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Exploring Data

The previous chapter addressed high-level data issues that are important in
the knowledge discovery process. This chapter provides an introduction to
data exploration, which is a preliminary investigation of the data in order
to better understand its specific characteristics. Data exploration can aid in
selecting the appropriate preprocessing and data analysis techniques. It can
even address some of the questions typically answered by data mining. For
example, patterns can sometimes be found by visually inspecting the data.
Also, some of the techniques used in data exploration, such as visualization,
can be used to understand and interpret data mining results.

This chapter covers three major topics: summary statistics, visualization,
and On-Line Analytical Processing (OLAP). Summary statistics, such as the
mean and standard deviation of a set of values, and visualization techniques,
such as histograms and scatter plots, are standard methods that are widely
employed for data exploration. OLAP, which is a more recent development,
consists of a set of techniques for exploring multidimensional arrays of values.
OLAP-related analysis functions focus on various ways to create summary
data tables from a multidimensional data array. These techniques include
aggregating data either across various dimensions or across various attribute
values. For instance, if we are given sales information reported according
to product, location, and date, OLAP techniques can be used to create a
summary that describes the sales activity at a particular location by month
and product category.

The topics covered in this chapter have considerable overlap with the area
known as Exploratory Data Analysis (EDA), which was created in the
1970s by the prominent statistician, John Tukey. This chapter, like EDA,
places a heavy emphasis on visualization. Unlike EDA, this chapter does not
include topics such as cluster analysis or anomaly detection. There are two
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reasons for this. First, data mining views descriptive data analysis techniques
as an end in themselves, whereas statistics, from which EDA originated, tends
to view hypothesis-based testing as the final goal. Second, cluster analysis
and anomaly detection are large areas and require full chapters for an in-
depth discussion. Hence, cluster analysis is covered in Chapters 8 and 9, while
anomaly detection is discussed in Chapter 10.

3.1 The Iris Data Set

In the following discussion, we will often refer to the Iris data set that is
available from the University of California at Irvine (UCI) Machine Learn-
ing Repository. It consists of information on 150 Iris flowers, 50 each from
one of three Iris species: Setosa, Versicolour, and Virginica. Each flower is
characterized by five attributes:

1. sepal length in centimeters

2. sepal width in centimeters

3. petal length in centimeters

4. petal width in centimeters

5. class (Setosa, Versicolour, Virginica)

The sepals of a flower are the outer structures that protect the more fragile
parts of the flower, such as the petals. In many flowers, the sepals are green,
and only the petals are colorful. For Irises, however, the sepals are also colorful.
As illustrated by the picture of a Virginica Iris in Figure 3.1, the sepals of an
Iris are larger than the petals and are drooping, while the petals are upright.

3.2 Summary Statistics

Summary statistics are quantities, such as the mean and standard deviation,
that capture various characteristics of a potentially large set of values with
a single number or a small set of numbers. Everyday examples of summary
statistics are the average household income or the fraction of college students
who complete an undergraduate degree in four years. Indeed, for many people,
summary statistics are the most visible manifestation of statistics. We will
concentrate on summary statistics for the values of a single attribute, but will
provide a brief description of some multivariate summary statistics.
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Figure 3.1. Picture of Iris Virginica. Robert H. Mohlenbrock @ USDA-NRCS PLANTS Database/ USDA
NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical
Center, Chester, PA. Background removed.

This section considers only the descriptive nature of summary statistics.
However, as described in Appendix C, statistics views data as arising from an
underlying statistical process that is characterized by various parameters, and
some of the summary statistics discussed here can be viewed as estimates of
statistical parameters of the underlying distribution that generated the data.

3.2.1 Frequencies and the Mode

Given a set of unordered categorical values, there is not much that can be done
to further characterize the values except to compute the frequency with which
each value occurs for a particular set of data. Given a categorical attribute x,
which can take values {v1, . . . , vi, . . . vk} and a set of m objects, the frequency
of a value vi is defined as

frequency(vi) =
number of objects with attribute value vi

m
. (3.1)

The mode of a categorical attribute is the value that has the highest fre-
quency.
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Example 3.1. Consider a set of students who have an attribute, class, which
can take values from the set {freshman, sophomore, junior, senior}. Table
3.1 shows the number of students for each value of the class attribute. The
mode of the class attribute is freshman, with a frequency of 0.33. This may
indicate dropouts due to attrition or a larger than usual freshman class.

Table 3.1. Class size for students in a hypothetical college.

Class Size Frequency
freshman 200 0.33
sophomore 160 0.27
junior 130 0.22
senior 110 0.18

Categorical attributes often, but not always, have a small number of values,
and consequently, the mode and frequencies of these values can be interesting
and useful. Notice, though, that for the Iris data set and the class attribute,
the three types of flower all have the same frequency, and therefore, the notion
of a mode is not interesting.

For continuous data, the mode, as currently defined, is often not useful
because a single value may not occur more than once. Nonetheless, in some
cases, the mode may indicate important information about the nature of the
values or the presence of missing values. For example, the heights of 20 people
measured to the nearest millimeter will typically not repeat, but if the heights
are measured to the nearest tenth of a meter, then some people may have the
same height. Also, if a unique value is used to indicate a missing value, then
this value will often show up as the mode.

3.2.2 Percentiles

For ordered data, it is more useful to consider the percentiles of a set of
values. In particular, given an ordinal or continuous attribute x and a number
p between 0 and 100, the pth percentile xp is a value of x such that p% of the
observed values of x are less than xp. For instance, the 50th percentile is the
value x50% such that 50% of all values of x are less than x50%. Table 3.2 shows
the percentiles for the four quantitative attributes of the Iris data set.
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Table 3.2. Percentiles for sepal length, sepal width, petal length, and petal width. (All values are in
centimeters.)

Percentile Sepal Length Sepal Width Petal Length Petal Width
0 4.3 2.0 1.0 0.1
10 4.8 2.5 1.4 0.2
20 5.0 2.7 1.5 0.2
30 5.2 2.8 1.7 0.4
40 5.6 3.0 3.9 1.2
50 5.8 3.0 4.4 1.3
60 6.1 3.1 4.6 1.5
70 6.3 3.2 5.0 1.8
80 6.6 3.4 5.4 1.9
90 6.9 3.6 5.8 2.2
100 7.9 4.4 6.9 2.5

Example 3.2. The percentiles, x0%, x10%, . . . , x90%, x100% of the integers from
1 to 10 are, in order, the following: 1.0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5,
10.0. By tradition, x0% = min(x) and x100% = max(x).

3.2.3 Measures of Location: Mean and Median

For continuous data, two of the most widely used summary statistics are the
mean and median, which are measures of the location of a set of values.
Consider a set of m objects and an attribute x. Let {x1, . . . , xm} be the
attribute values of x for these m objects. As a concrete example, these values
might be the heights of m children. Let {x(1), . . . , x(m)} represent the values
of x after they have been sorted in non-decreasing order. Thus, x(1) = min(x)
and x(m) = max(x). Then, the mean and median are defined as follows:

mean(x) = x =
1

m

m∑
i=1

xi (3.2)

median(x) =

{
x(r+1) if m is odd, i.e., m = 2r + 1
1
2(x(r) + x(r+1)) if m is even, i.e., m = 2r

(3.3)

To summarize, the median is the middle value if there are an odd number
of values, and the average of the two middle values if the number of values
is even. Thus, for seven values, the median is x(4), while for ten values, the

median is 1
2(x(5) + x(6)).
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Although the mean is sometimes interpreted as the middle of a set of
values, this is only correct if the values are distributed in a symmetric manner.
If the distribution of values is skewed, then the median is a better indicator
of the middle. Also, the mean is sensitive to the presence of outliers. For data
with outliers, the median again provides a more robust estimate of the middle
of a set of values.

To overcome problems with the traditional definition of a mean, the notion
of a trimmed mean is sometimes used. A percentage p between 0 and 100
is specified, the top and bottom (p/2)% of the data is thrown out, and the
mean is then calculated in the normal way. The median is a trimmed mean
with p = 100%, while the standard mean corresponds to p = 0%.

Example 3.3. Consider the set of values {1, 2, 3, 4, 5, 90}. The mean of these
values is 17.5, while the median is 3.5. The trimmed mean with p = 40% is
also 3.5.

Example 3.4. The means, medians, and trimmed means (p = 20%) of the
four quantitative attributes of the Iris data are given in Table 3.3. The three
measures of location have similar values except for the attribute petal length.

Table 3.3. Means and medians for sepal length, sepal width, petal length, and petal width. (All values
are in centimeters.)

Measure Sepal Length Sepal Width Petal Length Petal Width
mean 5.84 3.05 3.76 1.20
median 5.80 3.00 4.35 1.30

trimmed mean (20%) 5.79 3.02 3.72 1.12

3.2.4 Measures of Spread: Range and Variance

Another set of commonly used summary statistics for continuous data are
those that measure the dispersion or spread of a set of values. Such measures
indicate if the attribute values are widely spread out or if they are relatively
concentrated around a single point such as the mean.

The simplest measure of spread is the range, which, given an attribute x
with a set of m values {x1, . . . , xm}, is defined as

range(x) = max(x)−min(x) = x(m) − x(1). (3.4)
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Table 3.4. Range, standard deviation (std), absolute average difference (AAD), median absolute
difference (MAD), and interquartile range (IQR) for sepal length, sepal width, petal length, and petal
width. (All values are in centimeters.)

Measure Sepal Length Sepal Width Petal Length Petal Width
range 3.6 2.4 5.9 2.4
std 0.8 0.4 1.8 0.8
AAD 0.7 0.3 1.6 0.6
MAD 0.7 0.3 1.2 0.7
IQR 1.3 0.5 3.5 1.5

Although the range identifies the maximum spread, it can be misleading if
most of the values are concentrated in a narrow band of values, but there are
also a relatively small number of more extreme values. Hence, the variance
is preferred as a measure of spread. The variance of the (observed) values of
an attribute x is typically written as s2x and is defined below. The standard
deviation, which is the square root of the variance, is written as sx and has
the same units as x.

variance(x) = s2x =
1

m− 1

m∑
i=1

(xi − x)2 (3.5)

The mean can be distorted by outliers, and since the variance is computed
using the mean, it is also sensitive to outliers. Indeed, the variance is particu-
larly sensitive to outliers since it uses the squared difference between the mean
and other values. As a result, more robust estimates of the spread of a set of
values are often used. Following are the definitions of three such measures:
the absolute average deviation (AAD), the median absolute deviation
(MAD), and the interquartile range (IQR). Table 3.4 shows these measures
for the Iris data set.

AAD(x) =
1

m

m∑
i=1

|xi − x| (3.6)

MAD(x) = median

(
{|x1 − x|, . . . , |xm − x|}

)
(3.7)

interquartile range(x) = x75% − x25% (3.8)
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3.2.5 Multivariate Summary Statistics

Measures of location for data that consists of several attributes (multivariate
data) can be obtained by computing the mean or median separately for each
attribute. Thus, given a data set the mean of the data objects, x, is given by

x = (x1, . . . , xn), (3.9)

where xi is the mean of the ith attribute xi.
For multivariate data, the spread of each attribute can be computed in-

dependently of the other attributes using any of the approaches described in
Section 3.2.4. However, for data with continuous variables, the spread of the
data is most commonly captured by the covariance matrix S, whose ijth

entry sij is the covariance of the ith and jth attributes of the data. Thus, if xi
and xj are the ith and jth attributes, then

sij = covariance(xi, xj). (3.10)

In turn, covariance(xi, xj) is given by

covariance(xi, xj) =
1

m− 1

m∑
k=1

(xki − xi)(xkj − xj), (3.11)

where xki and xkj are the values of the i
th and jth attributes for the kth object.

Notice that covariance(xi, xi) = variance(xi). Thus, the covariance matrix has
the variances of the attributes along the diagonal.

The covariance of two attributes is a measure of the degree to which two
attributes vary together and depends on the magnitudes of the variables. A
value near 0 indicates that two attributes do not have a (linear) relationship,
but it is not possible to judge the degree of relationship between two variables
by looking only at the value of the covariance. Because the correlation of two
attributes immediately gives an indication of how strongly two attributes are
(linearly) related, correlation is preferred to covariance for data exploration.
(Also see the discussion of correlation in Section 2.4.5.) The ijth entry of the
correlation matrix R, is the correlation between the ith and jth attributes
of the data. If xi and xj are the ith and jth attributes, then

rij = correlation(xi, xj) =
covariance(xi, xj)

sisj
, (3.12)
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where si and sj are the variances of xi and xj , respectively. The diagonal
entries of R are correlation(xi, xi) = 1, while the other entries are between
−1 and 1. It is also useful to consider correlation matrices that contain the
pairwise correlations of objects instead of attributes.

3.2.6 Other Ways to Summarize the Data

There are, of course, other types of summary statistics. For instance, the
skewness of a set of values measures the degree to which the values are sym-
metrically distributed around the mean. There are also other characteristics
of the data that are not easy to measure quantitatively, such as whether the
distribution of values is multimodal; i.e., the data has multiple “bumps” where
most of the values are concentrated. In many cases, however, the most effective
approach to understanding the more complicated or subtle aspects of how the
values of an attribute are distributed, is to view the values graphically in the
form of a histogram. (Histograms are discussed in the next section.)

3.3 Visualization

Data visualization is the display of information in a graphic or tabular format.
Successful visualization requires that the data (information) be converted into
a visual format so that the characteristics of the data and the relationships
among data items or attributes can be analyzed or reported. The goal of
visualization is the interpretation of the visualized information by a person
and the formation of a mental model of the information.

In everyday life, visual techniques such as graphs and tables are often the
preferred approach used to explain the weather, the economy, and the results
of political elections. Likewise, while algorithmic or mathematical approaches
are often emphasized in most technical disciplines—data mining included—
visual techniques can play a key role in data analysis. In fact, sometimes the
use of visualization techniques in data mining is referred to as visual data
mining.

3.3.1 Motivations for Visualization

The overriding motivation for using visualization is that people can quickly
absorb large amounts of visual information and find patterns in it. Consider
Figure 3.2, which shows the Sea Surface Temperature (SST) in degrees Celsius
for July, 1982. This picture summarizes the information from approximately
250,000 numbers and is readily interpreted in a few seconds. For example, it
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Figure 3.2. Sea Surface Temperature (SST) for July, 1982.

is easy to see that the ocean temperature is highest at the equator and lowest
at the poles.

Another general motivation for visualization is to make use of the domain
knowledge that is “locked up in people’s heads.” While the use of domain
knowledge is an important task in data mining, it is often difficult or impossible
to fully utilize such knowledge in statistical or algorithmic tools. In some cases,
an analysis can be performed using non-visual tools, and then the results
presented visually for evaluation by the domain expert. In other cases, having
a domain specialist examine visualizations of the data may be the best way
of finding patterns of interest since, by using domain knowledge, a person can
often quickly eliminate many uninteresting patterns and direct the focus to
the patterns that are important.

3.3.2 General Concepts

This section explores some of the general concepts related to visualization, in
particular, general approaches for visualizing the data and its attributes. A
number of visualization techniques are mentioned briefly and will be described
in more detail when we discuss specific approaches later on. We assume that
the reader is familiar with line graphs, bar charts, and scatter plots.
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Representation: Mapping Data to Graphical Elements

The first step in visualization is the mapping of information to a visual format;
i.e., mapping the objects, attributes, and relationships in a set of informa-
tion to visual objects, attributes, and relationships. That is, data objects,
their attributes, and the relationships among data objects are translated into
graphical elements such as points, lines, shapes, and colors.

Objects are usually represented in one of three ways. First, if only a
single categorical attribute of the object is being considered, then objects
are often lumped into categories based on the value of that attribute, and
these categories are displayed as an entry in a table or an area on a screen.
(Examples shown later in this chapter are a cross-tabulation table and a bar
chart.) Second, if an object has multiple attributes, then the object can be
displayed as a row (or column) of a table or as a line on a graph. Finally,
an object is often interpreted as a point in two- or three-dimensional space,
where graphically, the point might be represented by a geometric figure, such
as a circle, cross, or box.

For attributes, the representation depends on the type of attribute, i.e.,
nominal, ordinal, or continuous (interval or ratio). Ordinal and continuous
attributes can be mapped to continuous, ordered graphical features such as
location along the x, y, or z axes; intensity; color; or size (diameter, width,
height, etc.). For categorical attributes, each category can be mapped to
a distinct position, color, shape, orientation, embellishment, or column in
a table. However, for nominal attributes, whose values are unordered, care
should be taken when using graphical features, such as color and position
that have an inherent ordering associated with their values. In other words,
the graphical elements used to represent the ordinal values often have an order,
but ordinal values do not.

The representation of relationships via graphical elements occurs either
explicitly or implicitly. For graph data, the standard graph representation—
a set of nodes with links between the nodes—is normally used. If the nodes
(data objects) or links (relationships) have attributes or characteristics of their
own, then this is represented graphically. To illustrate, if the nodes are cities
and the links are highways, then the diameter of the nodes might represent
population, while the width of the links might represent the volume of traffic.

In most cases, though, mapping objects and attributes to graphical el-
ements implicitly maps the relationships in the data to relationships among
graphical elements. To illustrate, if the data object represents a physical object
that has a location, such as a city, then the relative positions of the graphical
objects corresponding to the data objects tend to naturally preserve the actual
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relative positions of the objects. Likewise, if there are two or three continuous
attributes that are taken as the coordinates of the data points, then the
resulting plot often gives considerable insight into the relationships of the
attributes and the data points because data points that are visually close to
each other have similar values for their attributes.

In general, it is difficult to ensure that a mapping of objects and attributes
will result in the relationships being mapped to easily observed relationships
among graphical elements. Indeed, this is one of the most challenging aspects
of visualization. In any given set of data, there are many implicit relationships,
and hence, a key challenge of visualization is to choose a technique that makes
the relationships of interest easily observable.

Arrangement

As discussed earlier, the proper choice of visual representation of objects and
attributes is essential for good visualization. The arrangement of items within
the visual display is also crucial. We illustrate this with two examples.

Example 3.5. This example illustrates the importance of rearranging a table
of data. In Table 3.5, which shows nine objects with six binary attributes, there
is no clear relationship between objects and attributes, at least at first glance.
If the rows and columns of this table are permuted, however, as shown in
Table 3.6, then it is clear that there are really only two types of objects in
the table—one that has all ones for the first three attributes and one that has
only ones for the last three attributes.

Table 3.5. A table of nine objects (rows) with
six binary attributes (columns).

1 2 3 4 5 6
1 0 1 0 1 1 0
2 1 0 1 0 0 1
3 0 1 0 1 1 0
4 1 0 1 0 0 1
5 0 1 0 1 1 0
6 1 0 1 0 0 1
7 0 1 0 1 1 0
8 1 0 1 0 0 1
9 0 1 0 1 1 0

Table 3.6. A table of nine objects (rows) with six
binary attributes (columns) permuted so that the
relationships of the rows and columns are clear.

6 1 3 2 5 4
4 1 1 1 0 0 0
2 1 1 1 0 0 0
6 1 1 1 0 0 0
8 1 1 1 0 0 0
5 0 0 0 1 1 1
3 0 0 0 1 1 1
9 0 0 0 1 1 1
1 0 0 0 1 1 1
7 0 0 0 1 1 1
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Example 3.6. Consider Figure 3.3(a), which shows a visualization of a graph.
If the connected components of the graph are separated, as in Figure 3.3(b),
then the relationships between nodes and graphs become much simpler to
understand.

(a) Original view of a graph. (b) Uncoupled view of connected components
of the graph.

Figure 3.3. Two visualizations of a graph.

Selection

Another key concept in visualization is selection, which is the elimination
or the de-emphasis of certain objects and attributes. Specifically, while data
objects that only have a few dimensions can often be mapped to a two- or
three-dimensional graphical representation in a straightforward way, there is
no completely satisfactory and general approach to represent data with many
attributes. Likewise, if there are many data objects, then visualizing all the
objects can result in a display that is too crowded. If there are many attributes
and many objects, then the situation is even more challenging.

The most common approach to handling many attributes is to choose a
subset of attributes—usually two—for display. If the dimensionality is not
too high, a matrix of bivariate (two-attribute) plots can be constructed for
simultaneous viewing. (Figure 3.16 shows a matrix of scatter plots for the pairs
of attributes of the Iris data set.) Alternatively, a visualization program can
automatically show a series of two-dimensional plots, in which the sequence is
user directed or based on some predefined strategy. The hope is that visualizing
a collection of two-dimensional plots will provide a more complete view of the
data.

The technique of selecting a pair (or small number) of attributes is a
type of dimensionality reduction, and there are many more sophisticated
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dimensionality reduction techniques that can be employed, e.g., principal
components analysis (PCA). Consult Appendices A (Linear Algebra) and B
(Dimensionality Reduction) for more information.

When the number of data points is high, e.g., more than a few hundred,
or if the range of the data is large, it is difficult to display enough information
about each object. Some data points can obscure other data points, or a
data object may not occupy enough pixels to allow its features to be clearly
displayed. For example, the shape of an object cannot be used to encode a
characteristic of that object if there is only one pixel available to display it. In
these situations, it is useful to be able to eliminate some of the objects, either
by zooming in on a particular region of the data or by taking a sample of the
data points.

3.3.3 Techniques

Visualization techniques are often specialized to the type of data being ana-
lyzed. Indeed, new visualization techniques and approaches, as well as special-
ized variations of existing approaches, are being continuously created, typically
in response to new kinds of data and visualization tasks.

Despite this specialization and the ad hoc nature of visualization, there are
some generic ways to classify visualization techniques. One such classification
is based on the number of attributes involved (1, 2, 3, or many) or whether the
data has some special characteristic, such as a hierarchical or graph structure.
Visualization methods can also be classified according to the type of attributes
involved. Yet another classification is based on the type of application: scien-
tific, statistical, or information visualization. The following discussion will use
three categories: visualization of a small number of attributes, visualization of
data with spatial and/or temporal attributes, and visualization of data with
many attributes.

Most of the visualization techniques discussed here can be found in a wide
variety of mathematical and statistical packages, some of which are freely
available. There are also a number of data sets that are freely available on the
World Wide Web. Readers are encouraged to try these visualization techniques
as they proceed through the following sections.

Visualizing Small Numbers of Attributes

This section examines techniques for visualizing data with respect to a small
number of attributes. Some of these techniques, such as histograms, give
insight into the distribution of the observed values for a single attribute. Other
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techniques, such as scatter plots, are intended to display the relationships
between the values of two attributes.

Stem and Leaf Plots Stem and leaf plots can be used to provide insight
into the distribution of one-dimensional integer or continuous data. (We will
assume integer data initially, and then explain how stem and leaf plots can
be applied to continuous data.) For the simplest type of stem and leaf plot,
we split the values into groups, where each group contains those values that
are the same except for the last digit. Each group becomes a stem, while the
last digits of a group are the leaves. Hence, if the values are two-digit integers,
e.g., 35, 36, 42, and 51, then the stems will be the high-order digits, e.g., 3,
4, and 5, while the leaves are the low-order digits, e.g., 1, 2, 5, and 6. By
plotting the stems vertically and leaves horizontally, we can provide a visual
representation of the distribution of the data.

Example 3.7. The set of integers shown in Figure 3.4 is the sepal length in
centimeters (multiplied by 10 to make the values integers) taken from the Iris
data set. For convenience, the values have also been sorted.

The stem and leaf plot for this data is shown in Figure 3.5. Each number in
Figure 3.4 is first put into one of the vertical groups—4, 5, 6, or 7—according
to its ten’s digit. Its last digit is then placed to the right of the colon. Often,
especially if the amount of data is larger, it is desirable to split the stems.
For example, instead of placing all values whose ten’s digit is 4 in the same
“bucket,” the stem 4 is repeated twice; all values 40–44 are put in the bucket
corresponding to the first stem and all values 45–49 are put in the bucket
corresponding to the second stem. This approach is shown in the stem and
leaf plot of Figure 3.6. Other variations are also possible.

Histograms Stem and leaf plots are a type of histogram, a plot that
displays the distribution of values for attributes by dividing the possible
values into bins and showing the number of objects that fall into each bin.
For categorical data, each value is a bin. If this results in too many values,
then values are combined in some way. For continuous attributes, the range of
values is divided into bins—typically, but not necessarily, of equal width—and
the values in each bin are counted.

Once the counts are available for each bin, a bar plot is constructed such
that each bin is represented by one bar and the area of each bar is proportional
to the number of values (objects) that fall into the corresponding range. If all
intervals are of equal width, then all bars are the same width and the height
of a bar is proportional to the number of values in the corresponding bin.
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43 44 44 44 45 46 46 46 46 47 47 48 48 48 48 48 49 49 49 49 49 49 50

50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 52 52 52 52 53

54 54 54 54 54 54 55 55 55 55 55 55 55 56 56 56 56 56 56 57 57 57 57

57 57 57 57 58 58 58 58 58 58 58 59 59 59 60 60 60 60 60 60 61 61 61

61 61 61 62 62 62 62 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64

65 65 65 65 65 66 66 67 67 67 67 67 67 67 67 68 68 68 69 69 69 69 70

71 72 72 72 73 74 76 77 77 77 77 79

Figure 3.4. Sepal length data from the Iris data set.

4 : 34444566667788888999999

5 : 0000000000111111111222234444445555555666666777777778888888999

6 : 000000111111222233333333344444445555566777777778889999

7 : 0122234677779

Figure 3.5. Stem and leaf plot for the sepal length from the Iris data set.

4 : 3444

4 : 566667788888999999

5 : 000000000011111111122223444444

5 : 5555555666666777777778888888999

6 : 00000011111122223333333334444444

6 : 5555566777777778889999

7 : 0122234
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Figure 3.6. Stem and leaf plot for the sepal length from the Iris data set when buckets corresponding
to digits are split.

Example 3.8. Figure 3.7 shows histograms (with 10 bins) for sepal length,
sepal width, petal length, and petal width. Since the shape of a histogram
can depend on the number of bins, histograms for the same data, but with 20
bins, are shown in Figure 3.8.

There are variations of the histogram plot. A relative (frequency) his-
togram replaces the count by the relative frequency. However, this is just a
change in scale of the y axis, and the shape of the histogram does not change.
Another common variation, especially for unordered categorical data, is the
Pareto histogram, which is the same as a normal histogram except that
the categories are sorted by count so that the count is decreasing from left to
right.
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Figure 3.7. Histograms of four Iris attributes (10 bins).
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Figure 3.8. Histograms of four Iris attributes (20 bins).

Two-Dimensional Histograms Two-dimensional histograms are also pos-
sible. Each attribute is divided into intervals and the two sets of intervals define
two-dimensional rectangles of values.

Example 3.9. Figure 3.9 shows a two-dimensional histogram of petal length
and petal width. Because each attribute is split into three bins, there are nine
rectangular two-dimensional bins. The height of each rectangular bar indicates
the number of objects (flowers in this case) that fall into each bin. Most of
the flowers fall into only three of the bins—those along the diagonal. It is not
possible to see this by looking at the one-dimensional distributions.

While two-dimensional histograms can be used to discover interesting
facts about how the values of two attributes co-occur, they are visually more
complicated. For instance, it is easy to imagine a situation in which some of
the columns are hidden by others.
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Figure 3.9. Two-dimensional histogram of petal length and width in the Iris data set.

Box Plots Box plots are another method for showing the distribution of
the values of a single numerical attribute. Figure 3.10 shows a labeled box
plot for sepal length. The lower and upper ends of the box indicate the 25th

and 75th percentiles, respectively, while the line inside the box indicates the
value of the 50th percentile. The top and bottom lines of the tails indicate
the 10th and 90th percentiles. Outliers are shown by “+” marks. Box plots are
relatively compact, and thus, many of them can be shown on the same plot.
Simplified versions of the box plot, which take less space, can also be used.

Example 3.10. The box plots for the first four attributes of the Iris data
set are shown in Figure 3.11. Box plots can also be used to compare how
attributes vary between different classes of objects, as shown in Figure 3.12.

Pie Chart A pie chart is similar to a histogram, but is typically used with
categorical attributes that have a relatively small number of values. Instead of
showing the relative frequency of different values with the area or height of a
bar, as in a histogram, a pie chart uses the relative area of a circle to indicate
relative frequency. Although pie charts are common in popular articles, they
are used less frequently in technical publications because the size of relative
areas can be hard to judge. Histograms are preferred for technical work.

Example 3.11. Figure 3.13 displays a pie chart that shows the distribution
of Iris species in the Iris data set. In this case, all three flower types have the
same frequency.
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Figure 3.11. Box plot for Iris attributes.
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Figure 3.12. Box plots of attributes by Iris species.

Percentile Plots and Empirical Cumulative Distribution Functions
A type of diagram that shows the distribution of the data more quantitatively
is the plot of an empirical cumulative distribution function. While this type
of plot may sound complicated, the concept is straightforward. For each value
of a statistical distribution, a cumulative distribution function (CDF)
shows the probability that a point is less than that value. For each observed
value, an empirical cumulative distribution function (ECDF) shows the
fraction of points that are less than this value. Since the number of points is
finite, the empirical cumulative distribution function is a step function.

Example 3.12. Figure 3.14 shows the ECDFs of the Iris attributes. The
percentiles of an attribute provide similar information. Figure 3.15 shows the
percentile plots of the four continuous attributes of the Iris data set from
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Setosa Virginica

Versicolour

Figure 3.13. Distribution of the types of Iris flowers.

Table 3.2. The reader should compare these figures with the histograms given
in Figures 3.7 and 3.8.

Scatter Plots Most people are familiar with scatter plots to some extent,
and they were used in Section 2.4.5 to illustrate linear correlation. Each data
object is plotted as a point in the plane using the values of the two attributes
as x and y coordinates. It is assumed that the attributes are either integer- or
real-valued.

Example 3.13. Figure 3.16 shows a scatter plot for each pair of attributes
of the Iris data set. The different species of Iris are indicated by different
markers. The arrangement of the scatter plots of pairs of attributes in this
type of tabular format, which is known as a scatter plot matrix, provides
an organized way to examine a number of scatter plots simultaneously.
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Figure 3.14. Empirical CDFs of four Iris attributes.
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Figure 3.15. Percentile plots for sepal length, sepal width, petal length, and petal width.
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There are two main uses for scatter plots. First, they graphically show
the relationship between two attributes. In Section 2.4.5, we saw how scatter
plots could be used to judge the degree of linear correlation. (See Figure 2.17.)
Scatter plots can also be used to detect non-linear relationships, either directly
or by using a scatter plot of the transformed attributes.

Second, when class labels are available, they can be used to investigate the
degree to which two attributes separate the classes. If is possible to draw a
line (or a more complicated curve) that divides the plane defined by the two
attributes into separate regions that contain mostly objects of one class, then
it is possible to construct an accurate classifier based on the specified pair
of attributes. If not, then more attributes or more sophisticated methods are
needed to build a classifier. In Figure 3.16, many of the pairs of attributes (for
example, petal width and petal length) provide a moderate separation of the
Iris species.

Example 3.14. There are two separate approaches for displaying three at-
tributes of a data set with a scatter plot. First, each object can be displayed
according to the values of three, instead of two attributes. Figure 3.17 shows a
three-dimensional scatter plot for three attributes in the Iris data set. Second,
one of the attributes can be associated with some characteristic of the marker,
such as its size, color, or shape. Figure 3.18 shows a plot of three attributes of
the Iris data set, where one of the attributes, sepal width, is mapped to the
size of the marker.

Extending Two- and Three-Dimensional Plots As illustrated by Fig-
ure 3.18, two- or three-dimensional plots can be extended to represent a
few additional attributes. For example, scatter plots can display up to three
additional attributes using color or shading, size, and shape, allowing five or
six dimensions to be represented. There is a need for caution, however. As the
complexity of a visual representation of the data increases, it becomes harder
for the intended audience to interpret the information. There is no benefit in
packing six dimensions’ worth of information into a two- or three-dimensional
plot, if doing so makes it impossible to understand.

Visualizing Spatio-temporal Data

Data often has spatial or temporal attributes. For instance, the data may
consist of a set of observations on a spatial grid, such as observations of
pressure on the surface of the Earth or the modeled temperature at various
grid points in the simulation of a physical object. These observations can also
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Figure 3.19. Contour plot of SST for December 1998.

be made at various points in time. In addition, data may have only a temporal
component, such as time series data that gives the daily prices of stocks.

Contour Plots For some three-dimensional data, two attributes specify a
position in a plane, while the third has a continuous value, such as temper-
ature or elevation. A useful visualization for such data is a contour plot,
which breaks the plane into separate regions where the values of the third
attribute (temperature, elevation) are roughly the same. A common example
of a contour plot is a contour map that shows the elevation of land locations.

Example 3.15. Figure 3.19 shows a contour plot of the average sea surface
temperature (SST) for December 1998. The land is arbitrarily set to have a
temperature of 0◦C. In many contour maps, such as that of Figure 3.19, the
contour lines that separate two regions are labeled with the value used to
separate the regions. For clarity, some of these labels have been deleted.

Surface Plots Like contour plots, surface plots use two attributes for the
x and y coordinates. The third attribute is used to indicate the height above
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(a) Set of 12 points. (b) Overall density function—surface
plot.

Figure 3.20. Density of a set of 12 points.

the plane defined by the first two attributes. While such graphs can be useful,
they require that a value of the third attribute be defined for all combinations
of values for the first two attributes, at least over some range. Also, if the
surface is too irregular, then it can be difficult to see all the information,
unless the plot is viewed interactively. Thus, surface plots are often used to
describe mathematical functions or physical surfaces that vary in a relatively
smooth manner.

Example 3.16. Figure 3.20 shows a surface plot of the density around a set
of 12 points. This example is further discussed in Section 9.3.3.

Vector Field Plots In some data, a characteristic may have both a mag-
nitude and a direction associated with it. For example, consider the flow of a
substance or the change of density with location. In these situations, it can be
useful to have a plot that displays both direction and magnitude. This type
of plot is known as a vector plot.

Example 3.17. Figure 3.21 shows a contour plot of the density of the two
smaller density peaks from Figure 3.20(b), annotated with the density gradient
vectors.

Lower-Dimensional Slices Consider a spatio-temporal data set that records
some quantity, such as temperature or pressure, at various locations over time.
Such a data set has four dimensions and cannot be easily displayed by the types
of plots that we have described so far. However, separate “slices” of the data
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Figure 3.21. Vector plot of the gradient (change) in density for the bottom two density peaks of Figure
3.20.

can be displayed by showing a set of plots, one for each month. By examining
the change in a particular area from one month to another, it is possible to
notice changes that occur, including those that may be due to seasonal factors.

Example 3.18. The underlying data set for this example consists of the
average monthly sea level pressure (SLP) from 1982 to 1999 on a 2.5◦ by
2.5◦ latitude-longitude grid. The twelve monthly plots of pressure for one year
are shown in Figure 3.22. In this example, we are interested in slices for a
particular month in the year 1982. More generally, we can consider slices of
the data along any arbitrary dimension.

Animation Another approach to dealing with slices of data, whether or
not time is involved, is to employ animation. The idea is to display successive
two-dimensional slices of the data. The human visual system is well suited to
detecting visual changes and can often notice changes that might be difficult
to detect in another manner. Despite the visual appeal of animation, a set of
still plots, such as those of Figure 3.22, can be more useful since this type of
visualization allows the information to be studied in arbitrary order and for
arbitrary amounts of time.
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Figure 3.22. Monthly plots of sea level pressure over the 12 months of 1982.

3.3.4 Visualizing Higher-Dimensional Data

This section considers visualization techniques that can display more than the
handful of dimensions that can be observed with the techniques just discussed.
However, even these techniques are somewhat limited in that they only show
some aspects of the data.

Matrices An image can be regarded as a rectangular array of pixels, where
each pixel is characterized by its color and brightness. A data matrix is a
rectangular array of values. Thus, a data matrix can be visualized as an image
by associating each entry of the data matrix with a pixel in the image. The
brightness or color of the pixel is determined by the value of the corresponding
entry of the matrix.
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Figure 3.24. Plot of the Iris correlation matrix.

There are some important practical considerations when visualizing a data
matrix. If class labels are known, then it is useful to reorder the data matrix
so that all objects of a class are together. This makes it easier, for example, to
detect if all objects in a class have similar attribute values for some attributes.
If different attributes have different ranges, then the attributes are often stan-
dardized to have a mean of zero and a standard deviation of 1. This prevents
the attribute with the largest magnitude values from visually dominating the
plot.

Example 3.19. Figure 3.23 shows the standardized data matrix for the Iris
data set. The first 50 rows represent Iris flowers of the species Setosa, the next
50 Versicolour, and the last 50 Virginica. The Setosa flowers have petal width
and length well below the average, while the Versicolour flowers have petal
width and length around average. The Virginica flowers have petal width and
length above average.

It can also be useful to look for structure in the plot of a proximity matrix
for a set of data objects. Again, it is useful to sort the rows and columns of
the similarity matrix (when class labels are known) so that all the objects of a
class are together. This allows a visual evaluation of the cohesiveness of each
class and its separation from other classes.

Example 3.20. Figure 3.24 shows the correlation matrix for the Iris data
set. Again, the rows and columns are organized so that all the flowers of a
particular species are together. The flowers in each group are most similar
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to each other, but Versicolour and Virginica are more similar to one another
than to Setosa.

If class labels are not known, various techniques (matrix reordering and
seriation) can be used to rearrange the rows and columns of the similarity
matrix so that groups of highly similar objects and attributes are together
and can be visually identified. Effectively, this is a simple kind of clustering.
See Section 8.5.3 for a discussion of how a proximity matrix can be used to
investigate the cluster structure of data.

Parallel Coordinates Parallel coordinates have one coordinate axis for
each attribute, but the different axes are parallel to one other instead of
perpendicular, as is traditional. Furthermore, an object is represented as a
line instead of as a point. Specifically, the value of each attribute of an object
is mapped to a point on the coordinate axis associated with that attribute, and
these points are then connected to form the line that represents the object.

It might be feared that this would yield quite a mess. However, in many
cases, objects tend to fall into a small number of groups, where the points in
each group have similar values for their attributes. If so, and if the number of
data objects is not too large, then the resulting parallel coordinates plot can
reveal interesting patterns.

Example 3.21. Figure 3.25 shows a parallel coordinates plot of the four
numerical attributes of the Iris data set. The lines representing objects of
different classes are distinguished by their shading and the use of three different
line styles—solid, dotted, and dashed. The parallel coordinates plot shows that
the classes are reasonably well separated for petal width and petal length, but
less well separated for sepal length and sepal width. Figure 3.26 is another
parallel coordinates plot of the same data, but with a different ordering of the
axes.

One of the drawbacks of parallel coordinates is that the detection of
patterns in such a plot may depend on the order. For instance, if lines cross a
lot, the picture can become confusing, and thus, it can be desirable to order
the coordinate axes to obtain sequences of axes with less crossover. Compare
Figure 3.26, where sepal width (the attribute that is most mixed) is at the
left of the figure, to Figure 3.25, where this attribute is in the middle.

Star Coordinates and Chernoff Faces

Another approach to displaying multidimensional data is to encode objects
as glyphs or icons—symbols that impart information non-verbally. More
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Figure 3.25. A parallel coordinates plot of the four Iris attributes.
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Figure 3.26. A parallel coordinates plot of the four Iris attributes with the attributes reordered to
emphasize similarities and dissimilarities of groups.



�

� �

�

140 Chapter 3 Exploring Data

specifically, each attribute of an object is mapped to a particular feature of a
glyph, so that the value of the attribute determines the exact nature of the
feature. Thus, at a glance, we can distinguish how two objects differ.

Star coordinates are one example of this approach. This technique uses
one axis for each attribute. These axes all radiate from a center point, like the
spokes of a wheel, and are evenly spaced. Typically, all the attribute values
are mapped to the range [0,1].

An object is mapped onto this star-shaped set of axes using the following
process: Each attribute value of the object is converted to a fraction that
represents its distance between the minimum and maximum values of the
attribute. This fraction is mapped to a point on the axis corresponding to
this attribute. Each point is connected with a line segment to the point on
the axis preceding or following its own axis; this forms a polygon. The size
and shape of this polygon gives a visual description of the attribute values of
the object. For ease of interpretation, a separate set of axes is used for each
object. In other words, each object is mapped to a polygon. An example of a
star coordinates plot of flower 150 is given in Figure 3.27(a).

It is also possible to map the values of features to those of more familiar
objects, such as faces. This technique is named Chernoff faces for its creator,
Herman Chernoff. In this technique, each attribute is associated with a specific
feature of a face, and the attribute value is used to determine the way that
the facial feature is expressed. Thus, the shape of the face may become more
elongated as the value of the corresponding data feature increases. An example
of a Chernoff face for flower 150 is given in Figure 3.27(b).

The program that we used to make this face mapped the features to the
four features listed below. Other features of the face, such as width between
the eyes and length of the mouth, are given default values.

Data Feature Facial Feature
sepal length size of face
sepal width forehead/jaw relative arc length
petal length shape of forehead
petal width shape of jaw

Example 3.22. A more extensive illustration of these two approaches to
viewing multidimensional data is provided by Figures 3.28 and 3.29, which
shows the star and face plots, respectively, of 15 flowers from the Iris data set.
The first 5 flowers are of species Setosa, the second 5 are Versicolour, and the
last 5 are Virginica.
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(a) Star graph of Iris 150. (b) Chernoff face of Iris 150.

Figure 3.27. Star coordinates graph and Chernoff face of the 150th flower of the Iris data set.
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Figure 3.28. Plot of 15 Iris flowers using star coordinates.
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Figure 3.29. A plot of 15 Iris flowers using Chernoff faces.
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Despite the visual appeal of these sorts of diagrams, they do not scale well,
and thus, they are of limited use for many data mining problems. Nonetheless,
they may still be of use as a means to quickly compare small sets of objects
that have been selected by other techniques.

3.3.5 Do’s and Don’ts

To conclude this section on visualization, we provide a short list of visualiza-
tion do’s and don’ts. While these guidelines incorporate a lot of visualization
wisdom, they should not be followed blindly. As always, guidelines are no
substitute for thoughtful consideration of the problem at hand.

ACCENT Principles The following are the ACCENT principles for ef-
fective graphical display put forth by D. A. Burn (as adapted by Michael
Friendly):

Apprehension Ability to correctly perceive relations among variables. Does
the graph maximize apprehension of the relations among variables?

Clarity Ability to visually distinguish all the elements of a graph. Are the
most important elements or relations visually most prominent?

Consistency Ability to interpret a graph based on similarity to previous
graphs. Are the elements, symbol shapes, and colors consistent with
their use in previous graphs?

Efficiency Ability to portray a possibly complex relation in as simple a way
as possible. Are the elements of the graph economically used? Is the
graph easy to interpret?

Necessity The need for the graph, and the graphical elements. Is the graph
a more useful way to represent the data than alternatives (table, text)?
Are all the graph elements necessary to convey the relations?

Truthfulness Ability to determine the true value represented by any graph-
ical element by its magnitude relative to the implicit or explicit scale.
Are the graph elements accurately positioned and scaled?

Tufte’s Guidelines Edward R. Tufte has also enumerated the following
principles for graphical excellence:

• Graphical excellence is the well-designed presentation of interesting data—
a matter of substance, of statistics, and of design.



�

� �

�

3.4 OLAP and Multidimensional Data Analysis 143

• Graphical excellence consists of complex ideas communicated with clar-
ity, precision, and efficiency.

• Graphical excellence is that which gives to the viewer the greatest num-
ber of ideas in the shortest time with the least ink in the smallest space.

• Graphical excellence is nearly always multivariate.

• And graphical excellence requires telling the truth about the data.

3.4 OLAP and Multidimensional Data Analysis

In this section, we investigate the techniques and insights that come from
viewing data sets as multidimensional arrays. A number of database sys-
tems support such a viewpoint, most notably, On-Line Analytical Processing
(OLAP) systems. Indeed, some of the terminology and capabilities of OLAP
systems have made their way into spreadsheet programs that are used by
millions of people. OLAP systems also have a strong focus on the interactive
analysis of data and typically provide extensive capabilities for visualizing the
data and generating summary statistics. For these reasons, our approach to
multidimensional data analysis will be based on the terminology and concepts
common to OLAP systems.

3.4.1 Representing Iris Data as a Multidimensional Array

Most data sets can be represented as a table, where each row is an object and
each column is an attribute. In many cases, it is also possible to view the data
as a multidimensional array. We illustrate this approach by representing the
Iris data set as a multidimensional array.

Table 3.7 was created by discretizing the petal length and petal width
attributes to have values of low, medium, and high and then counting the
number of flowers from the Iris data set that have particular combinations of
petal width, petal length, and species type. (For petal width, the categories
low, medium, and high correspond to the intervals [0, 0.75), [0.75, 1.75),
[1.75, ∞), respectively. For petal length, the categories low, medium, and
high correspond to the intervals [0, 2.5), [2.5, 5), [5, ∞), respectively.) Empty
combinations—those combinations that do not correspond to at least one
flower—are not shown.

The data can be organized as a multidimensional array with three di-
mensions corresponding to petal width, petal length, and species type, as
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Table 3.7. Number of flowers having a particular combination of petal width, petal length, and species
type.

Petal Length Petal Width Species Type Count
low low Setosa 46
low medium Setosa 2

medium low Setosa 2
medium medium Versicolour 43
medium high Versicolour 3
medium high Virginica 3
high medium Versicolour 2
high medium Virginica 3
high high Versicolour 2
high high Virginica 44

0

0

0

0

0

2

0

2

46

Virginica
Versicolour

Setosa

high

low

medium

hi
gh

m
ed

iu
m
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Width

Petal
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Figure 3.30. A multidimensional data representation for the Iris data set.



�

� �

�

3.4 OLAP and Multidimensional Data Analysis 145

Table 3.8. Cross-tabulation of flowers accord-
ing to petal length and width for flowers of the
Setosa species.

Width
low medium high

low 46 2 0
medium 2 0 0
high 0 0 0L

e
n
g
th

Table 3.9. Cross-tabulation of flowers accord-
ing to petal length and width for flowers of the
Versicolour species.

Width
low medium high

low 0 0 0
medium 0 43 3
high 0 2 2L

e
n
g
th

Table 3.10. Cross-tabulation of flowers ac-
cording to petal length and width for flowers
of the Virginica species.

Width
low medium high

low 0 0 0
medium 0 0 3
high 0 3 44L

e
n
g
th

illustrated in Figure 3.30. For clarity, slices of this array are shown as a set
of three two-dimensional tables, one for each species—see Tables 3.8, 3.9, and
3.10. The information contained in both Table 3.7 and Figure 3.30 is the same.
However, in the multidimensional representation shown in Figure 3.30 (and
Tables 3.8, 3.9, and 3.10), the values of the attributes—petal width, petal
length, and species type—are array indices.

What is important are the insights can be gained by looking at data from a
multidimensional viewpoint. Tables 3.8, 3.9, and 3.10 show that each species
of Iris is characterized by a different combination of values of petal length
and width. Setosa flowers have low width and length, Versicolour flowers have
medium width and length, and Virginica flowers have high width and length.

3.4.2 Multidimensional Data: The General Case

The previous section gave a specific example of using a multidimensional
approach to represent and analyze a familiar data set. Here we describe the
general approach in more detail.

The starting point is usually a tabular representation of the data, such as
that of Table 3.7, which is called a fact table. Two steps are necessary in order
to represent data as a multidimensional array: identification of the dimensions
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and identification of an attribute that is the focus of the analysis. The dimen-
sions are categorical attributes or, as in the previous example, continuous
attributes that have been converted to categorical attributes. The values of
an attribute serve as indices into the array for the dimension corresponding to
the attribute, and the number of attribute values is the size of that dimension.
In the previous example, each attribute had three possible values, and thus,
each dimension was of size three and could be indexed by three values. This
produced a 3 × 3 × 3 multidimensional array.

Each combination of attribute values (one value for each different at-
tribute) defines a cell of the multidimensional array. To illustrate using the
previous example, if petal length = low, petal width = medium, and species
= Setosa, a specific cell containing the value 2 is identified. That is, there are
only two flowers in the data set that have the specified attribute values. Notice
that each row (object) of the data set in Table 3.7 corresponds to a cell in the
multidimensional array.

The contents of each cell represents the value of a target quantity (target
variable or attribute) that we are interested in analyzing. In the Iris example,
the target quantity is the number of flowers whose petal width and length
fall within certain limits. The target attribute is quantitative because a key
goal of multidimensional data analysis is to look aggregate quantities, such as
totals or averages.

The following summarizes the procedure for creating a multidimensional
data representation from a data set represented in tabular form. First, identify
the categorical attributes to be used as the dimensions and a quantitative
attribute to be used as the target of the analysis. Each row (object) in the
table is mapped to a cell of the multidimensional array. The indices of the cell
are specified by the values of the attributes that were selected as dimensions,
while the value of the cell is the value of the target attribute. Cells not defined
by the data are assumed to have a value of 0.

Example 3.23. To further illustrate the ideas just discussed, we present a
more traditional example involving the sale of products.The fact table for
this example is given by Table 3.11. The dimensions of the multidimensional
representation are the product ID, location, and date attributes, while the
target attribute is the revenue. Figure 3.31 shows the multidimensional repre-
sentation of this data set. This larger and more complicated data set will be
used to illustrate additional concepts of multidimensional data analysis.



�

� �

�

3.4 OLAP and Multidimensional Data Analysis 147

Table 3.11. Sales revenue of products (in dollars) for various locations and times.

Product ID Location Date Revenue
...

...
...

...
1 Minneapolis Oct. 18, 2004 $250
1 Chicago Oct. 18, 2004 $79
...

...
...

1 Paris Oct. 18, 2004 301
...

...
...

...
27 Minneapolis Oct. 18, 2004 $2,321
27 Chicago Oct. 18, 2004 $3,278
...

...
...

27 Paris Oct. 18, 2004 $1,325
...

...
...

...

$ $ $ Loca
tio

n
Date

Product ID

. .
 .

. . .

. .
 .

Figure 3.31. Multidimensional data representation for sales data.
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3.4.3 Analyzing Multidimensional Data

In this section, we describe different multidimensional analysis techniques. In
particular, we discuss the creation of data cubes, and related operations, such
as slicing, dicing, dimensionality reduction, roll-up, and drill down.

Data Cubes: Computing Aggregate Quantities

A key motivation for taking a multidimensional viewpoint of data is the
importance of aggregating data in various ways. In the sales example, we might
wish to find the total sales revenue for a specific year and a specific product.
Or we might wish to see the yearly sales revenue for each location across all
products. Computing aggregate totals involves fixing specific values for some
of the attributes that are being used as dimensions and then summing over
all possible values for the attributes that make up the remaining dimensions.
There are other types of aggregate quantities that are also of interest, but for
simplicity, this discussion will use totals (sums).

Table 3.12 shows the result of summing over all locations for various
combinations of date and product. For simplicity, assume that all the dates are
within one year. If there are 365 days in a year and 1000 products, then Table
3.12 has 365,000 entries (totals), one for each product-data pair. We could
also specify the store location and date and sum over products, or specify the
location and product and sum over all dates.

Table 3.13 shows the marginal totals of Table 3.12. These totals are the
result of further summing over either dates or products. In Table 3.13, the
total sales revenue due to product 1, which is obtained by summing across
row 1 (over all dates), is $370,000. The total sales revenue on January 1,
2004, which is obtained by summing down column 1 (over all products), is
$527,362. The total sales revenue, which is obtained by summing over all rows
and columns (all times and products) is $227,352,127. All of these totals are
for all locations because the entries of Table 3.13 include all locations.

A key point of this example is that there are a number of different totals
(aggregates) that can be computed for a multidimensional array, depending
on how many attributes we sum over. Assume that there are n dimensions and
that the ith dimension (attribute) has si possible values. There are n different
ways to sum only over a single attribute. If we sum over dimension j, then we
obtain s1 ∗ · · · ∗ sj−1 ∗ sj+1 ∗ · · · ∗ sn totals, one for each possible combination
of attribute values of the n− 1 other attributes (dimensions). The totals that
result from summing over one attribute form a multidimensional array of n−1
dimensions and there are n such arrays of totals. In the sales example, there



�

� �

�

3.4 OLAP and Multidimensional Data Analysis 149

Table 3.12. Totals that result from summing over all locations for a fixed time and product.

date
Jan 1, 2004 Jan 2, 2004 . . . Dec 31, 2004

1 $1,001 $987 . . . $891
...

...
...

27 $10,265 $10,225 . . . $9,325

p
ro

d
u
c
t
ID

...
...

...

Table 3.13. Table 3.12 with marginal totals.

date
Jan 1, 2004 Jan 2, 2004 . . . Dec 31, 2004 total

1 $1,001 $987 . . . $891 $370,000
...

...
...

...

27 $10,265 $10,225 . . . $9,325 $3,800,020

p
ro

d
u
c
t
ID

...
...

...
...

total $527,362 $532,953 . . . $631,221 $227,352,127

are three sets of totals that result from summing over only one dimension and
each set of totals can be displayed as a two-dimensional table.

If we sum over two dimensions (perhaps starting with one of the arrays
of totals obtained by summing over one dimension), then we will obtain a
multidimensional array of totals with n − 2 dimensions. There will be

(
n
2

)
distinct arrays of such totals. For the sales examples, there will be

(
3
2

)
= 3

arrays of totals that result from summing over location and product, location
and time, or product and time. In general, summing over k dimensions yields(
n
k

)
arrays of totals, each with dimension n− k.
A multidimensional representation of the data, together with all possible

totals (aggregates), is known as a data cube. Despite the name, the size of
each dimension—the number of attribute values—does not need to be equal.
Also, a data cube may have either more or fewer than three dimensions. More
importantly, a data cube is a generalization of what is known in statistical
terminology as a cross-tabulation. If marginal totals were added, Tables
3.8, 3.9, or 3.10 would be typical examples of cross tabulations.
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Dimensionality Reduction and Pivoting

The aggregation described in the last section can be viewed as a form of
dimensionality reduction. Specifically, the jth dimension is eliminated by
summing over it. Conceptually, this collapses each “column” of cells in the jth

dimension into a single cell. For both the sales and Iris examples, aggregating
over one dimension reduces the dimensionality of the data from 3 to 2. If sj
is the number of possible values of the jth dimension, the number of cells is
reduced by a factor of sj . Exercise 17 on page 155 asks the reader to explore
the difference between this type of dimensionality reduction and that of PCA.

Pivoting refers to aggregating over all dimensions except two. The result
is a two-dimensional cross tabulation with the two specified dimensions as the
only remaining dimensions. Table 3.13 is an example of pivoting on date and
product.

Slicing and Dicing

These two colorful names refer to rather straightforward operations. Slicing is
selecting a group of cells from the entire multidimensional array by specifying
a specific value for one or more dimensions. Tables 3.8, 3.9, and 3.10 are
three slices from the Iris set that were obtained by specifying three separate
values for the species dimension. Dicing involves selecting a subset of cells by
specifying a range of attribute values. This is equivalent to defining a subarray
from the complete array. In practice, both operations can also be accompanied
by aggregation over some dimensions.

Roll-Up and Drill-Down

In Chapter 2, attribute values were regarded as being “atomic” in some sense.
However, this is not always the case. In particular, each date has a number
of properties associated with it such as the year, month, and week. The data
can also be identified as belonging to a particular business quarter, or if the
application relates to education, a school quarter or semester. A location
also has various properties: continent, country, state (province, etc.), and
city. Products can also be divided into various categories, such as clothing,
electronics, and furniture.

Often these categories can be organized as a hierarchical tree or lattice.
For instance, years consist of months or weeks, both of which consist of days.
Locations can be divided into nations, which contain states (or other units
of local government), which in turn contain cities. Likewise, any category
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of products can be further subdivided. For example, the product category,
furniture, can be subdivided into the subcategories, chairs, tables, sofas, etc.

This hierarchical structure gives rise to the roll-up and drill-down opera-
tions. To illustrate, starting with the original sales data, which is a multidi-
mensional array with entries for each date, we can aggregate (roll up) the
sales across all the dates in a month. Conversely, given a representation of the
data where the time dimension is broken into months, we might want to split
the monthly sales totals (drill down) into daily sales totals. Of course, this
requires that the underlying sales data be available at a daily granularity.

Thus, roll-up and drill-down operations are related to aggregation. Notice,
however, that they differ from the aggregation operations discussed until
now in that they aggregate cells within a dimension, not across the entire
dimension.

3.4.4 Final Comments on Multidimensional Data Analysis

Multidimensional data analysis, in the sense implied by OLAP and related
systems, consists of viewing the data as a multidimensional array and aggre-
gating data in order to better analyze the structure of the data. For the Iris
data, the differences in petal width and length are clearly shown by such an
analysis. The analysis of business data, such as sales data, can also reveal many
interesting patterns, such as profitable (or unprofitable) stores or products.

As mentioned, there are various types of database systems that support the
analysis of multidimensional data. Some of these systems are based on rela-
tional databases and are known as ROLAP systems. More specialized database
systems that specifically employ a multidimensional data representation as
their fundamental data model have also been designed. Such systems are
known as MOLAP systems. In addition to these types of systems, statistical
databases (SDBs) have been developed to store and analyze various types
of statistical data, e.g., census and public health data, that are collected by
governments or other large organizations. References to OLAP and SDBs are
provided in the bibliographic notes.

3.5 Bibliographic Notes

Summary statistics are discussed in detail in most introductory statistics
books, such as [109]. References for exploratory data analysis are the classic
text by Tukey [121] and the book by Velleman and Hoaglin [122].

The basic visualization techniques are readily available, being an integral
part of most spreadsheets (Microsoft EXCEL [112]), statistics programs (SAS
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[116], SPSS [119], R [113], and S-PLUS [115]), and mathematics software
(MATLAB [111] and Mathematica [110]). Most of the graphics in this chapter
were generated using MATLAB. The statistics package R is freely available
as an open source software package from the R project.

The literature on visualization is extensive, covering many fields and many
decades. One of the classics of the field is the book by Tufte [120]. The book
by Spence [118], which strongly influenced the visualization portion of this
chapter, is a useful reference for information visualization—both principles and
techniques. This book also provides a thorough discussion of many dynamic
visualization techniques that were not covered in this chapter. Two other
books on visualization that may also be of interest are those by Card et al.
[104] and Fayyad et al. [106].

Finally, there is a great deal of information available about data visualiza-
tion on the World Wide Web. Since Web sites come and go frequently, the best
strategy is a search using “information visualization,” “data visualization,” or
“statistical graphics.” However, we do want to single out for attention “The
Gallery of Data Visualization,” by Friendly [107]. The ACCENT Principles
for effective graphical display as stated in this chapter can be found there, or
as originally presented in the article by Burn [103].

There are a variety of graphical techniques that can be used to explore
whether the distribution of the data is Gaussian or some other specified
distribution. Also, there are plots that display whether the observed values
are statistically significant in some sense. We have not covered any of these
techniques here and refer the reader to the previously mentioned statistical
and mathematical packages.

Multidimensional analysis has been around in a variety of forms for some
time. One of the original papers was a white paper by Codd [105], the father
of relational databases. The data cube was introduced by Gray et al. [108],
who described various operations for creating and manipulating data cubes
within a relational database framework. A comparison of statistical databases
and OLAP is given by Shoshani [117]. Specific information on OLAP can
be found in documentation from database vendors and many popular books.
Many database textbooks also have general discussions of OLAP, often in the
context of data warehousing. For example, see the text by Ramakrishnan and
Gehrke [114].
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3.6 Exercises

1. Obtain one of the data sets available at the UCI Machine Learning Repository
and apply as many of the different visualization techniques described in the
chapter as possible. The bibliographic notes and book Web site provide pointers
to visualization software.
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2. Identify at least two advantages and two disadvantages of using color to visually
represent information.

3. What are the arrangement issues that arise with respect to three-dimensional
plots?

4. Discuss the advantages and disadvantages of using sampling to reduce the num-
ber of data objects that need to be displayed. Would simple random sampling
(without replacement) be a good approach to sampling? Why or why not?

5. Describe how you would create visualizations to display information that de-
scribes the following types of systems.

(a) Computer networks. Be sure to include both the static aspects of the
network, such as connectivity, and the dynamic aspects, such as traffic.

(b) The distribution of specific plant and animal species around the world for
a specific moment in time.

(c) The use of computer resources, such as processor time, main memory, and
disk, for a set of benchmark database programs.

(d) The change in occupation of workers in a particular country over the last
thirty years. Assume that you have yearly information about each person
that also includes gender and level of education.

Be sure to address the following issues:

• Representation. How will you map objects, attributes, and relationships
to visual elements?

• Arrangement. Are there any special considerations that need to be
taken into account with respect to how visual elements are displayed?
Specific examples might be the choice of viewpoint, the use of trans-
parency, or the separation of certain groups of objects.

• Selection. How will you handle a large number of attributes and data
objects?

6. Describe one advantage and one disadvantage of a stem and leaf plot with
respect to a standard histogram.

7. How might you address the problem that a histogram depends on the number
and location of the bins?

8. Describe how a box plot can give information about whether the value of an
attribute is symmetrically distributed. What can you say about the symmetry
of the distributions of the attributes shown in Figure 3.11?

9. Compare sepal length, sepal width, petal length, and petal width, using Figure
3.12.
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10. Comment on the use of a box plot to explore a data set with four attributes:
age, weight, height, and income.

11. Give a possible explanation as to why most of the values of petal length and
width fall in the buckets along the diagonal in Figure 3.9.

12. Use Figures 3.14 and 3.15 to identify a characteristic shared by the petal width
and petal length attributes.

13. Simple line plots, such as that displayed in Figure 2.12 on page 59, which
shows two time series, can be used to effectively display high-dimensional data.
For example, in Figure 2.12 it is easy to tell that the frequencies of the two
time series are different. What characteristic of time series allows the effective
visualization of high-dimensional data?

14. Describe the types of situations that produce sparse or dense data cubes.
Illustrate with examples other than those used in the book.

15. How might you extend the notion of multidimensional data analysis so that the
target variable is a qualitative variable? In other words, what sorts of summary
statistics or data visualizations would be of interest?

16. Construct a data cube from Table 3.14. Is this a dense or sparse data cube? If
it is sparse, identify the cells that are empty.

Table 3.14. Fact table for Exercise 16.

Product ID Location ID Number Sold

1 1 10
1 3 6
2 1 5
2 2 22

17. Discuss the differences between dimensionality reduction based on aggregation
and dimensionality reduction based on techniques such as PCA and SVD.
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