Model Clustering Using the EM Algorithm

Finding clusters by modeling the data using mixture models and applying the EM algorithm to estimate the parameters of those models has a variety of advantages and disadvantages. On the negative side, the EM algorithm can be slow, it is not practical for models with large numbers of components, and it does not work well when clusters contain only a few data points or if the data points are nearly co-linear. There is also a problem in estimating the number of clusters or, more generally, in choosing the exact form of the model to use. This problem typically has been dealt with by applying a Bayesian approach, which, roughly speaking, gives the odds of one model versus another, based on an estimate derived from the data. Mixture models may also have difficulty with noise and outliers, although work has been done to deal with this problem.

On the positive side, mixture models are more general than K-means or fuzzy c-means because they can use distributions of various types. As a result, mixture models (based on Gaussian distributions) can find clusters of different sizes and elliptical shapes. Also, a model-based approach provides a disciplined way of eliminating some of the complexity associated with data. To see the patterns in data, it is often necessary to simplify the data, and fitting the data to a model is a good way to do that if the model is a good match for the data. Furthermore, it is easy to characterize the clusters produced, since they can be described by a small number of parameters. Finally, many sets of data are indeed the result of random processes, and thus should satisfy the statistical assumptions of these models.

Figure 9.4. EM clustering of a two-dimensional point set with three clusters.

Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.

9.2 Prototype-Based Clustering 593

(a) Clusters produced by mixture model clustering.

(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.