Data Similarity

Anna Monreale Computer Science Department

Introduction to Data Mining, 2nd Edition Chapter I

Similarity and Dissimilarity

• Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

• Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for one Attribute

p and *q* are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{egin{array}{cc} 0 & ext{if} \ p = q \ 1 & ext{if} \ p eq q \end{array} ight.$	$s = \left\{egin{array}{ccc} 1 & ext{if} \; p = q \ 0 & ext{if} \; p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p-q	$s = -d, s = \frac{1}{1+d}$ or
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$

 Table 5.1.
 Similarity and dissimilarity for simple attributes

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects **x** and **y**. Standardization is necessary, if scales differ.

• Standardization is necessary, if scales differ.

Euclidean Distance

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

Università di Pisa

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects x and y.

Minkowski Distance: Examples

- r = I. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0
L D	1	- 1	2	4
L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0
-	· · · · · ·			
\mathbf{L}_{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

point	X	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1

Distance Matrix

Università di Pisa

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well-known properties.
 - 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all x and y and $d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$. (Positive definiteness)
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
 - 3. $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x}, \mathbf{y} , and \mathbf{z} . (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

• A distance that satisfies these properties is a metric

Common Properties of a Similarity

Similarities, also have some well-known properties.

- s(x, y) = 1 (or maximum similarity) only if x = y. (does not always hold, e.g., cosine)
- 2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where *s*(**x**, **y**) is the similarity between points (data objects), **x** and **y**.

Categorical	insufficient	sufficient	good	very good	excellent
p1	0	0	1	0	0
p2	0	0	1	0	0
ր3	1	0	0	0	0
p4	0	1	0	0	0
item	bread	butter	milk	apple	tooth-past
p1	1	1	0	1	0
p2	0	0	1	1	1
ր3	1	1	1	0	0
p4	1	0	1	1	0

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities
 M₀₁ = the number of attributes where p was 0 and q was 1
 M₁₀ = the number of attributes where p was 1 and q was 0
 M₀₀ = the number of attributes where p was 0 and q was 0
 M₁₁ = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes $= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$
 - J = number of II matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1) $M_{10} = 1$ (the number of attributes where p was 1 and q was 0) $M_{00} = 7$ (the number of attributes where p was 0 and q was 0) $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

$$SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Document Data

	team	coach	pla y	ball	score	game	ם <u>א</u>	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Cosine Similarity

• If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$

where \bullet indicates vector dot product and || d || is the length of vector d.

• Example:

 $d_1 = 3 2 0 5 0 0 0 2 0 0$ $d_2 = 1 0 0 0 0 0 0 1 0 2$

 $\begin{aligned} d_1 \bullet d_2 &= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ ||d_1|| &= (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| &= (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$

 $\cos(d_1, d_2) = .3150$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use non-negative weights ω_k

$$- similarity(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \omega_k \delta_k}$$

• Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

Correlation

- Correlation measures the linear relationship between objects (binary or continuous)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y},$$

Università di Pisa

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Università di Pisa

Information and Probability

- Information relates to possible outcomes of an event
 - transmission of a message, flip of a coin, or measurement of a piece of data

- The more certain an outcome, the less information that it contains and vice-versa
 - For example, if a coin has two heads, then an outcome of heads provides no information
 - More quantitatively, the information is related the probability of an outcome
 - The smaller the probability of an outcome, the more information it provides and vice-versa
 - Entropy is the commonly used measure

Entropy

- For
 - a variable (event), X,
 - with *n* possible values (outcomes), $x_1, x_2, ..., x_n$
 - each outcome having probability, $p_1, p_2 \dots, p_n$
 - the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and $\log_2 n$ and is measured in bits
 - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

Entropy Examples

• For a coin with probability p of heads and probability q = 1 - p of tails

$$H = -p\log_2 p - q\log_2 q$$

- For
$$p=0.5$$
, $q=0.5$ (fair coin) $H=1$

- For
$$p = 1$$
 or $q = 1$, $H = 0$

Università di Pisa

Entropy for Sample Data

- Suppose we have
 - a number of observations (m) of some attribute, X, e.g.,
 the hair color of students in the class,
 - where there are n different possible values
 - And the number of observation in the i^{th} category is m_i
 - Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

Mutual Information

• Information one variable provides about another

Formally, I(X, Y) = H(X) + H(Y) - H(X, Y), where

H(X, Y) is the joint entropy of X and Y,

$$H(X,Y) = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}$$

Where p_{ij} is the probability that the i^{th} value of X and the j^{th} value of Y occur together

- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is $\log_2(\min(n_X, n_Y))$, where $n_X(n_Y)$ is the number of values of X(Y)

Mutual Information Example

Student Status	Count	p	<i>-p</i> log ₂ <i>p</i>
Undergrad	45	0.45	0.5184
Grad	55	0.55	0.4744
Total	100	1.00	<mark>0.9928</mark>

Grade	Count	p	-plog ₂ p
А	35	0.35	0.5301
В	50	0.50	0.5000
С	15	0.15	0.4105
Total	100	1.00	<mark>1.4406</mark>

Student Status	Grade	Count	р	<i>-p</i> log ₂ p
Undergrad	А	5	0.05	0.2161
Undergrad	В	30	0.30	0.5211
Undergrad	С	10	0.10	0.3322
Grad	А	30	0.30	0.5211
Grad	В	20	0.20	0.4644
Grad	С	5	0.05	0.2161
Total		100	1.00	<mark>2.2710</mark>

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

