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Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?
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Why Find Motifs?

* Mining association rules in TS requires the discovery of motifs. These
are referred to as primitive shapes and frequent patterns.

* Several TS classifiers work by constructing typical prototypes of each
class. These prototypes may be considered motifs.

* Many TS anomaly detection algorithms consist of modeling normal
behavior with a set of typical shapes (which we see as motifs), and
detecting future patterns that are dissimilar to all typical shapes.



How do we find Motifs?

* Given a predefined motif length m, a brute-force method searches for
motifs from all possible comparisons of subsequences.

* It is obviously very slow and computationally expensive.

* The most reference algorithm is based on a hot idea from
bioinformatics, random projection* and the fact that SAX allows to

use lower bound discrete representations of TSs.

*) Buhler and M Tompa. Finding motifs using random projections. In RECOMB'01. 2001.



Motif in Bioinformatics
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The Motif Discovery Algorithm

* EThe general problem:

* Find the motif M by using a set of sequences
called (w,d)-motif: sequence of length w that
differ from a d points

* Guiding principle:
* Some instances of a motif agree on a subset
of positions.

* Use information from multiple motif
instances to construct model
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k-Projections

* Choose k positions in string of length /.
* Concatenate elements at chosen k positions to form k-tuple.

* In I-dimensional Hamming space, projection onto k dimensional
subspace.

/=15 P k=7
ATGGCATTCAGATTC ~ mmmm)  TGCTGAT

P=(2,4,5 7,11, 12, 13)



Random Projection Algorithm

« Choose a projection by selecting k Input sequence x(i):
positions uniformly at random. ... TCAATGCACCTAT...

* For each /-tuple in input sequences,
hash into bucket based on letters at
k selected positions.

* Recover motif from bucket
containing multiple /-tuples.

Bucket TGCT



Example

e [ =7 (motif size) , k = 4 (projection size)

* Choose projection (1,2,5,7)

Input Sequence

. . . TAGACATCCGAC

Buckets

TT

GCCTTACTAC. ..

ATCCGAC

ATGC

GCTC



Hashing and Buckets

e Hash function h(x) obtained from k positions of projection.
* Buckets are labeled by values of h(x).
e Enriched buckets: contain at least s /-tuples, for some parameter s.
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ATGC GCTC CATC ATTC




Example of the Motif Discovery Algorithm

* Assume that we have a time series T of MWMMW
length 1,000, and a motif of length 16, \ !
yrvhich occurs twice, at time T, and time  © c\:_f\\_ 500 1000
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Example of the Motif Discovery Algorithm

* A mask {1,2} was randomly chosen, so the values in columns {1,2}
were used to project matrix into buckets.

* Collisions are recorded by incrementing the appropriate location in
the collision matrix.
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Example of the Motif Discovery Algorithm

* A mask {2,4} was randomly chosen, so the values in columns {2,4}
were used to project matrix into buckets.

* Once again, collisions are recorded by incrementing the appropriate
location in the collision matrix.
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Motif Refinement

* How do we recover the motif from the sequences in the
enriched buckets?

* k symbols are known from hash value of bucket.

* Use information in other -k positions as starting point for
local refinement scheme, e.g. EM

Local refi leorithm
ocal refinement algorit . AT G C GT C

Candidate motif

ATAAGTC
ATGTGAC

ATGC




Frequency Matrix Model from Bucket

ATCCGAC A1 0 25 5 0 5 0
ATGAGGC clo 0 25 25 0 O 1
"GO0 5 0 1 250
7.0 1 0 25 0 25 0

ATGC Frequency matrix W
EM algorithm

Refined matrix W*



EM Motif Refinement

* For each bucket h containing more than s sequences, form weight
matrix W,

* Use EM algorithm with starting point W, to obtain refined weight
matrix model W,

e For each input sequence x(i), return [ tuple y(i) which maximizes
likelihood ratio:

Pr(y(i) | W,")/ Pr(y(i) | Py).
« T={y(1), ¥(2), ..., y(N)}

e C(T) = consensus string



Expectation Maximization (EM)

e S={x(1), ..., x(N)} : set of input sequences

* Given:
* W = An initial probabilistic motif model
* P, =background probability distribution.

* Find value W,,,, that maximizes likelihood ratio:

PT(S | Wmax ? })O)
Pr(S | £)

* EM is local optimization scheme. Requires starting value W



A Single Iteration

* Choose a random k-projection.

* Hash each /-subsequences x in input sequence into bucket labelled
by h(x).

* From each bucket B with at least s sequences, form weight matrix
model, and perform EM refinement.

e Candidate motif is the best one found from refinement of all
enriched buckets.



Matrix Profile

* The Matrix Profile (MP) is a data structure that annotates a TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given a time series, T and a desired subsequence length, m.



Matrix Profile

m We can use sliding window of length m to

extract all subsequences of length m.

| T]-m+1



| T]-m+1

Matrix Profile

m We can then compute the pairwise
distance among these subsequences.

7.6952

7.7399

7.6952

7.7106

7.7399

7.7106




Matrix Profile

* For each subsequence we keep only the distance with the closest

nearest nelghbor. set of all set of corresponding
subsequences nearest neighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.

time
series, T

matrix
profile, P

The matrix profile value at location i is the
distance between ' and its nearest neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each subsequence is
also stored in a vector called matrix profile index.

time
series, T

matrix
profile
index, |

It turns out that

192

193 | 194

195

196

The matrix profile value at location i is the
distance between

and its nearest neighbor

‘s nearest neighbor is



Matrix Profile

 The MP index allows to find the nearest neighbor to any subsequence in constant time.
* Note that the pointers in the matrix profile index are not necessarily symmetric.

* If A points to B, then B may or may not point to A

* The classic TS motif: the two smallest values in the MP must have the same value, and
their pointers must be mutual.
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How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are anomalies).

Must be an anomaly in the
/ original data, in this region.

We call these Time Series
Discords

| J J |
0 500 1000 1500 2000 2500 3000

Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

inf

At the first iteration, a subsequence

is randomly selected from T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We then put the distances in a vector based on the position of the subsequences
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\ The distance between . and T; (first subsequence) is 3




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We them put the distances in a vector based on the position of the subsequences
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Let say
the third value in the distance vector is O

happen to be the third subsequences, therefore




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

|
m
inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to
these two vectors
3 2 5 3 4 5 1 2 9 8 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to

these two vectors
3 2 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

After we finish to update matrix profile for the first iteration




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1

In the second iteration, we randomly select another subsequence ' and it happens to be the 12t
subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

Once again, we compute the distance between | and every subsequences of T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min I The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min i The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min I The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 1 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

We repeat the two steps (distance computation and update) until we have
used every subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

There are |T| subsequences and the distance computation is O(|T|log(|T]))

The overall time complexity is O(| T|2%log(|T]))




Motif Discovery From Matrix Profile

time
series, T

L J L J L J

\ \ \

Local minimums are corresponding to motifs

matrix
profile, P



Motif Discovery From Matrix Profile
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* It is sometime useful to

@ think of time series
subsequences as points in
o-. M-dimensional space.

* In this view, dense regions
in the m-dimensional space
correspond to regions of

o... thetime seriesthat have a
low corresponding MP.
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Top-K Motifs

© ®  We need a parameter R.
° 1 <R < (small number, say 3)
% * Let’s make R = 2 for now.

¢ * We begin by finding the nearest
° °o® pair of points, the motif pair....

¢ ° * This pair of subsequences
° correspond to lowest pair of
° o values in the MP

0 500 1000 Yo 1500



Top-K Motifs

* We find the nearest pair of
points are D1 apart.

( /\ * Let’s draw a circle, D1 times R,
s around both points.

% * Any points that are within either
o .

o of these circles, are added to
o this motif, in this case just one.

* The Top-1 motif has three
members, it is done.

0 500 1000 Yo 1500



Top-K Motifs

X

* Now let’s find the Top-2 motif.

We find the nearest pair of
points, excluding anything from
the top motif.

The nearest pair of points are
D2 apart.

Let’s draw a circle D2 times R,
around both points.

Any points that are within
either of these circles, is added
to this motif, in this case there
are two for a total of four items
in the Top-2 Motif



Top-K Motifs

* We have done with the Top-2 Motif

* Note that we will always have:
*D;<D,<D;... Dy

 When to stop? (what is K?)

* We could use MDL or a predefined K.



Anomaly Discovery From Matrix Profile
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* We need a parameter E of
subsequences to exclude in
the vicinity of the anomaly.

e Let’s make E = 2 for now.

* We begin by finding the
subsequence with the
highest distance in the MP

* This corresponds to the
biggest anomaly



Top-K Anomaly
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* Then we look for the E
closest subsequences to
the anomaly.

e We remove all of them.

* We can use a predefined K
or the MDL to stop.



Shapelet



Time Series Classification

* Given a set X of n time series, X = {x;, x,, ..., x,}, each time series has
m ordered values x; = < X;;, X;5, ..., X;, > and a class value c;.

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



Shapelet-based Classification

1. Represent a TS as a vector of Urtica dioica
distances with representative -
subsequences, namely shapelets. Verbena urticifolia

2. Use it as input for machine Q
learning classifiers.
Shapelet Dictionary 3 1 W
5.1 #
° 3.2 8.7

0 10 20 30

Does Q have a subsequcﬁle within Leaf Decision T 1.4 7.9
a distance 5.1 of shape ? | €al vecision 1ree
/yes/ \no\ 6.7 4.2
0 1 9.2 34
Verbena urticifolia Urtica dioica Verbena urticifolia Urtica dioica



Time Series Shapelets

e Shapelets are TS subsequences which are

maximally representative of a class. Verbena 0.87

_ ] Urtica  0.34
* Shapelets can provide interpretable results,

which may help domain practitioners
better understand their data.

* Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-
art TS classifiers consider global features.

Verbena urticifolia Urtica dioica



Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool

~
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Distance with a Subsequence

» Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance
function that takes time series T and subsequence S as inputs and returns a
nonnegative value d, which is the distance from T to S.

* SubsequenceDist(T, S) = min(Dist(S, S')), for S' €5;/5/
» where S;/5/is the set of all possible subsequences of T

* Intuitively, it is the distance between S and its best matching location in T.

best —» : N~
matching P T
location £

0 10 20 30 40 50 60 70 80




Testing The Utility of a Candidate Shapelet

* Arrange the TSs in the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain
(same as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet

Split Point
candidate S plit Poin

By
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candidate ./ \E ,
Entropy PRI

A TS dataset D consists of two classes, A and B.

* Given that the proportion of objects in class A is p(A) and the
proportion of objects in class B is p(B),

* The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

* Given a strategy that divides the D into two subsets D; and D,, the
information remaining in the dataset after splitting is defined by the
weighted average entropy of each subset.

* If the fraction of objects in D, is f(D,;) and in D, is f(D,),
* The total entropy of D after splitting is (D) = f(D,)I(D,) + f(D,)I(D,).



it Poi
candidate S Split Point

. . et
Information Gain ) d 4l d W

Split point

* Given a certain split strategy sp which divides distance from
D into two subsets D; and D,, the entropy shapelet = 5.1
before and after splitting is /(D) and /(D).
* The information gain for this splitting rule is:
* Galn(sp) = I(D) - i\(D) = Shapelet Dictionary ,\ Z
- = I(D) - f(D,)I(D,) + f(D)I(D). o i

Does Q have a subsequence within .
Leaf Decision Tree

a distance 5.1 of shapem? |
- / \
* We use the distance from T to a shapelet S as yes no_

the splitting rule sp. 0 1

Verbena urticifolia Urtica dioica




Problem

MAXLEN

 The total number of candidate is Z Z
(

I|-1+1)

I=MINLEN T.€D

* For each candidate you have to compute the distance between this
candidate and each training sample (space inefficiency)

* For instance
e 200 instances with length 275
» 7,480,200 shapelet candidates



Speedup

* Distance calculations form TSs to shapelet candidates is expensive.
* Reduce the time in two ways

* Distance Early Abandon
* reduce the distance computation time between two TS

* Admissible Entropy Pruning

* reduce the number of distance calculations

' Poi
candidate S Split omt
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Distance Early Abandon

* We only need the minimum distance. best matching )
location 'd Dist= 0.4

e Method

* Keep the best-so-far distance

« Abandon the calculation if the current 0O 10 20 30 40 50 60 70 8 90 100
distance is larger than best-so-far.

Dist> 0.4

calculation -
abandoned at this point

O 10 20 30 40 50 60 70 8 90 100



Admissible Entropy Pruning

stinging nettles false nettles

* We only need the best shapelet for X/ W N
each class . #
* For a candidate shapelet h
* We do not need to calculate the 0

distance for each training sample

* After calculating some training |
samples, the upper bound of | e

information gain (corresponding to € o e o memumm
the optimistic scenario) < best
candidate shapelet r—

 Stop calculation
* Try next candidate

\‘ S ceee



Motif/Shapelet Summary

* A motif is a repeated
pattern/subsequence in a given TS.

0 W 500 1000 ‘Yo 1500

* A shapelet is a pattern/subsequence
which is maximally representative of
a class with respect to a given
dataset of TSs.

Verbena urticifolia Urtica dioica
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Abstract— The allpairs-similarity-search (or similarity join)
problem has been extensively studied for text and 2 handful of
other datatypes. Horwever, surprisingly litle progress has been

made on simlrity ins o fim e ubuence. The ekt

ek For exceptonaly arge e, the g
cast as 2

including mofif iscovery, novelty discovery, shapelet discovery,
semantic segmentation, density estimation, and contrast set
‘mining.

Kewords—Time Seris; Similariy Joins; Morif Discovery
1. INTRODUCTION
all.pairs-similarity-search (also known as similarity
Jon) el o v vt T i sk
Given a colleciion of data objects,retrieve the nearest neighbor
for cach opjecs. In e ext domain e st has
applications in a host lems, including community
Pary dophate dernon " sollsvotie  Hherng
clustering, and query refinement [1]. While virtally all text
roccsing algontiins have analogues in dme serics dra
mining, there has been suprisingly litle proaress on Time
Serics subsequences All-Pairs-Similarity-Scarch (TSAPSS).

We believe that this lack of progress stems not from a lack
terest in this uscful primitive. but from the dauning nature
of the problem. Consider the following example that reflects the
nceds of an industrial collaborator. A boiler at a chemical
re once a minute. After a year, we have a
0. A plant manager may wish fo do
a similasity self-join on this data with week-long sbiequeces
(10.080) to discover operating regimes (summer vs. winter o
Tight distlle v heavy distillse ic) The Sbvions st Ioop
algoitn_ requies 152850692560 Fucliden  disanes
s, If we assume cach one takes 0.0001 seconds
l]\rn the o il e 1538 oy The e conibuton nrmh
v that we can reduce this tim
o lhe~bel o ot Moscove vt o s
join can be computed ted incrementally. Thus we
could maintain this join essentially forever on a standard

top, even if the data arrival frequency was wuch faster than

deskto

Our algorithi uses an ultra-fast similarity scarch algorithm

malized Euclidean distance 35 a subroutine,

exploiting the overlap between subsequences wsing the classic
Fast Fouricr Transform (FFT) algorithm.

Our method has the following advantages/features:

It et proiding 0 il poies o e i

It

is simple and parameter-fiee. In contrast, the more

ecnrel et spsce ABSS alzontims requine bulding and

uning spatial access methods andor hash functions.
i eqites an ncomequenialspace verhead.

|\\sr O(n) with 2 small constant factor.

Vile oue evoer algortas i exiencly scalble, for

:xu:nul\, large datascts we can compute the results in an

anytime fashion, allowing ultra-fast approximare solut

Having computd the similiy on for  dstaset, we can

incrementally update it very cf
i

ently. In many domains
ans we can effectively maintain exact joins on

sreuning data forever

d provides full joins, climinating the nced to

pcify a sy hasho, ich s e il show s
near impossible task in this domain.

O sgorithn s embarassingly paraliclzabl. both on
eomltinre naneoscnrs and in dictebortod cuc
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ABSTRACT

time series has been attac
the past decade. Recent empirical vidence has strongly suggesicd
hat the simple nearest nesghbor agorthm s very difficult to beat
for most ime seris problems. While this may be considered good

youd e clsification accncy, we o wish o gain e
jespmpion
e we intoduce a new time series primitive, fime sories

Shapetos whichaddeescsthse tasons Tformally. shapelcs
are tme series subsequences which are in some sease maximally

epresentative of 4 class. As we shall show wilh extensive
empirial evaluations in diverse domains, algorithans based on the
i series shapelet primitives can be interpretable, more accurate
and significantly faste than state-of the-art classifirs
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1. INTRODUCTION

While the last decade has seen 3 huge interst in time series

classificaion, to date the most accurte and robust method is the

tmpl o aighbr ot [AL12114). Wle th et
cighbor algorithm has the advantages of simplicity and not

Tequiring exensive pamere mning, 4 doct have. sever]

Chief smong
requirements, and the fact that it doos not tell s anydhing about
wiy a paticula abject was assigaed to @ paticular class.

In this work we present & novel tme series data mining primitive
ed tm s shapeet. aormly shapelets e e ey
Subroquencss which e manally representative
ot class. While we belive <hapeles con have many use in
mining. plication of them is to mitigate the o
eaknete o the aeretneghosalgoeimnoid sbove.
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Becawe we e defmng s sl e ol we il ke

(sunging netls) and Verbena uricifolia. These two plants e
commonly confised, hence the colloquial name “false netle” for
Verbena urieiia

Urtica dioica

£ Leaves rom o speces. Note that seversl
et e the et e

e can see in . he differences
in the global shape are very subile. Furthermore, it is very
common for leaves to have distorions or “occlusions” due to

e iy to confose bal

measuces of shape. lnstead we aempt the folowing. We frst
convert cach leaf nto 8 one-dimensional representation a5 shown
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seprescntations have been successfully used for the
Ciicanon g and ot deceson ofsopes i ecenn
‘years [8]. Howeser, here w shbor
Gnoaticr il cihr the rtason invasion) Euchdean disance of
Dynamic Time Warping (DTW) distance does not significanty
ouperform random _gucssing. The reason for_the poor
‘pecformance of these otherwise very comperit

to be duc to the fact that the data s somewhat noisy (ic. insect
bites, and different stem length). and this noise 3 enough to
swamp the subtle differences in the shapes



