Time Series - Shapelet/Motif Discovery
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Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?
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Why Find Motifs?

* Mining association rules in TS requires the discovery of motifs. These
are referred to as primitive shapes and frequent patterns.

* Several TS classifiers work by constructing typical prototypes of each
class. These prototypes may be considered motifs.

 Many TS anomaly detection algorithms consist of modeling normal
behavior with a set of typical shapes (which we see as motifs), and
detecting future patterns that are dissimilar to all typical shapes.



Matrix Profile

* The Matrix Profile (MP) is a data structure that annotatesa TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given a time series, T and a desired subsequence length, m.



Matrix Profile
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m We can use sliding window of length m to
extract all subsequences of length m.
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m We can then compute the pairwise
distance among these subsequences.
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Matrix Profile

* For each subsequence we keep only the distance with the closest
nearest nelghbor. set of all set of corresponding

subsequences nearest neighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.
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The matrix profile value at location i is the
distance between ' and its nearest neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each subsequence is
also stored in a vector called matrix profile index.
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Matrix Profile

* The MP index allows to find the nearest neighbor to any subsequence in constant time.
* Note that the pointers in the matrix profile index are not necessarily symmetric.
* If A points to B, then B may or may not point to A

* The classic TS motif: the two smallest values in the MP must have the same value, and
their pointers must be mutual.
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How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are anomalies).

Must be an anomaly in the
/ original data, in this region.

We call these Time Series
Discords
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Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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At the first iteration, a subsequence

is randomly selected from T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between | and every subsequences from T (time complexity = O(|T|log(|T|)))
We then put the distances in a vector based on the position of the subsequences
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\ The distance between . and T; (first subsequence)is 3



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between 1. and every subsequences from T (time complexity = O(| T|log(|T|)))
We them put the distances in a vector based on the position of the subsequences
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Let say | happen to be the third subsequences, therefore
the third value in the distance vectoris 0



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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min Matrix profile is updated by apply elementwise minimum to
these two vectors
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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these two vectors
3 2 5 3 4 5 1 2 9 8 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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In the second iteration, we randomly select another subsequence T and it happens to be the 12t
subsequences



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Once again, we compute the distance between ' and every subsequences of T
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We repeat the two steps (distance computation and update) until we have
used every subsequences



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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There are | T| subsequencesand the distance computationis O(| T|log(|T|))

The overall time complexityis O(| T|?log(|T|))



Motif Discovery From Matrix Profile
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Local minimums are corresponding to motifs



Motif Discovery From Matrix Profile
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Shapelet



Time Series Classification

* Given a set X of n time series, X = {x,, x,, ..., X,}, each time series has
m ordered values x; = < x,,, X,,, ..., X;,, > and a class value c..

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



Shapelet-based Classification
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1. Represent a TS as a vector of Urtica dioica
distances with representative ‘
subsequences, namely shapelets. Verbena urticifolia

2. Use it asinput for machine
learning classifiers.

Shapelet Dictionary 3 ’\ W
5.1 } f
’ 3.2 8.7
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Does Q have a subseqmﬁce within Leaf Decision T 1.4 7.9
a distance 5.1 of shape ? | €al Decision 1ree
yes / \no 6.7 4.2
™~
0 1 9.2 34

Verbena urticifolia Urtica dioica Verbena urticifolia Urtica dioica



Time Series Shapelets

e Shapelets are TS subsequences which are

maximally representative of a class. Verbena 0.87

_ _ Urtica 0.34
* Shapelets can provide interpretable results,

which may help domain practitioners
better understand their data.

* Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-
art TS classifiers consider global features.

Verbena urticifolia Urtica dioica



Finding Shapelets

FindingShapeletBF (dataset D, MAXLEN, MINLEN)
1 candidates € GenerateCandidates(D, MAXLEN, MINLEN)
2 bsf gain € 0

3 For each S in candidates

4 gain € CheckCandidate(D, S)

5 If gain > bsf gain

6 bsf gain € gain

7 bsf shapelet € S

8 EndIf

9 EndFor

10 | Return bsf shapelet




Generate Candidate

GenerateCandidates (dataset D, MAXLEN, MINLEN)

pool € O
| € MAXLEN
While / > MINLEN
For Tin D
pool € pool U St
EndFor
1<1-1
EndWhile

Sliding a window of size | across all
of the time series objects In the

dataset D, extracts all of the possible
candidates and adds them to the pool

oo~ b WK —

Return poo!



Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram €< O
For each 7'in D

dist € SubsequenceDist(7, .S)

insert 7 into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)

AN DN bW =




Distance with a Subsequence

e Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance
function that takes time series T and subsequence S as inputs and returns a
nonnegative value d, which is the distance from T to S.

 SubsequenceDist(T, S) = min(Dist(S, S')), for S' €S,/3!
« where S;/3/is the set of all possible subsequences of T
* Intuitively, it is the distance between S and its best matching location in T.

matching P T
0 10 30 40 50 60 70 80

location

20



Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram €< O
For each 7'in D

dist € SubsequenceDist(7, .S)

insert 7 into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)

AN DN bW =




Testing The Utility of a Candidate Shapelet

* Arrange the TSs in the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain
(same as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet

lit Point
candidate S Split Poin
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Split Point

candidate ./ .
Entropy 3 ) ) r;ﬁ—!\—»\ X
< v 2l pY

A TS dataset D consists of two classes, A and B.

* Given that the proportion of objects in class A is p(A) and the
proportion of objects in class B is p(B),

* The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

* Given a strategy that divides the D into two subsets D, and D,, the
information remaining in the dataset after splitting is defined by the
weighted average entropy of each subset.

* If the fraction of objectsin D, is f(D,) and in D, is f(D,),
* The total entropy of D after splitting is /(D) = f(D,)I(D,) + f(D,)I(D.).



candidate S Split Point
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e Given a certain split strategy sp which divides diif;:czog::m
D into two subsets D, and D,, the entropy shapelet = 5.1

before and after splitting is /(D) and /(D).
* The information gain for this splitting rule is:

¢ GGII’)(S,D) = I(D) - i\(D) = Shapelet Dictionary /\ %s
5.1 | f

* =1(D) - f(D,)I(D,) + f(D,)I(D,).
Does @ have a subsequence within

a distance 5.1 of shape m? /
* We use the distance from T to a shapelet S as yes no.__

the splitting rule sp. Verbena i e e

| Leaf Decision Tree




Problem

MANLEN

* The total number of candidateis Z Z( z’,‘ —[+1)

I=\[INLEN T.€D

* For each candidate you have to compute the distance between this
candidate and each training sample (space inefficiency)

* For instance
* 200 instances with length 275
e 7,480,200 shapelet candidates



Speedup

* Distance calculations form TSs to shapelet candidates is expensive.
 Reduce the time in two ways

 Distance Early Abandon
* reduce the distance computation time between two TS

* Admissible Entropy Pruning
* reduce the number of distance calculations

candidate S/ Split Pomt
Ty 0

PEON




Distance Early Abandon

* We only need the minimum distance. .. i )
location ! ’'4 Dist= 0.4

e Method

* Keep the best-so-far distance
* Abandon the calculation if the partial 0O 10 20 30 40 50 60 70 8 90 100
current distance is larger than best-so-far.

* We can avoid to compute the full
distance for S if the partial one is greater
than the best so far

Dist> 0.4

calculation -7
abandoned at this point

O 10 20 30 40 50 60 70 8 90 100



Admissible Entropy Pruning

* We only need the best shapelet for
each class

* For a candidate shapelet

e We do not need to calculate the
distance for each training sample

* After calculating some training
samples, the upper bound of
information gain (corresponding to
the optimistic scenario) < best
candidate shapelet

* Stop calculation
* Try next candidate




Motif/Shapelet Summary

* A motif is a repeated
pattern/subsequencein a given TS.

* A shapeletis a pattern/subsequence
which is maximally representative of
a class with respect to a given
dataset of TSs.

3 N A 3 NAA
el \ / \I // \ ﬂw'umw’w"“’Wuwwf“V‘WW\MWW/W\‘*~n“mva”fl‘»~wm4““m‘r”/‘W»MWW&v/ \ / f\
o u A

0 1 500 1000 ‘ 1500

Shapelet

N

Verbena urticifolia Urtica dioica



References

e Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets.
Chin-Chia Michael Yeh et al. 1997

* Time Series Shapelets: A New Primitive for Data Mining. Lexiang
Ye and Eamonn Keogh. 2016.

 Josif Grabocka, Nicolas Schilling, Martin Wistuba, Lars Schmidt-
Thieme (2014): Learning Time-Series Shapelets, in Proceedings
of the 20th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2014

Matrix Profile I: All Pairs Similarity Joins for Time Series:
A Unifying View that Includes Motifs, Discords and Shapelets

Chin-Chia Michael Yeh. Yan Zhw, Lindmila Ulanova, Nurjahan ‘icu\un \nu Ding.
Ho do bdullah Mucen, and

eogh

begat0l

pris ity

Abstract— The. all-poirs-similority-search (o similariy join)
problem has been extensively studied for fest and 3 handfal of

Keyswords—Time Series; Sivitariy Joies; Motif Discorery

L INTRODUCTION
imilarity-search (slso known a5 sim
5. The basic task

Series subsequences

We believe that t

obvious nested loop
Eudesn  diance
ke 00001 »

near impossible task m this dovasin

izable. both oo

wbamassingly paral
ecsors aad in dissributed

Time Series Shapelets: A New Primitive for Data Mi

Lexiang Ye
Dept. of Computer Science & Engineering
Universiy of Calffonia, Riverside, CA 92521
lexiangy@es ver.edu

ABSTRACT

1 s el e o b bl e s
canty aterthan st the-art clo

s and Subject mepmn

1128 [Dutabase Managermess]: Daabase Applicaions - Dasa

Mining

General Terms

b, Expesunentaton

. INTRODUCTION

it of them
kbt of e ncasdt acghiben algostn st sbove.

Pemussic o ke diptal o handcopees of ll ox part of this wosk for

el afstage 30d ot

e fin page. To copy
50 e oo 1o e 10 e,
o e prin b e

ot 309 A 378 1065584

Eamonn Keogh

Dept. of Compuer Scance & Engnestg
University of Caifornia, Riverside, CA
eamonng@es.uer.edu

(snging. g et mad Vorba Yol Thew o plate 2
fed, beuce the clloquial anme ~Tle avile” for
Verbena sl

Figuie 1 Sagies of o

s have the sect bte
Soppone e i s b ol 1o disangui thee v
placts, what esteses s

color nd size within ¢

e
et each leaf o » ome-dimemssonal represeatation ss shows.

ey

Figure - A shape can be couvertd foke » ome dmeusonal ‘e
eete” repemseatston. The vavcm fo the bighlghied eeton o the
sppareet oty




