Time Series - Shapelet/Motif Discovery
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Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?
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Why Find Motifs?

* Mining association rules in TS requires the discovery of motifs. These
are referred to as primitive shapes and frequent patterns.

* Several TS classifiers work by constructing typical prototypes of each
class. These prototypes may be considered motifs.

* Many TS anomaly detection algorithms consist of modeling normal
behavior with a set of typical shapes (which we see as motifs), and
detecting future patterns that are dissimilar to all typical shapes.



Matrix Profile

* The Matrix Profile (MP) is a data structure that annotates a TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given a time series, T and a desired subsequence length, m.



Matrix Profile

m We can use sliding window of length m to

extract all subsequences of length m.
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Matrix Profile

m We can then compute the pairwise
distance among these subsequences.
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Matrix Profile

* For each subsequence we keep only the distance with the closest

nearest nelghbor. set of all set of corresponding
subsequences nearest neighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.

time
series, T

matrix
profile, P

The matrix profile value at location i is the
distance between ' and its nearest neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each subsequence is
also stored in a vector called matrix profile index.

:
time
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series, T
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matrix m
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index, |

\ It turns out that ' ‘s nearest neighbor is

192 | 193 | 194 | 195 | 196

The matrix profile value at location i is the
distance between | and its nearest neighbor



Matrix Profile

 The MP index allows to find the nearest neighbor to any subsequence in constant time.
* Note that the pointers in the matrix profile index are not necessarily symmetric.

* If A points to B, then B may or may not point to A

* The classic TS motif: the two smallest values in the MP must have the same value, and
their pointers must be mutual.
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How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are anomalies).

Must be an anomaly in the
/ original data, in this region.

We call these Time Series
Discords
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Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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At the first iteration, a subsequence

is randomly selected from T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We then put the distances in a vector based on the position of the subsequences
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We them put the distances in a vector based on the position of the subsequences
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Let say
the third value in the distance vector is O

happen to be the third subsequences, therefore




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

|
m
inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to
these two vectors
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf
in Matrix profile is updated by apply elementwise minimum to

these two vectors
3 2 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

After we finish to update matrix profile for the first iteration




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1

In the second iteration, we randomly select another subsequence ' and it happens to be the 12t
subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

Once again, we compute the distance between | and every subsequences of T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

3 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min I The same elementwise minimum
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min i The same elementwise minimum
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 | inf | 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min I The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

2 2 1 5 3 4 5 1 2 9 3 4 2 3 4 8 6

min The same elementwise minimum

2 3 1 4 4 3 6 2 1 5 3 2 3 5 9 4




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

We repeat the two steps (distance computation and update) until we have
used every subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

There are |T| subsequences and the distance computation is O(|T|log(|T]))

The overall time complexity is O(| T|2%log(|T]))




Motif Discovery From Matrix Profile

time
series, T
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Local minimums are corresponding to motifs

matrix
profile, P



Motif Discovery From Matrix Profile
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Shapelet



Time Series Classification

* Given a set X of n time series, X = {x;, x,, ..., x,}, each time series has
m ordered values x; = < X;;, X;5, ..., X;, > and a class value c;.

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



Shapelet-based Classification

7 s
T

1. Represent a TS as a vector of Urtica dioica
distances with representative -
subsequences, namely shapelets. Verbena urticifolia

2. Use it as input for machine m
learning classifiers.
Shapelet Dictionary 3 1 W
5.1 #
: 3.2 8.7

0 10 20 30

Does Q have a subsequvﬁe within Leaf Decision T 1.4 7.9
a distance 5.1 of shape ? | €al becision 1ree
/yes/ \no\ 6.7 4.2
0 1 9.2 34
Verbena urticifolia Urtica dioica Verbena urticifolia 3 T -



Time Series Shapelets

e Shapelets are TS subsequences which are

maximally representative of a class. Verbena 0.87

_ ] Urtica  0.34
* Shapelets can provide interpretable results,

which may help domain practitioners
better understand their data.

* Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-
art TS classifiers consider global features.

Verbena urticifolia Urtica dioica



Finding Shapelets

FindingShapeletBF (dataset D, MAXLEN, MINLEN)
1 candidates € GenerateCandidates(D, MAXLEN, MINLEN)
2 bsf gain € 0

3 For each S in candidates

4 gain € CheckCandidate(D, S)

5 If gain > bsf gain

6 bsf gain € gain

7 bsf shapelet € S

8 EndIf

9 EndFor

10 Return bsf shapelet




Generate Candidate

GenerateCandidates (dataset D, MAXLEN, MINLEN)

pool € O
| € MAXLEN
While / > MINLEN
For Tin D
pool € pool U St
EndFor
€< 1-1
EndWhile
Return pool

Sliding a window of size / across all
of the time series objects in the

dataset D, extracts all of the possible
candidates and adds them to the pool
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Extract Subsequences of all Possible Lengths

Candidates Pool

LA ™




Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram € O
For each 7'in D

dist € SubsequenceDist(7, S)

insert 7' into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)
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Distance with a Subsequence

» Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance
function that takes time series T and subsequence S as inputs and returns a
nonnegative value d, which is the distance from T to S.

* SubsequenceDist(T, S) = min(Dist(S, S')), for S' €5;/5/
» where S;/5/is the set of all possible subsequences of T

* Intuitively, it is the distance between S and its best matching location in T.

best —» : N~
matching P i
location :

0 10 20 30 40 50 60 70 80




Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram € O
For each 7'in D

dist € SubsequenceDist(7, S)

insert 7' into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)
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Testing The Utility of a Candidate Shapelet

* Arrange the TSs in the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain
(same as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet

Split Point
candidate S/ plsekan
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Split Point

candidate /" N =
Entropy ! } 4\ } (W

A TS dataset D consists of two classes, A and B.

* Given that the proportion of objects in class A is p(A) and the
proportion of objects in class B is p(B),

* The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

* Given a strategy that divides the D into two subsets D; and D,, the
information remaining in the dataset after splitting is defined by the
weighted average entropy of each subset.

* If the fraction of objects in D, is f(D,;) and in D, is f(D,),
* The total entropy of D after splitting is (D) = f(D,)I(D,) + f(D,)I(D,).



it Poi
candidate S Split Point

N
o e
Information Gain ) 4 }} é (W

Split point

* Given a certain split strategy sp which divides distance from
D into two subsets D; and D,, the entropy shapelet = 5.1
before and after splitting is /(D) and /(D).
* The information gain for this splitting rule is:
* Galn(sp) = I(D) - i\(D) = Shapelet Dictionary /\ ;
- = I(D) - f(D,)I(D,) + f(D)I(D). oo i

Does Q have a subsequence within %3
Leaf Decision Tree

a distance 5.1 of shapem? |
- / \
* We use the distance from T to a shapelet S as yes no_

the splitting rule sp. L 1

Verbena urticifolia Urtica dioica




Problem

MAXLEN

 The total number of candidate is Z Z
(

T|-1+1)

J=MINLEN T .eD

* For each candidate you have to compute the distance between this
candidate and each training sample (space inefficiency)

* For instance
e 200 instances with length 275
» 7,480,200 shapelet candidates



Speedup

* Distance calculations form TSs to shapelet candidates is expensive.
* Reduce the time in two ways

* Distance Early Abandon
* reduce the distance computation time between two TS

* Admissible Entropy Pruning

* reduce the number of distance calculations
SplttPomt

candidate ./
HO N




Distance Early Abandon

* We only need the minimum distance. S— )
location ' Dist= 0.4

e Method

* Keep the best-so-far distance

« Abandon the calculation if the partial 0 10 20 30 40 50 60 70 80
current distance is larger than best-so-far.

* We can avoid to compute the full
distance for S if the partial one is greater
than the best so far

90 100

Dist> 0.4

calculation <~
abandoned at this point

0O 10 20 30 40 50 60 70 8 90 100



Admissible Entropy Pruning

stinging nettles false nettles
* We only need the best shapelet for x/ W N
each class P 4
* For a candidate shapelet h
* We do not need to calculate the 0

distance for each training sample

e After calculating some training
samples, the upper bound of
information gain (corresponding to @
the optimistic scenario) < best
candidate shapelet —

 Stop calculation
* Try next candidate




Motif/Shapelet Summary

* A motif is a repeated
pattern/subsequence in a given TS.

0 W 500 1000 ‘Yo 1500

* A shapelet is a pattern/subsequence
which is maximally representative of
a class with respect to a given
dataset of TSs.

Verbena urticifolia Urtica dioica
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Abstract— The allpairs-similarity-search (or similarity join)
problem has been extensively studied for text and 2 handful of
other datatypes. Horwever, surprisingl litle progress has been

Tl an imilarie fons for i seies subsequences. The kot

8 mof discov
semantic segmentation, density estimation, and contrast set

Kewords—Time Seris; Similariy Joins; Morif Discovery
1. INTRODUCTION
all.pairs-similarity-search (also known as similarity
Jon) el e v vt T ik
Given a colleciion of data objects,refrieve the nearest neighbor
Jorcach object. In the text domain the algorithm has
applications in a host of problems, including community
discovery,  duplicate detection, _collaborative _filering,
clustering, and query refinement [1]. While virtally all text
elgoriions have. anslogies in G sories doa
mining, there has been suprisingly litle progress on Time
Serics subsequences All-Pairs-Similarity-Scarch (TSAPSS).

We believe that this lack of progress stems not from a lnck

terest in this uscful primitive. but from the dauning nature
of the problem. Consider the following example that reflects the
nceds of an industrial collaborator. A boiler at a chemical
re once a minute. After a year, we have a
sager may wish to do
2 iy sejon on s dota with wecklong sbsequnces

(10.080) to discover operating regimmes (sumumer . winter or
light dislle w5, heavy distllse e The abvious nesed 1oop
ot reqiter 152850692060 Fucldenn - disanee

If we assume each one takes 0.0001 seconds.

desktop, even if the data arrival frequency was much faster than

Our algorithm uses an ulra-fast similarity scarch algorithm
un lized Euclidean distance 25 a subroutine
exploiting the overlap between subsequences wsing the classic
Fast Fouricr Transform (FFT) algorithm.

Our method has the following advantages features:
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uning spatial access methods andor hash functions.
i eqites an ncomequenial space veead.

.“,r O(n) with 2 small constant factor.

Vb o st i & ity s, o

:xu:nul\, large datascts we can compute the results in an

anytime fashion. allowing ultea-fast approvimare solut

Having computed the similarity join for a dataset, we can
incrementally update it very efficiently. In many domains

ans we can effectively maintain exact joins on

sreuning data forever

provides full joins, climinating the nced to

spcify a simiray hashold, ich s e il show is
near impossible task in this domain.
Our sgorithn s cmbarmassingly paraliclizabl. both on

put
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ABSTRACT
time series bas been
the past decade. Recent cmpirical evidence has strongly suggested

youd e clsificaion accncy, we o wih o gain e

o e

Shapelos whichaddseses thse mtaons aformally, shapelcs

are tme series subsequences which are in some sease maximally
epresentative of 4 class. As we shall show wilh extensive

empirical evaluations in diverse domains,algorithans based on the

i series shapelet primitives can be interpretable, more accurate

and significantly faste than state-of he-art clasifirs
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Whill the last decade has seen 3 huge interst in time series
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Becue we e defing s slvin e ol we il ke

2e to consider 8 derailed motivating example. Figure 1

P e

(sunging netls) and Verbena uricifolia. These two plants e

commonly confosed. hence the colloguial name “false nctle” for
Verbona wiciioha
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seprescntations have been successfully used for the
e e g o ovticr deecion of shapes n ecent
‘years [8]. Howeser, here w shbor
Cnofict il cihr the rtaon invasion) Euchidean disance of
Dynamic Time Warping (DTW) distance does not significanty
ouperform random _guessing. The reason for the poor
pecformance of these otherwise very competitve classifiers seems
1o be duc to the fct that the data s somewhat noisy (ic. insect
bites, and different stem length). and this noise s enough 1o
swamp the subtle differences in the shapes.



