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Time Series Classification

* Given a set X of n time series, X = {x,, x,, ..., X,}, each time series has
m ordered values x; = < x,,, X,, ..., X,,, > and a class value c..

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



Shapelet-based Classification

1. Representa TS as a vector of Urtica dioica
distances with representative -
subsequences, namely shapelets. Verbena uricifola

2. Use It as input for machine
learning classifiers.
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Time Series Shapelets

* Shapelets are TS subsequences which are
maximally representative of a class.

 Shapelets can provide interpretable results,
which may help domain practitioners better
understand their data.

 Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-art
TS classifiers consider global features.
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Finding Shapelets

FindingShapeletBF (dataset D, MAXLEN, MINLEN)
1 candidates < GenerateCandidates(D, MAXLEN, MINLEN)
2 bsf gain € 0

3 For each S in candidates

4 gain € CheckCandidate(D, S)

5 If gain > bsf gain

6 bsf gain € gain

7 bsf shapelet € S

8 EndIf

9 EndFor

10 | Return bsf shapelet




Generate Candidate

GenerateCandidates (dataset D, MAXLEN, MINLEN)

pool € O
| € MAXLEN
While / > MINLEN
For Tin D
pool € pool U S
EndFor
€ 1-1
EndWhile
Return pool

Sliding a window of size | across all
of the time series objects In the

dataset D, extracts all of the possible
candidates and adds them to the pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram € O
Foreach 7in D

dist € SubsequenceDist(7, S)

insert 7' into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)

N D B W=

« Inserts all of the time series objects into the histogram objects_histogram according to the
distance from the time series object to the candidate

e Calculate Information Gain



Distance with a Subsequence

 Distance from the TS to the subsequence SubsequenceDist(T, S) Is a distance
function that takes time series T and subsequence S as inputs and returns a non-
negative value d, which is the distance from T to S.

« SubsequenceDist(T, S) = min(Dist(S, S")), for S' € S8l

« where S;8lis the set of all possible subsequences of T

* Intuitively, it Is the distance between S and its best matching location in T.

best —» N~
matching -~ S T

location
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Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram € O
For each 7in D

dist € SubsequenceDist(7, S)

insert 7" into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)
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Testing The Utility of a Candidate Shapelet

 Arrange the TSs in the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain (same
as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet
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 ATS dataset D consists of two classes, A and B.

 Glven that the proportion of objects in class A is p(A) and the proportion of
objects in class B 1s p(B),

* The Entropy of D is: (D) = -p(A)log(p(A)) -p(B)log(p(B)).

« Glven a str_ate%y that divides D into two subsets D, and D,, the information
remaining in the dataset after splitting is defined by the weighted average
entropy of each subset.

« If the fraction of objects in D, is f(D,) and in D, is f(D,), the total entropy of
D after splitting is I(D) = f(D)I(D,) + f(D,)I(D,).
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- Given a certain split strategy sp which divides opepant
D into two subsets D, and D,, the entropy shapelet = 5.1

before and after spllttlng is (D) and 1(D).
* The information gain for this splitting rule is:

* Gain(sp) — I(D) - T(D) — Shapelet Dictionary :
= I(D) - f(DYI(D;) + f{(D)I(D,). WL l g

Leafl Decision Tree

* \WWe use the distance from T to a shapelet S as yes o~
the splitting rule sp.




Problem

MANLEN

* The total number of candidate Is Z Z -
(1] -1+1)

[=MINLEN T €D

* For each candidate you have to compute the distance between this
candidate and each training sample (space inefficiency)

* For Instance
« 200 instances with length 275
« 7,480,200 shapelet candidates



Speedup

* Distance calculations form TSs to shapelet candidates Is expensive.

 Reduce the time in two ways

 Distance Early Abandon: reducing the distance computation time between
two TS

« Admissible Entropy Pruning: reducing the number of distance calculations
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Distance Early Abandon

* We only need the minimum distance. best matching |
location ~| S Dist= 0.4

* Method:
« Keep the best-so-far distance

0O 10 20 30 40 50 60 70 80 90 100

Dist> 0.4
P S

/TN,

0O 10 20 30 40 50 60 70 8 90 100

« Abandon the calculation if the partial current
distance is larger than best-so-far.

« We can avoid to compute the full distance for S
If the partial one is greater than the best so far

calculation il
abandoned at this point




Admissible Entropy Pruning

* We only need the best shapelet for each class

* For a candidate shapelet

* \We do not need to calculate the distance for each
training sample

« After calculating some training samples, the
upper bound of information gain
(corresponding to the optimistic scenario) < best
candidate shapelet

« Stop calculation for that candidate and try next
candidate

Q& ...
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Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?

i A Winding Dataset C _
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Why Find Motifs?

* Mining association rules in TS requires the discovery of motifs. These
are referred to as primitive shapes and frequent patterns.

* Several TS classifiers work by constructing typical prototypes of each
class. These prototypes may be considered motifs.

 Many TS anomaly detection algorithms consist of modeling normal
behavior with a set of typical shapes (which we see as motifs), and
detecting future patterns that are dissimilar to all typical shapes.



Matrix Profile

* The Matrix Profile (MP) is a data structure that annotates a TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given a time series, T and a desired subsequence length, m.
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Matrix Profile

* For each subsequence we keep only the distance with the closest
nearest nelghbor. set of all set of corresponding

subsequences nearest neighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.
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matrix
profile, P

The matrix profile value at location i is the
distance between ' and its nearest neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each subsequence is
also stored in a vector called matrix profile index.

time
series, T

matrix
profile
index, |

I

m
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It turns out that

192

193 | 194 | 195 | 196

The matrix profile value at location i is the

distance between

and its nearest neighbor
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Matrix Profile

 The MP index allows to find the nearest neighbor to any subsequence in constant time.
* Note that the pointers in the matrix profile index are not necessarily symmetric.

* If A points to B, then B may or may not point to A

* The classic TS motif: the two smallest values in the MP must have the same value, and
their pointers must be mutual.
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How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are anomalies).

Must be an anomaly in the
/ original data, in this region.

We call these Time Series
Discords

W | 1 | | ]

0 500 1000 1500 2000 2500 3000

Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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m
inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf

Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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At the first iteration, a subsequence

is randomly selected from T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between I, and every subsequences from T (time complexity = O(| T|log(|T|)))
We then put the distances in a vector based on the position of the subsequences

3 2 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1

\ The distance between |, and T; (first subsequence) is 3



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between |, and every subsequences from T (time complexity = O(| T|log(|T|)))
We them put the distances in a vector based on the position of the subsequences

3 2 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1

\

Let say | happen to be the third subsequences, therefore
the third value in the distance vector is O




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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in Matrix profile is updated by apply elementwise minimum to
these two vectors
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

A
~\
/|

AN \\WA\“"‘\\VJ*\ AT s /,\, IS UNAASSN ey ““ \\L;Jﬁ\\f A AN //\V\/\ N L /\/ A
3 inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
min Matrix profile is updated by apply elementwise minimum to
these two vectors
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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In the second iteration, we randomly select another subsequence T and it happens to be the 12t
subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Once again, we compute the distance between | and every subsequences of T
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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min i The same elementwise minimum




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We repeat the two steps (distance computation and update) until we have
used every subsequences



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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There are |T| subsequences and the distance computation is O(|T|log(|T]))

The overall time complexity is O(| T|%log(|T|))
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Motif Discovery From Matrix Profile

series, T "

matrix
profile, P

Local minimums are corresponding to motifs



Motif Discovery From Matrix Profile
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* It is sometime useful to
think of time series
subsequences as points in
m-dimensional space.

* In this view, dense regions
in the m-dimensional space
correspond to regions of
the time series that have a
low corresponding MP.
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Motif/Shapelet Summary
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* A shapelet is a pattern/subsequence which
is maximally representative of a class with
respect to a given dataset of TSs.
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