Explainability

- Explainable-AI explores and investigates methods to produce or complement AI models to make accessible and interpretable the internal logic and the outcome of the algorithms, making such process understandable by humans.
- Explicability, understood as incorporating both intelligibility ("how does it work?") for non-experts, e.g., patients or business customers, and for experts, e.g., product designers or engineers) and accountability ("who is responsible for").
- Part of core principles for ethical AI:

Motivating Examples

Opinion

OP-ED CONTRIBUTOR

When a Computer Program Keeps You in Jail

The New Hork Times

- Criminal Justice
 - People wrongly denied
 - Recidivism prediction
 - Unfair Police dispatch
- Finance:
 - Credit scoring, loan approval
 - Insurance quotes
- Healthcare
 - AI as 3^{rd-}party actor in physician patient relationship
 - Learning must be done with available data: cannot randomize cares given to patients!
 - Must validate models before use.

The Big Read Artificial intelligence (+ Add to myFT

Insurance: Robots learn the business of covering risk

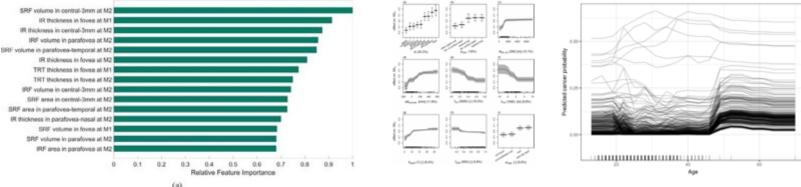
Stanford MEDICINE News Center

🖂 Email 🔶 💕 Tweet

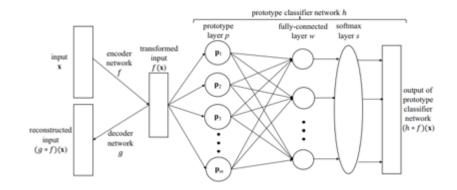
Researchers say use of artificial intelligence in medicine raises ethical questions

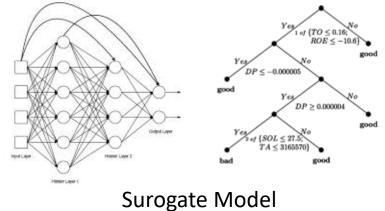
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

• Machine Learning



Feature Importance, Partial Dependence Plot, Individual Conditional Expectation

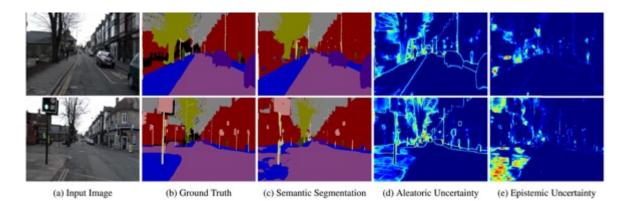




Auto-encoder

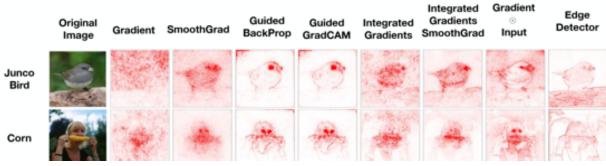
Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-Based Reasoning Through Prototypes: A Neural Network That Explains Its Predictions. AAAI 2018: 3530-3537 Mark Craven, Jude W. Shavlik: Extracting Tree-Structured Representations of Trained Networks. NIPS 1995: 24-30

- Machine Learning
- Computer Vision



Uncertainty Map

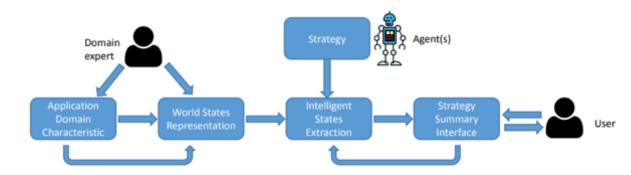
Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS 2017: 5580-5590



Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been Kim: Sanity Checks for Saliency Maps. NeurIPS 2018: 9525-9536

- Machine Learning
- Computer Vision
- Multi-agent Systems



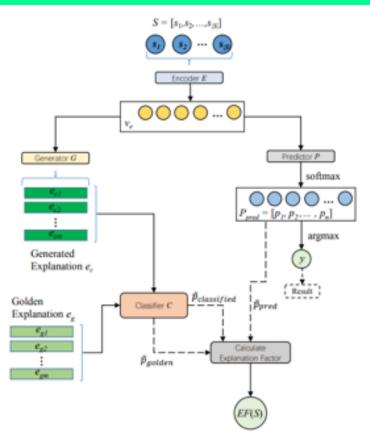
Agent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207

Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39

- Machine Learning
- Computer Vision
- Multi-agent Systems
- NLP



Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

Role-based Interpretability

"Is the explanation interpretable?" \rightarrow "To whom is the explanation interpretable?" No Universally Interpretable Explanations!

• End users "Am I being treated fairly?"

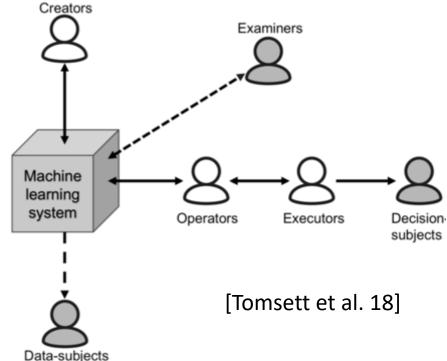
"Can I contest the decision?"

"What could I do differently to get a positive outcome?"

- Engineers, data scientists: "Is my system working as designed?"
- Regulators " Is it compliant?"

An ideal explainer should model the *user* background.

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]



Summarizing: the Need to Explain comes from ...

• User Acceptance & Trust

[Lipton 2016, Ribeiro 2016, Weld and Bansal 2018]

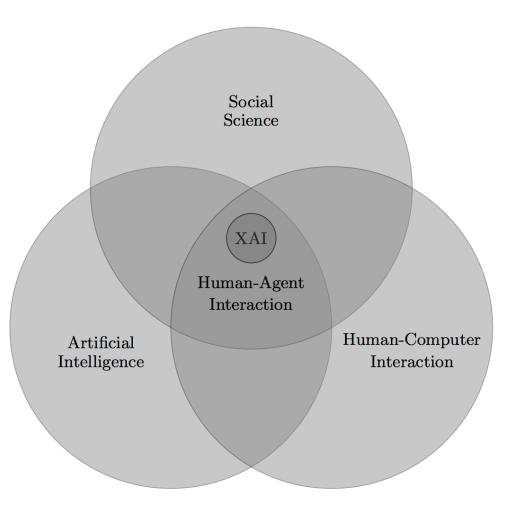
- Legal
 - Conformance to ethical standards, fairness
 - Right to be informed
 - Contestable decisions
- Explanatory Debugging
 - Flawed performance metrics
 - Inadequate features
 - Distributional drift

[Goodman and Flaxman 2016, Wachter 2017]

[Kulesza et al. 2014, Weld and Bansal 2018]

XAI is Interdisciplinary

- For millennia, philosophers have asked the questions about what constitutes an explanation, what is the function of explanations, and what are their structure
- [Tim Miller 2018]



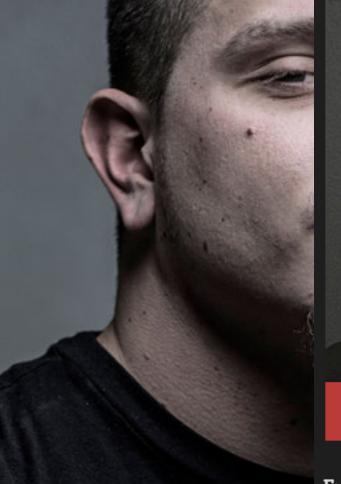
What is a Black Box Model?

A **black box** is a model, whose internals are either unknown to the observer or they are known but uninterpretable by humans.

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). *A survey of methods for explaining black box models*. *ACM Computing Surveys (CSUR)*, *51*(5), 93.

Needs For Interpretable Models

COMPAS recidivism black bias



DYLAN FUGETT

Prior Offense 1 attempted burglary

Subsequent Offenses 3 drug possessions

BERNARD PARKER

Prior Offense 1 resisting arrest without violence

Subsequent Offenses None

LOW RISK

HIGH RISK

10

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.

3

Military tank classification depends on the background

Interpretable, Explainable and Comprehensible Models

Interpretability

- To *interpret* means to give or provide the meaning or to explain and present in understandable terms some concepts.
- In data mining and machine learning, interpretability is the *ability to explain* or to provide the meaning *in understandable terms to a human*.

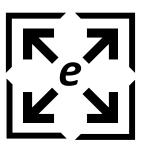
- <u>https://www.merriam-webster.com/</u>

- Finale Doshi-Velez and Been Kim. 2017. *Towards a rigorous science of interpretable machine learning*. arXiv:1702.08608v2.

Dimensions of Interpretability

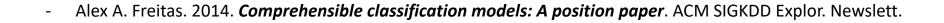
• Global and Local Interpretability:

- *Global*: understanding the whole logic of a model
- Local: understanding only the reasons for a specific decision
- *Time Limitation*: the time that the user can spend for understanding an explanation.
- Nature of User Expertise: users of a predictive model may have different background knowledge and experience in the task. The nature of the user expertise is a key aspect for interpretability of a model.



Desiderata of an Interpretable Model

- *Interpretability (or* comprehensibility): to which extent the model and/or its predictions are human understandable. Is measured with the *complexity* of the model.
- *Fidelity*: to which extent the model imitate a black-box predictor.
- Accuracy: to which extent the model predicts unseen instances.



Desiderata of an Interpretable Model

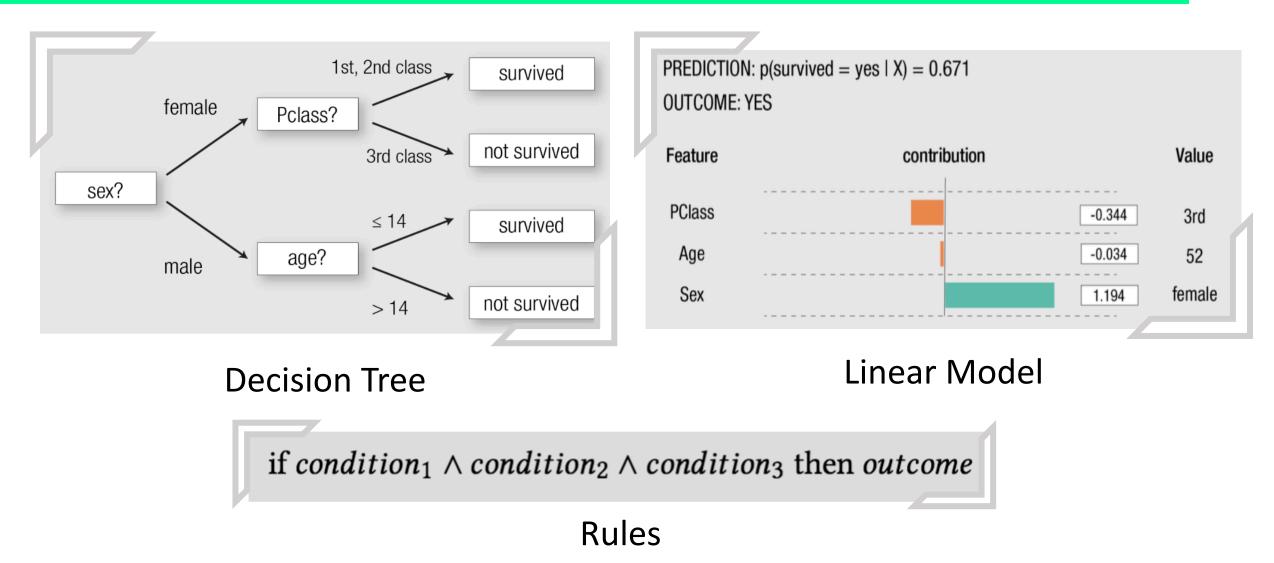
- *Fairness*: the model guarantees the protection of groups against discrimination.
- *Privacy*: the model does not reveal sensitive information about people.
- *Respect Monotonicity*: the increase of the values of an attribute either increase or decrease in a monotonic way the probability of a record of being member of a class.
- Usability: an interactive and queryable explanation is more usable than a textual and fixed explanation.

- Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
- Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. *A comprehensive review on privacy preserving data mining*. SpringerPlus .
- Alex A. Freitas. 2014. *Comprehensible classification models: A position paper*. ACM SIGKDD Explor. Newslett.

Desiderata of an Interpretable Model

- **Reliability and Robustness**: the interpretable model should maintain high levels of performance independently from small variations of the parameters or of the input data.
- **Causality:** controlled changes in the input due to a perturbation should affect the model behavior.
- *Scalability:* the interpretable model should be able to scale to large input data with large input spaces.
- Generality: the model should not require special training or restrictions.

Recognized Interpretable Models



Complexity

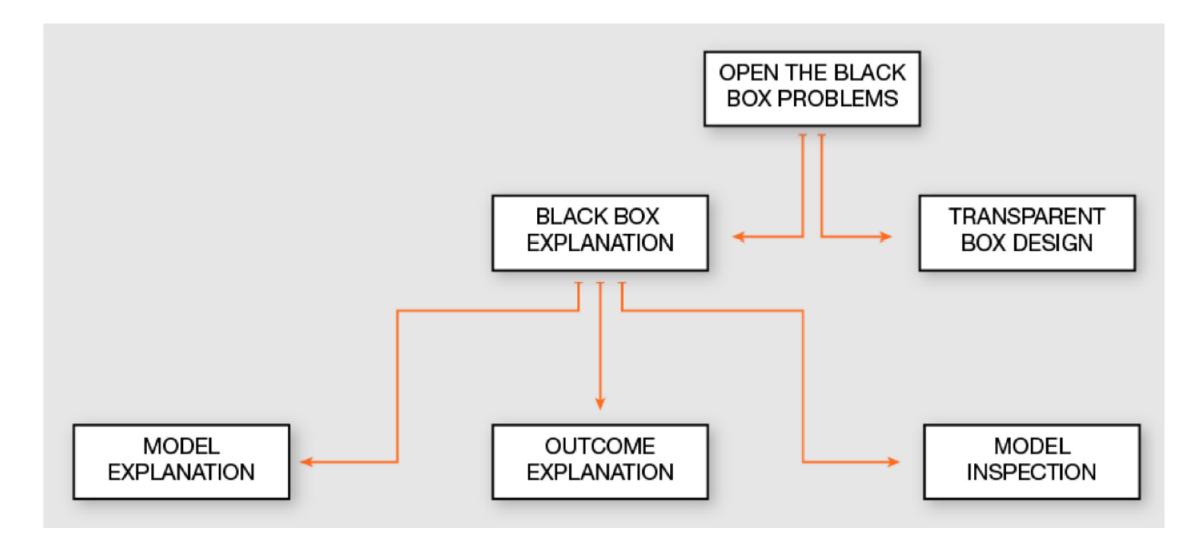
• Opposed to *interpretability*.

- Linear Model: number of non zero weights in the model.
- Is only related to the model and not to the training data that is unknown.
 - Rule: number of attribute-value pairs in condition.
- Generally estimated with a rough approximation related to the *size* of the interpretable model.
 Decision Tree: estimating the complexity of a tree can be hard.
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. *Why should i trust you?: Explaining the predictions of any classifier*. KDD.
- Houtao Deng. 2014. *Interpreting tree ensembles with intrees*. arXiv preprint arXiv:1408.5456.
- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.

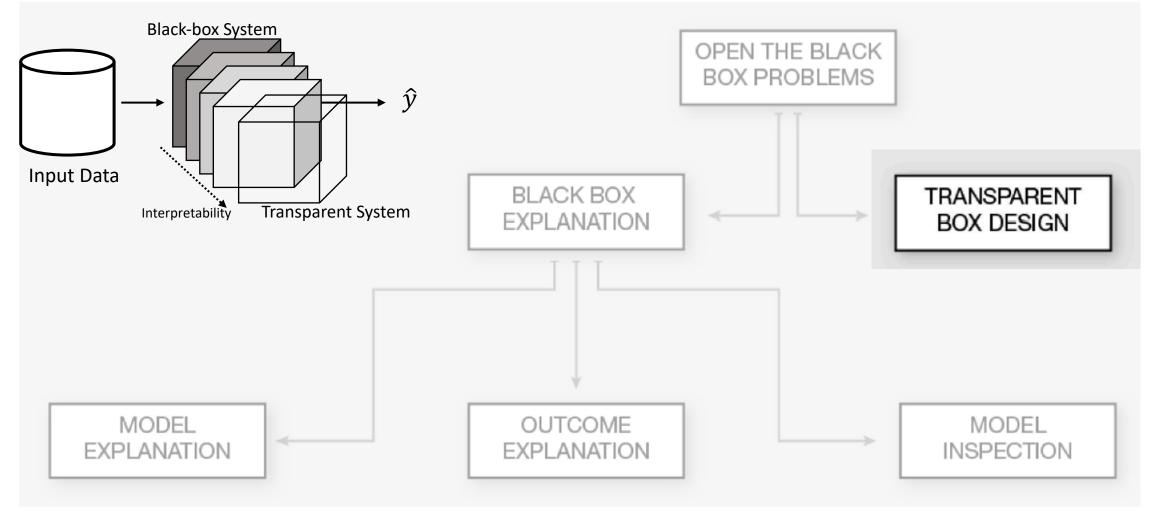


Open the Black Box Problems

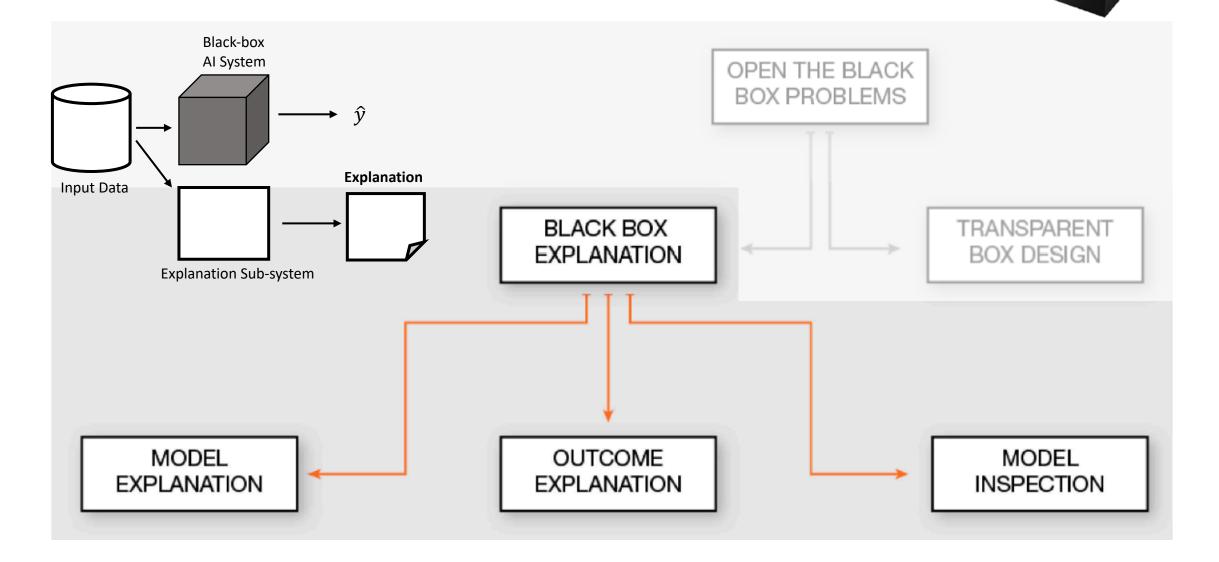
Problems Taxonomy



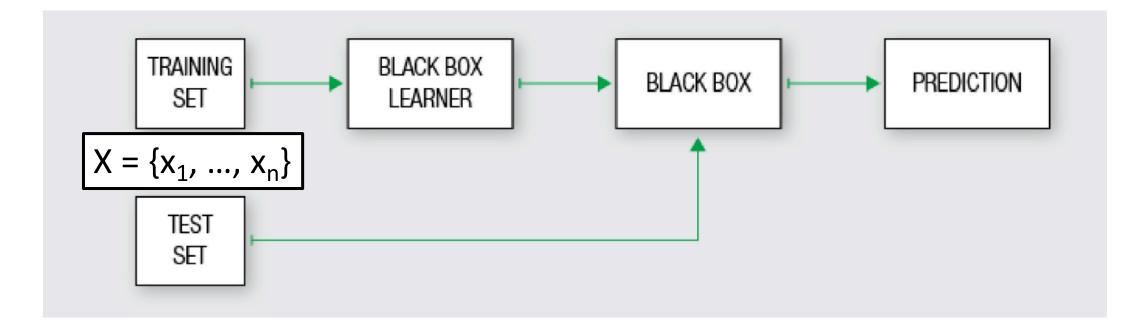
XbD – eXplanation by Design



BBX - Black Box eXplanation

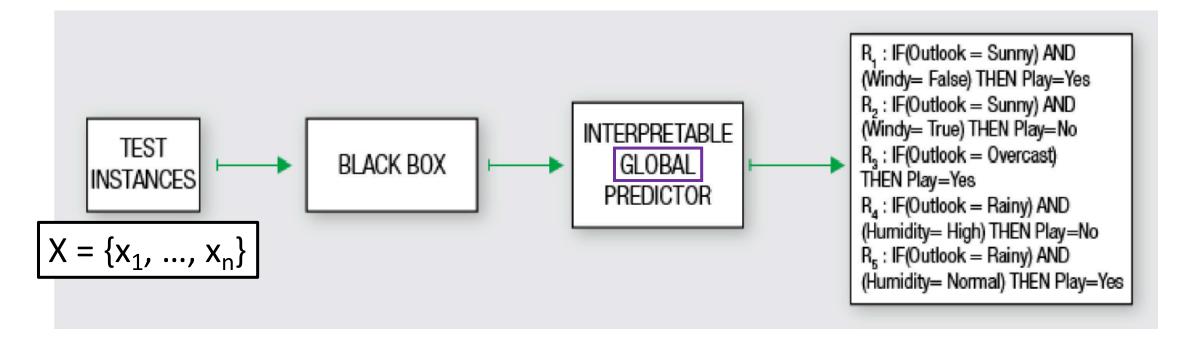


Classification Problem



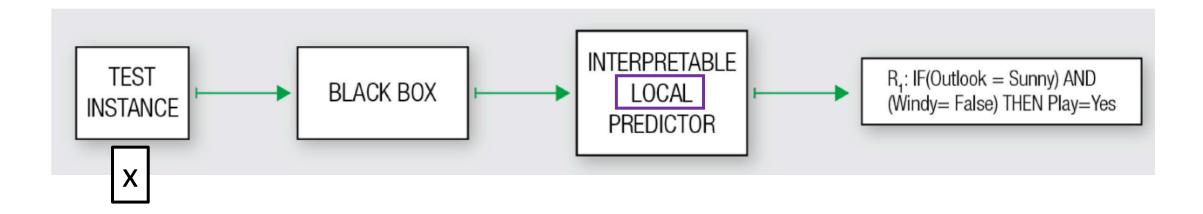
Model Explanation Problem

Provide an interpretable model able to mimic the *overall logic/behavior* of the black box and to explain its logic.



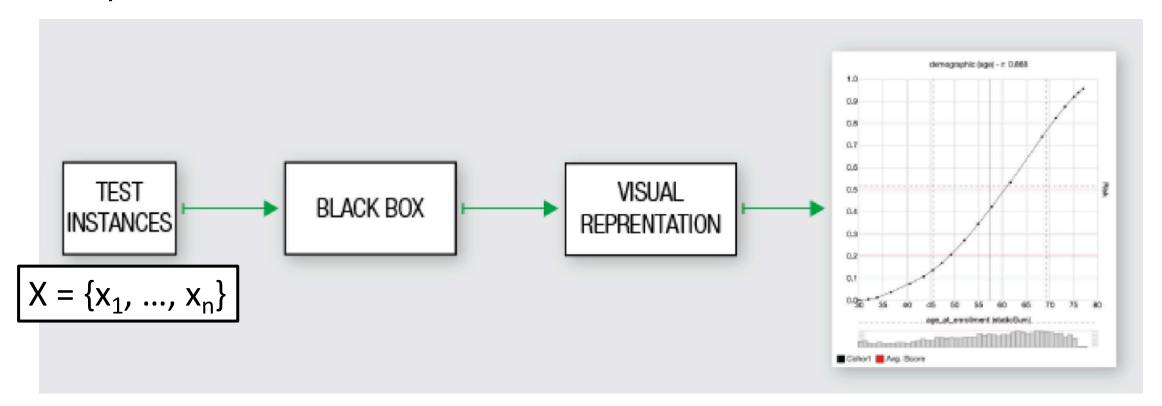
Outcome Explanation Problem

Provide an interpretable outcome, i.e., an *explanation* for the outcome of the black box for a *single instance*.



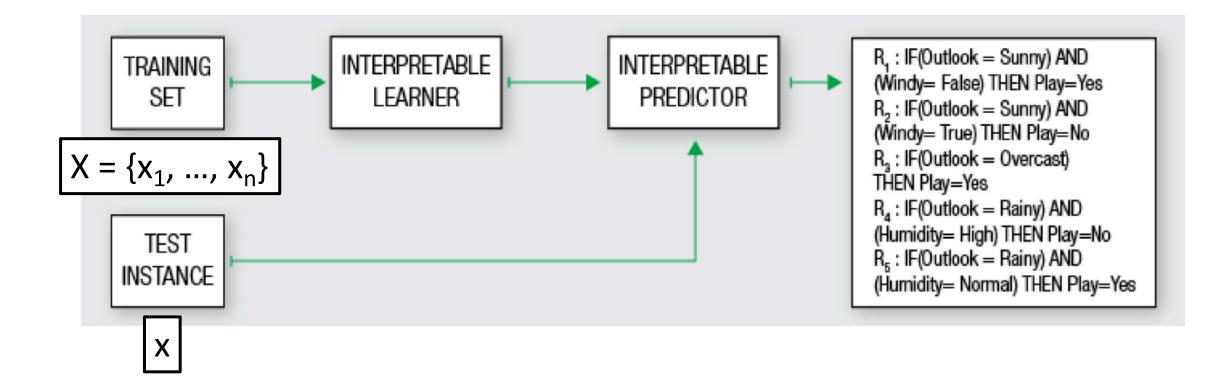
Model Inspection Problem

Provide a representation (visual or textual) for understanding either how the black box model works or why the black box returns certain predictions more likely than others.

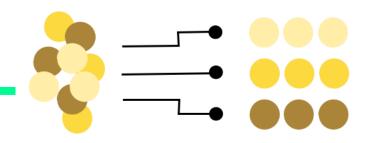


Transparent Box Design Problem

Provide a model which is locally or globally interpretable on its own.

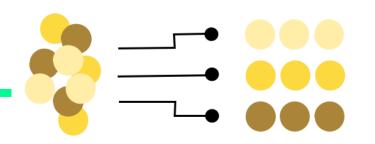


Categorization



- The type of *problem*
- The type of **black box model** that the explanator is able to open
- The type of *data* used as input by the black box model
- The type of *explanator* adopted to open the black box

Black Boxes



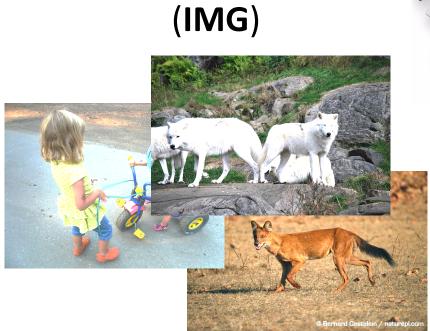
- Neural Network (NN)
- Tree Ensemble (TE)
- Support Vector Machine (SVM)
- Deep Neural Network (**DNN**)

Types of Data

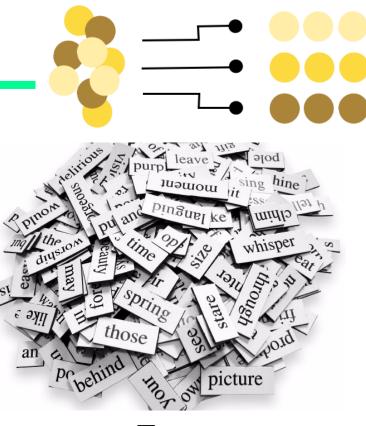
Table of baby-name data (baby-2010.csv)

name	rank	gender	year -	Field names
Jacob	1	boy	2010 🖣	One row
Isabella	1	girl	2010	(4 fields)
Ethan	2	boy	2010	
Sophia	2	girl	2010	
Michael	3	boy	2010	
	rows told			-

Tabular (**TAB**)



Images



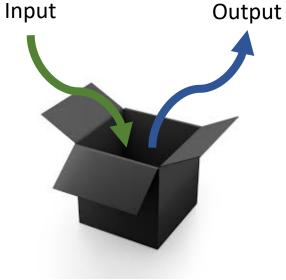
Text (**TXT**)

Explanators

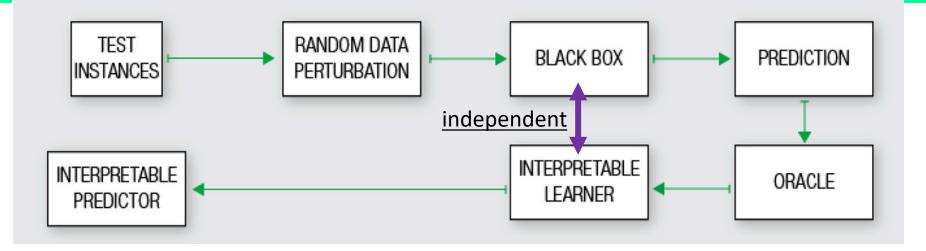
- Decision Tree (DT)
- Decision Rules (DR)
- Features Importance (FI)
- Saliency Maps (SM)
- Sensitivity Analysis (SA)
- Partial Dependence Plot (PDP)
- Prototype Selection (PS)
- Activation Maximization (AM)

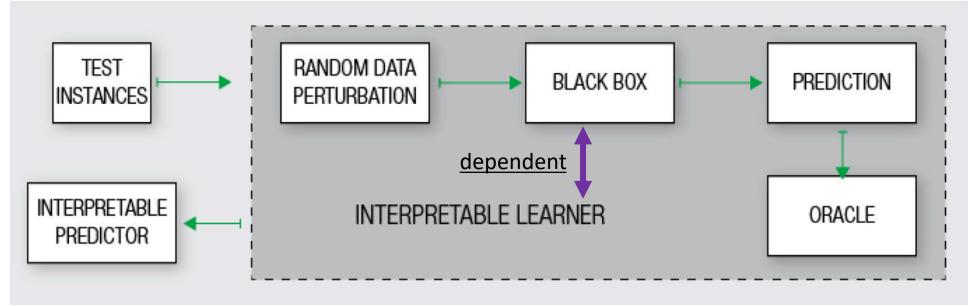
Reverse Engineering

- The name comes from the fact that we can only *observe* the *input* and *output* of the black box.
- Possible actions are:
 - choice of a particular comprehensible predictor
 - querying/auditing the black box with input records created in a controlled way using *random perturbations* w.r.t. a certain prior knowledge (e.g. train or test)
- It can be *generalizable or not*:
 - Model-Agnostic
 - Model-Specific



Model-Agnostic vs Model-Specific



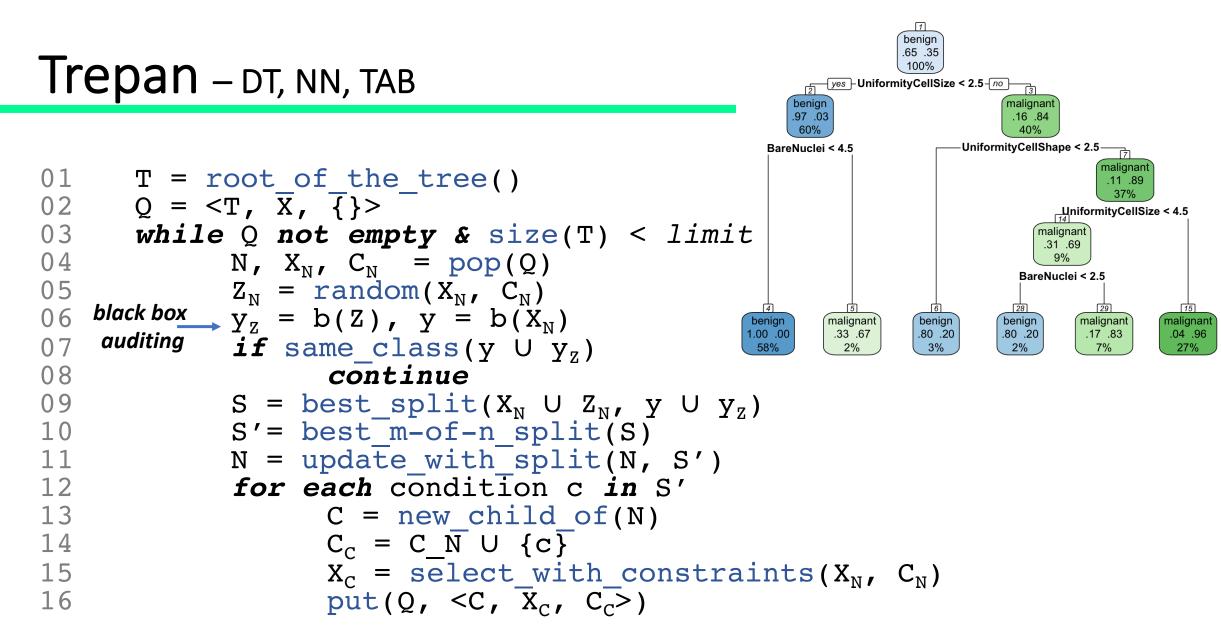


Ague	they.	Autors	lear.	4 to leave of the	Black Bo	Dara Jepe	General	the stide	E-entroles	Code	Dataset
Trepan	[22]	Craven et al.	1996	DT	NN	TAB	\checkmark				\checkmark
_	[57]	Krishnan et al.	1999	DT	NN	TAB	\checkmark		\checkmark		\checkmark
DecText	[12]	Boz	2002	DT	NN	TAB	\checkmark	\checkmark			\checkmark
GPDT	[46]	Johansson et al.	2009	DT	NN	TAB	\checkmark	\checkmark	\checkmark		\checkmark
Tree Metrics	[17]	Chipman et al.	1998	DT	TE	TAB					\checkmark
CCM	[26]	Domingos et al.	1998	DT	TE	TAB	\checkmark	\checkmark			\checkmark
-	[34]	Gibbons et al.	2013	DT	TE	TAB	\checkmark	\checkmark			
STA	[140]	Zhou et al.	2016	DT	TE	TAB		\checkmark			
CDT	[104]	Schetinin et al.	2007	DT	TE	TAB			\checkmark		
_	[38]	Hara et al.	2016	DT	TE	TAB		\checkmark	\checkmark		1
TSP	[117]	Tan et al.	2016	$-P^{T}$		TAB.		· - -			\checkmark
Conj Rules	[21]	Tan et al. CraverSO\	/Ing	Ine	IVIOC	Iel Ex	xpia	nati	on P	rop	iem
G-REX	[44]	Johansson et al.	2003	DR	NN	TAB	\checkmark	\checkmark	\checkmark		
REFNE	[141]	Zhou et al.	2003	DR	NN	TAB	✓	✓	\checkmark		\checkmark
RxREN	[6]	Augasta et al.	2012	DR	NN	TAB		\checkmark	\checkmark		\checkmark

Global Model Explainers

- Explanator: DT
 - Black Box: NN, TE
 - Data Type: TAB
- Explanator: DR
 - Black Box: NN, SVM, TE
 - Data Type: TAB
- Explanator: FI
 - Black Box: AGN
 - Data Type: TAB

 $\begin{array}{l} R_1: IF(Outlook = Sunny) \mbox{ AND } \\ (Windy= False) \mbox{ THEN Play=Yes } \\ R_2: IF(Outlook = Sunny) \mbox{ AND } \\ (Windy= True) \mbox{ THEN Play=No } \\ R_3: IF(Outlook = Overcast) \\ \mbox{ THEN Play=Yes } \\ R_4: IF(Outlook = Rainy) \mbox{ AND } \\ (Humidity= High) \mbox{ THEN Play=No } \\ R_5: IF(Outlook = Rainy) \mbox{ AND } \\ (Humidity= Normal) \mbox{ THEN Play=Yes } \end{array}$



Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

Valle	the f	Anthors	tear.	Etolenekor	Black B	Dara Ibe	General	thendony	E annales	ool Ool	Dataset
-	[134]	Xu et al.	2015	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
_	[30]	Fong et al.	2017	SM	DNN	IMG			\checkmark		
CAM	[139]	Zhou et al.	2016	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
Grad-CAM	[106]	Selvaraju et al.	2016	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
_	[109]	Simonian et al.	2013	SM	DNN	IMG			\checkmark		\checkmark
PWD	[7]	Bach et al.	2015	SM	DNN	IMG			\checkmark		\checkmark
_	[113]	Sturm et al.	2016	SM	DNN	IMG			\checkmark		\checkmark
DTD	[78]	Montavon et al.	2017	SM	DNN	IMG			\checkmark		\checkmark
DeapLIFT	[107]	Shrikumar et al.	2017	FI	DNN	ANY			\checkmark	\checkmark	
СР	[6 <u>4]</u>	Landecker et al.	2013	SM	NN	IMG			\checkmark		
– VBP	[143] [11]	Solvin	g	he Oi		me E	xpla	nati	on P	rob	lem
v Dr		Laistal	0016	SM		TVT					
- EvalainD	[6 <mark>5]</mark>	Poulin et al.	2010	FI	SVM	TAB					
ExplainD	[89]						1	v	V		1
-	[29]	Strumbelj et al.	2010	FI	AGN	TAB	\checkmark	\checkmark	\checkmark		✓

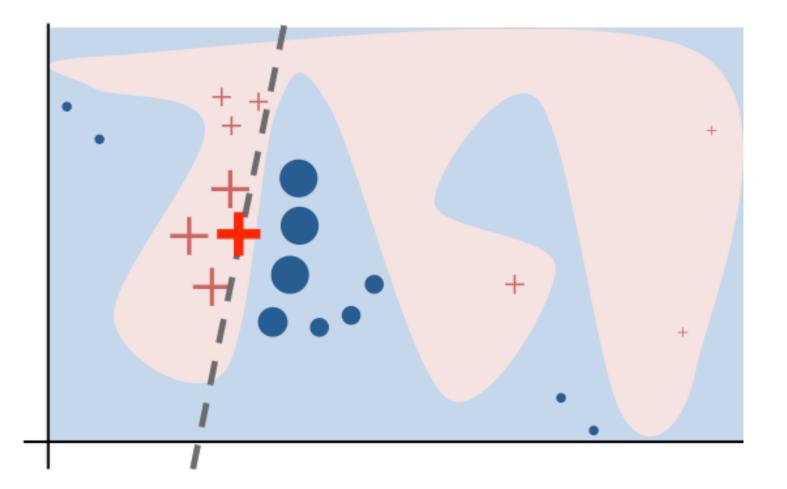
Local Model Explainers

- Explanator: SM
 - Black Box: DNN, NN
 - Data Type: IMG
- Explanator: FI
 - Black Box: DNN, SVM
 - Data Type: ANY
- Explanator: DT
 - Black Box: ANY
 - Data Type: TAB

R₁: IF(Outlook = Sunny) AND (Windy= False) THEN Play=Yes

Local Explanation

- The overall decision boundary is complex
- In the neighborhood of a single decision, the boundary is simple
- A single decision can be explained by auditing the black box around the given instance and learning a *local* decision.



LIME – FI, AGN, ANY

- LIME *turns* an image x to a vector x' of interpretable superpixels expressing presence/absence.
- It generates a synthetic neighborhood Z by randomly perturbing x' and labels them with the black box.
- It *trains* a linear regression model (interpretable and locally faithful) and assigns a weight to each superpixel.

LIME – tab data

- LIME does not really generate images with different information: it randomly removes some superpixels, i.e. it suppresses the presence of an information rather than modifying it.
- On tabular data LIME generates the neighborhood by changing the feature values with other values of the domain.

x = {age=24, sex=male, income=1000} (x = x')

z = {age=30 , sex=male, income=800} (z = z')

LORE – DR, AGN, TAB

- 01 x instance to explain
- 02 $Z_{=} = geneticNeighborhood(x, fitness_, N/2)$
- 03 $Z_{\neq} = geneticNeighborhood(x, fitness_{\neq}, N/2)$

05
$$c = buildTree(Z, b(Z))$$
 auditing

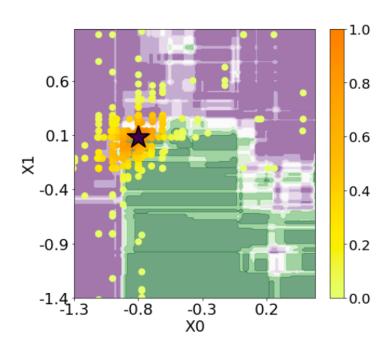
06
$$r = (p \rightarrow y) = extractRule(c, x)$$

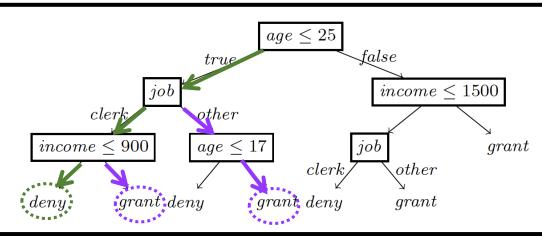
- 07 $\phi = extractCounterfactual(c, r, x)$
- 08 return $e = \langle r, \phi \rangle$

 $r = {age \le 25, job = clerk, income \le 900} \rightarrow deny$

 $\Phi = \{(\{income > 900\} -> grant), \\ (\{17 \le age < 25, job = other\} -> grant)\}$

Pedreschi, Franco Turini, **f black box decision**

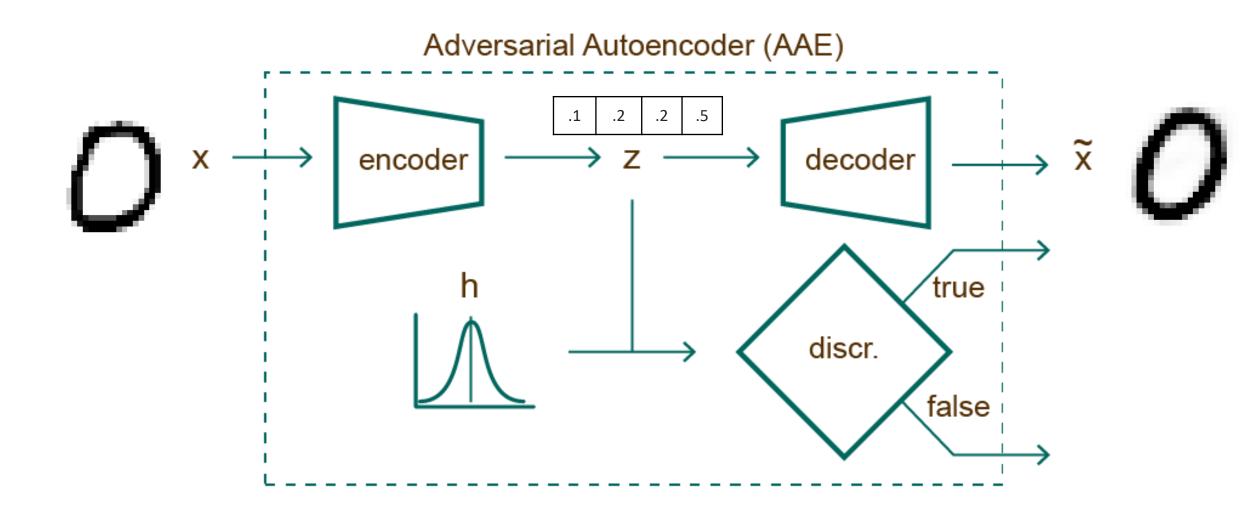


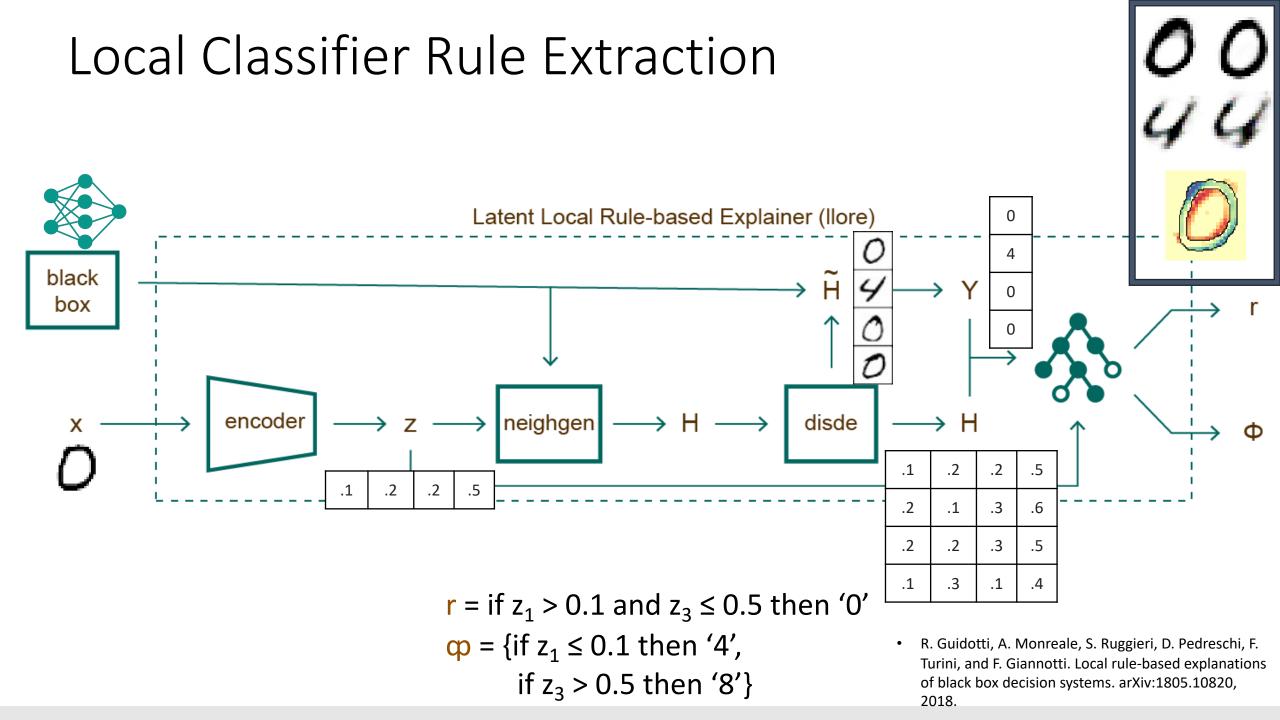


Adversarial Black box Explainer generating Latent Exemplars

- Explaining image classification
- Solving the drawback of LIME
- Exploit adversarial autoencoders
- Providing explanations based on examplars and counter examplars

Background - Adversarial Autoencoder

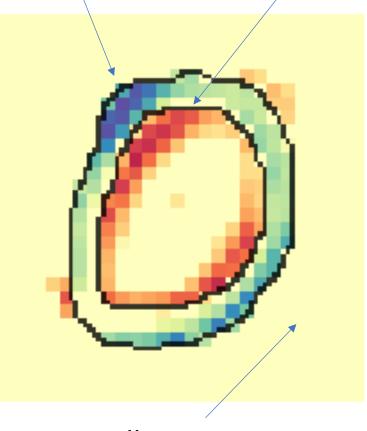




Saliency Map from Exemplars

- The saliency map s highlights areas of x that contribute to b(x) and that push it to ≠ b(x).
- It is obtained as follows:
 - pixel-to-pixel-difference between x and each exemplar in H
 - each pixel of *s* is the median value of the differences calculated for that pixel.

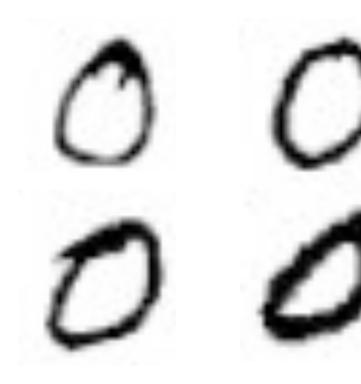
Red/Blue means consistent difference "variable area"



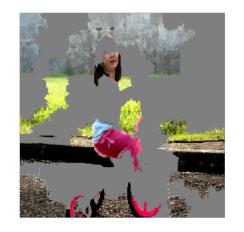
Yellow means no difference "no change area"

ABELE vs LIME Neighborhood

• ABELE



• LIME



Saliency Map Comparison

• mnist

trouser abele b(x)=9abele lime sal elrp grad intg (B) C aj C. abele lime abele b(x)=0elrp coat sal grad intg abele b(x)=4 abele lime elrp boot sal intg grad

• fashion

lime

lime

lime

sal

sal

sal

intg

intg

intg

grad

grad

grad

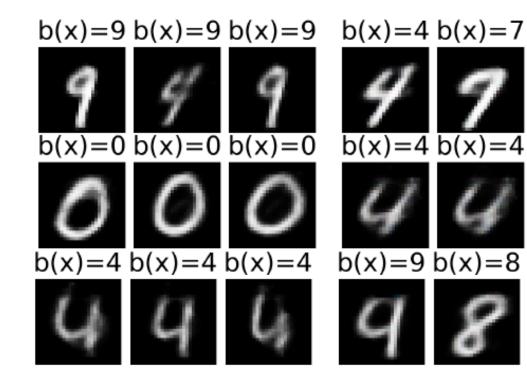
elrp

elrp

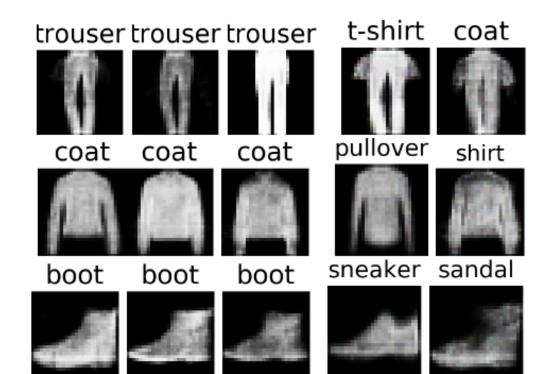
elrp

Exemplars and Counter-Exemplars

• mnist

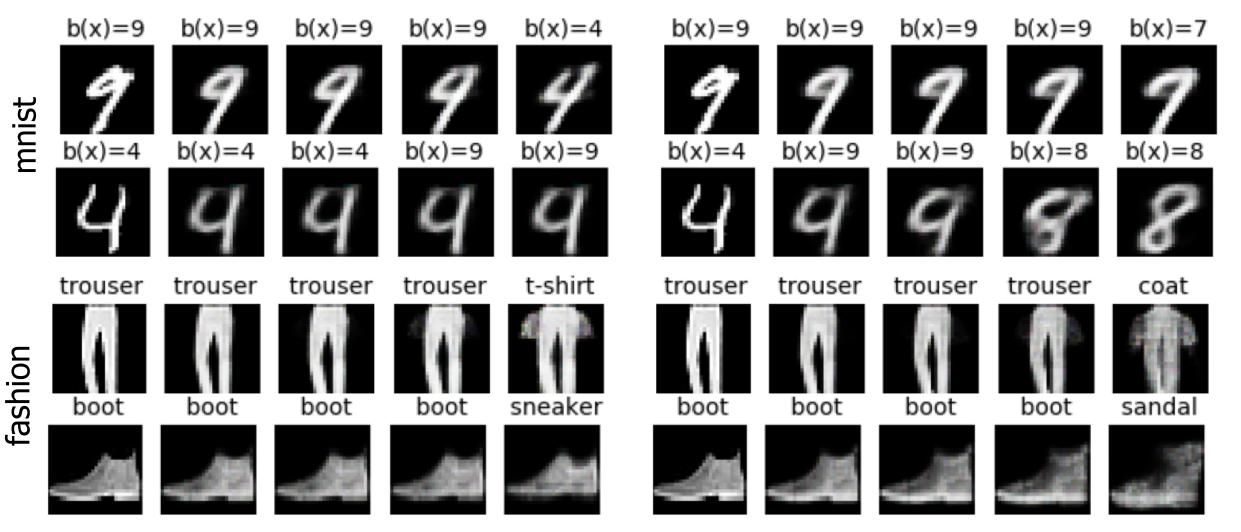


• fashion

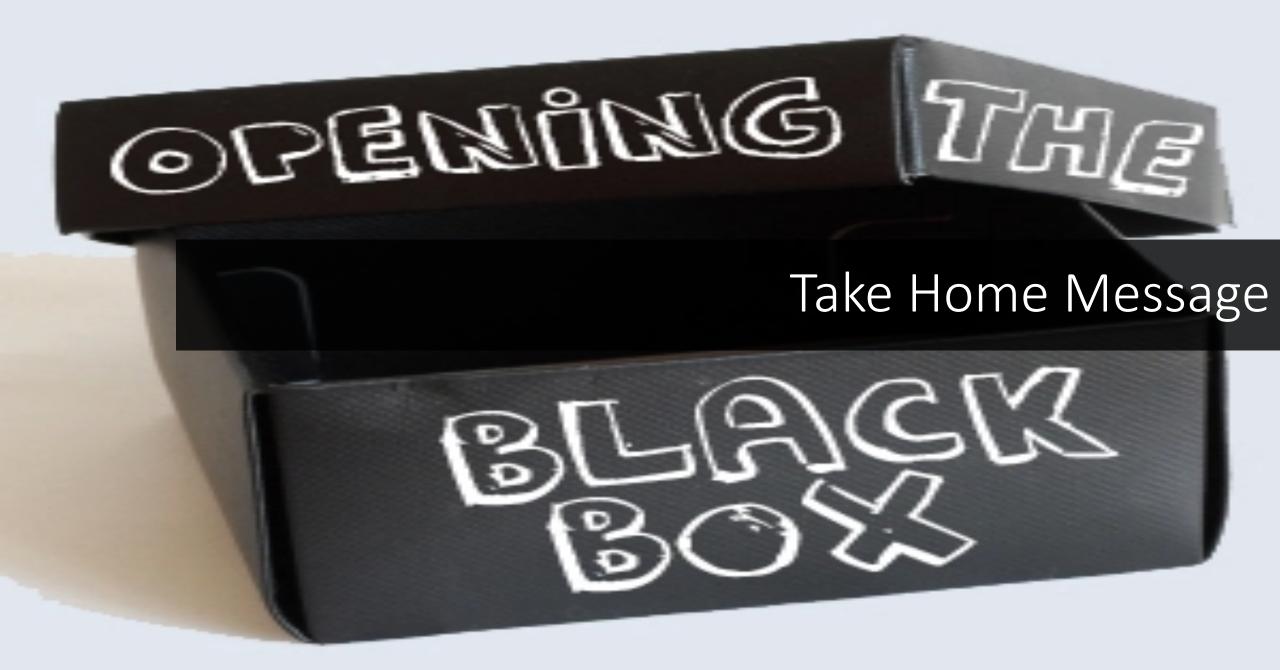


From Image to Counter-Exemplar

 T. Spinner et al. Towards an interpretable latent space: an intuitive comparison of autoencoders with variational autoencoders. In IEEE VIS 2018, 2018.



ECML-PKDD 2019, 16-20 September, Wurzburg



Take-Home Messages

- Explainable AI is motivated by real-world application of AI
- Not a new problem a reformulation of past research challenges in AI
- Multi-disciplinary: multiple AI fields, HCI, social sciences (multiple definitions)
- In Machine Learning:
 - Transparent design or post-hoc explanation?
 - Background knowledge matters!
 - We can scale-up symbolic reasoning by coupling it with representation learning on graphs.
- In AI (in general): many interesting / complementary approaches

Open The Black Box!

- **To empower** individual against undesired effects of automated decision making
- To reveal and protect new vulnerabilities
- To implement the "right of explanation"
- To improve industrial standards for developing Alpowered products, increasing the trust of companies and consumers
- To help people make better decisions
- *To align* algorithms with human values
- To preserve (and expand) human autonomy

Open Research Questions

- There is *no agreement* on *what an explanation is*
- There is **not a formalism** for **explanations**
- There is *no work* that seriously addresses the problem of *quantifying* the grade of *comprehensibility* of an explanation for humans
- Is it possible to join *local* explanations to build a *globally* interpretable model?
- What happens when black box make decision in presence of *latent features*?
- What if there is a *cost* for querying a black box?

References

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), 93
- Finale Doshi-Velez and Been Kim. 2017. *Towards a rigorous science of interpretable machine learning*. arXiv:1702.08608v2
- Alex A. Freitas. 2014. *Comprehensible classification models: A position paper*. ACM SIGKDD Explor. Newslett.
- Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
- Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on privacy preserving data mining. SpringerPlus
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
- Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
- Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

References

- M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012. Reverse engineering the neural networks for rule extraction in classification problems. NPL
- Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, and Fosca Giannotti. 2018. Local rule-based explanations of black box decision systems. arXiv preprint arXiv:1805.10820
- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).
- Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data mining models using sensitivity analysis. CIDM.
- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).
- Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331–335
- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.