# Data Understanding

Anna Monreale Computer Science Department

Introduction to Data Mining, 2<sup>nd</sup> Edition Chapter I & Data Exploration (Additional Resources)





# Getting To Know Your Data

- For preparing data for data mining task it is essential to have an overall picture of your data
- Gain insight in your data
  - with respect to your project goals
  - and general to understand properties
- Find answers to the questions
  - What kind of attributes do we have?
  - How is the data quality?
  - Does a visualization helps?
  - Are attributes correlated?
  - What about outliers?
  - How are missing values handled?
  - Do we need to extract other attributes



# Which is the type of data?





## Types of data sets

- Record
  - Data Matrix
  - Document Data
  - Transaction Data
- Graph
  - World Wide Web
  - Molecular Structures
- Ordered
  - Spatial Data
  - Temporal Data
  - Sequential Data
  - Genetic Sequence Data



#### What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
  - Examples: eye color of a person, temperature, etc.
  - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an **object**
  - Object is also known as record, point, case, sample, entity, or instance

#### **Attributes**

| (               | Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |  |  |
|-----------------|-----|--------|-------------------|-------------------|-------|--|--|
|                 | 1   | Yes    | Single            | 125K              | No    |  |  |
|                 | 2   | No     | Married           | 100K              | No    |  |  |
|                 | 3   | No     | Single            | 70K               | No    |  |  |
|                 | 4   | Yes    | Married           | 120K              | No    |  |  |
| /               | 5   | No     | Divorced          | 95K               | Yes   |  |  |
|                 | 6   | No     | Married           | 60K               | No    |  |  |
|                 | 7   | Yes    | Divorced          | 220K              | No    |  |  |
|                 | 8   | No     | Single            | 85K               | Yes   |  |  |
|                 | 9   | No     | Married           | 75K               | No    |  |  |
| $\overline{\ }$ | 10  | No     | Single            | 90K               | Yes   |  |  |



#### Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

| Projection<br>of x Load | Projection<br>of y load | Distance | Load | Thickness |
|-------------------------|-------------------------|----------|------|-----------|
| 10.23                   | 5.27                    | 15.22    | 2.7  | 1.2       |
| 12.65                   | 6.25                    | 16.22    | 2.2  | 1.1       |



#### **Document** Data

- Each document becomes a 'term' vector
  - Each term is a component (attribute) of the vector
  - The value of each component is the number of times the corresponding term occurs in the document.

|            | team | coach | play | ball | score | game | win | lost | timeout | season |
|------------|------|-------|------|------|-------|------|-----|------|---------|--------|
| Document 1 | 3    | 0     | 5    | 0    | 2     | 6    | 0   | 2    | 0       | 2      |
| Document 2 | 0    | 7     | 0    | 2    | 1     | 0    | 0   | 3    | 0       | 0      |
| Document 3 | 0    | 1     | 0    | 0    | 1     | 2    | 2   | 0    | 3       | 0      |



#### Transaction Data

- A special type of record data, where
  - Each record (transaction) involves a set of items.
  - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |



### Graph Data

• Examples: Generic graph, a molecule, and webpages





### Ordered Data

- Sequences of transactions
  - **Items/Events**

(AB) (D) (CE) (BD) (C) (E) (CD) (B) (AE)





An element of the sequence





#### **Ordered** Data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCGCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG



#### Ordered Data

Spatio-Temporal Data

Jan

#### Average Monthly Temperature of land and ocean







# Types of Attributes

- There are different types of attributes
  - Nominal/Categorical: attribute values in a finite domain, categories, "name of things"
    - Examples: ID numbers, eye color, zip codes
  - Binary: Nominal attribute with only 2 states (0 and 1)
    - **Symmetric binary**: both outcomes equally important (e.g., gender)
    - Asymmetric binary: outcomes not equally important. (e.g., medical test positive vs. negative) The convention is to assign 1 to most important outcome (e.g., having cancer)
  - Ordinal: finite domain with a meangniful ordering on the domain
    - **Examples**: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}



# Types of Attributes

- Numeric: quantity (integer or real-valued)
  - Interval-Scaled
    - Measured on a scale of equal-sized units
    - Values have order
  - **Examples**: calendar dates, temperatures in Celsius
- Ratio-Scaled: We can speak of values as being an order of magnitude larger than the unit of measurement
  - **Examples**: length, counts, elapsed time (e.g., time to run a race)
  - A baseball game lasting 3 hours is 50% longer than a game lasting 2 hours.



#### Discrete and Continuous Attributes

- Discrete Attribute
  - Has only a finite or countably infinite set of values
  - Examples: zip codes, counts, or the set of words in a collection of documents
  - Often represented as integer variables.
  - Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
  - Has real numbers as attribute values
  - **Examples**: temperature, height, or weight.
  - Practically, real values can only be measured and represented using a finite number of digits.
  - Continuous attributes are typically represented as floating-point variables.



### **Properties of Attribute Values**

The type of an attribute depends on which of the following properties/operations it possesses:

- Distinctness: =  $\neq$
- Order: < >
- Differences are + meaningful :
- Ratios are \* / meaningful
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & meaningful differences
- Ratio attribute: all 4 properties/operations



|                     | Attribute<br>Type | Description                                                                            | Examples                                                                                | Operations                                                                               |
|---------------------|-------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| gorical<br>litative | Nominal           | Nominal attribute<br>values only<br>distinguish. (=, ≠)                                | zip codes, employee<br>ID numbers, eye<br>color, sex: { <i>male,</i><br><i>female</i> } | mode, entropy,<br>contingency<br>correlation, χ2<br>test                                 |
| Cate<br>Qua         | Ordinal           | Ordinal attribute<br>values also order<br>objects.<br>(<, >)                           | hardness of minerals,<br>{ <i>good, better, best</i> },<br>grades, street<br>numbers    | median,<br>percentiles, rank<br>correlation, run<br>tests, sign tests                    |
| meric<br>titative   | Interval          | For interval<br>attributes,<br>differences between<br>values are<br>meaningful. (+, -) | calendar dates,<br>temperature in<br>Celsius or Fahrenheit                              | mean, standard<br>deviation,<br>Pearson's<br>correlation, <i>t</i> and<br><i>F</i> tests |
| Nu<br>Quar          | Ratio             | For ratio variables,<br>both differences and<br>ratios are<br>meaningful. (*, /)       | temperature in Kelvin,<br>monetary quantities,<br>counts, age, mass,<br>length, current | geometric mean,<br>harmonic mean,<br>percent variation                                   |

# Data Quality

- Poor data quality negatively affects many data processing efforts
- "The most important point is that poor data quality is an unfolding disaster.
  - Poor data quality costs the typical company at least ten percent (10%) of revenue; twenty percent (20%) is probably a better estimate."

Thomas C. Redman, DM Review, August 2004

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
  - Some credit-worthy candidates are denied loans
  - More loans are given to individuals that default



### Data Quality ...

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
  - Wrong data
  - Duplicate data
  - Noise and outliers
  - Missing values



## Data Quality issues ...

- **Syntactic accuracy:** Entry is not in the domain.
  - Examples: fmale in gender, text in numerical attributes, ... Can be checked quite easy.
- Semantic accuracy: Entry is in the domain but not correct
  - Example: John Smith is female
  - Needs more information to be checked (e.g. "business rules").
- **Completeness:** is violated if an entry is not correct although it belongs to the domain of the attribute.
  - Example: Complete records are missing, the data is biased (A bank has rejected customers with low income.)
- Unbalanced data: The data set might be biased extremely to one type of records.
  - **Example**: Defective goods are a very small fraction of all.
- Timeliness: Is the available data up to date?



#### Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
  - Major issue when merging data from heterogeneous sources
- Examples:
  - Same person with multiple email addresses
- Data cleaning
  - Process of dealing with duplicate data issues
- When should duplicate data not be removed?



#### Statistics & Visualization

In order to know our data and discovery quality issues we need:

- Use descriptive statistics for getting a global picture and summarize properties of data
- Compare statistics with the expected behaviour
- Exploit visualization techniques that can help in detecting
  - general patterns and trends
  - outliers and unusual patterns



#### Data Visualization





#### Data Visualization



The zero values might come from a broken or blocked sensor and might be consider as missing values.



### **Observing Data Distribution**

#### Symmetric data





#### Negatively skewed data









# Give an example of something having a positively skewed distribution

income is a good example of a positively skewed variable: there will be a few people with extremely high incomes, but most people will have incomes bunched together below the mean.

# Give an example of something having a bimodal distribution

- bimodal distribution has some kind of underlying binary variable that will result in a separate mean for each value of this variable.
- One example can be human weight the gender is binary and is a statistically significant indicator of how heavy a person is.



### Bar Chart for Categorical Attributes



A bar chart is a simple way to depict the frequencies of the values of a categorical attribute.



#### Histograms for Numerical Attributes

- A histogram shows the frequency distribution for a numerical attribute.
- The range of the numerical attribute is discretized into a fixed number of intervals (bins)
- For each interval the (absolute) frequency of values falling into it is indicated by the height of a bar.





#### Histograms: Number of bins



3 histograms with 5, 17 and 200 bins for a sample from the same bimodal distribution.



#### Number of bins

• Number of bins according to **Sturges' rule:** 

$$k = \lceil \log_2(n) + 1 \rceil$$

where n is the sample size

• Sturges' rule is suitable for data from normal distributions and from data sets of moderate size.



# Measuring the Central Tendency

#### • Mean

- *m* is the sample size
- A distributive measure can be computed by partitioning the data into smaller subsets
- However, the mean is very sensitive to outliers
- The median or a trimmed mean are also commonly used
- Median
  - Middle value if odd number of values, or average of the middle two values otherwise

#### • Mode

- Value that occurs most frequently in the data
- It is possible that several different values have the greatest frequency: Unimodal, bimodal, trimodal, multimodal
- If each data value occurs only once then there is no mode







## Measuring the Dispersion of Data

- The degree in which data tend to spread is called the **dispersion**, or **variance** of the data
- The most common measures for data dispersion are range, standard deviation, the five-number summary (based on quartiles), and the inter-quartile range
- Range: The distance between the largest and the smallest values



### Measuring the Dispersion of Data

• Variance 
$$\operatorname{variance}(x) = s_x^2 = \frac{1}{m-1} \sum_{i=1}^m (x_i - \overline{x})^2$$

- Standard deviation  $\sigma$  is the square root of variance  $\sigma^2$ 
  - $-\sigma$  measures spread about the mean ands should be used only when the mean is chosen as the measure of the center
  - $-\sigma$ =0 only when there is no spread, that is, when all observations have the same value. Otherwise  $\sigma$ >0
- Because of outliers, other measures are often used:
  - absolute average deviation (AAD)
  - median average deviation (MAD)

$$AAD(x) = \frac{1}{m} \sum_{i=1}^{m} |x_i - \overline{x}|$$
$$MAD(x) = median\left(\{|x_1 - \overline{x}|, \dots, |x_m - \overline{x}|\}\right)$$



#### Box Plot: Five-number summary of a distribution

- Data represented with a **box**
- Whiskers: two lines outside the box extended to Minimum and Maximum
- The ends of the box are at the
  - 1<sup>st</sup> quartiles (25%-quantile)
  - 3<sup>rd</sup> quartiles (75%-quantile)
- Median: value in the middle (values in increasing order) is the 2<sup>nd</sup> quartile (50%-quantile)
- The height of the box is **Interquartile range** (**IQR**): 3rd quartile - 1st quartile
- p%-quantile (0 p% of the values are smaller and 100-p% are larger.
- Outliers: points beyond whiskers





#### Example data set: Iris data



iris setosa



iris versicolor



iris virginica

- collected by E. Anderson in 1935
- contains measurements of four real-valued variables:
  - sepal length, sepal widths, petal lengths and petal width of 150 iris flowers of types Iris Setosa, Iris Versicolor, Iris Virginica (50 each)
- The fifth attribute is the name of the flower type.



#### Example data set: Iris data

| Sepal<br>Length | Sepal<br>Width | Petal<br>Length | Petal<br>Width | Species         |
|-----------------|----------------|-----------------|----------------|-----------------|
| 5.1             | 3.5            | 1.4             | 0.2            | lris-setosa     |
|                 |                |                 |                |                 |
|                 |                |                 |                |                 |
| 5.0             | 3.3            | 1.4             | 0.2            | Iris-setosa     |
| 7.0             | 3.2            | 4.7             | 1.4            | Iris-versicolor |
|                 |                |                 |                |                 |
|                 |                |                 |                |                 |
| 5.1             | 2.5            | 3.0             | 1.1            | Iris-versicolor |
| 5.7             | 2.8            | 4.1             | 1.3            | Iris-versicolor |
|                 |                |                 |                |                 |
|                 |                |                 |                |                 |
| 5.9             | 3.0            | 5.1             | 1.8            | Iris-virginica  |



#### Example of Conditional Box Plot





## Histograms Often Tell More than Boxplots

- The two histograms may have the same boxplot representation
  - The same values for: min, Q1, median, Q3, max
  - But they have rather different data distributions





### Scatter Plot

- Provides a first look at bivariate data to see clusters of points, outliers, correlations
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane



UNIVERSITÀ DI PISA

Scatter plots can be enriched with additional information: **Colour** or **different symbols** to **incorporate a third attribute** in the scatter plot.



#### Scatter Plot



The two attributes petal length and width provide a **better separation of the classes** Iris versicolor and Iris virginica than the sepal length and width.





#### Scatter Matrix of Iris Attributes





#### Scatter Plot & Outliers

The Iris data set with two (additional artificial) outliers





#### **3D Scatter Plot**







#### Visualization as a Test

- When visualisations reveal patterns or exceptions, then there is "something" in the data set.
- When visualisations do not indicate anything specific, there might still be patterns or structures in the data that cannot be revealed by the corresponding (simple) visualisation techniques.



#### Parallel Coordinates

- Parallel Coordinates
  - Used to plot the attribute values of high-dimensional data
  - Instead of using perpendicular axes, use a set of parallel axes

The attribute values of each object are plotted as a point on each corresponding coordinate axis and the points are connected by a line

- Thus, each object is represented as a line
- Often, the lines representing a distinct class of objects group together, at least for some attributes
- Ordering of attributes is important in seeing such groupings



#### Parallel Coordinates Plots for Iris Data







#### Matrix Plots

- Can plot the data matrix
- This can be useful when objects are sorted according to class
- Typically, the attributes are normalized to prevent one attribute from dominating the plot
- Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects



#### Visualization of the Iris Data Matrix





### Radar Plot for Iris Data

- Similar idea as parallel coordinates
- Coordinate axes are drawn as parallel lines, but in a star-like fashion intersecting in one point
- Axes radiate from a central point
- The line connecting the values of an object is a polygon





#### Star Plots for Iris Data

Star plots are the same as radar plots where each data object is drawn separately.





#### **Correlatino Analysis**

- Correlation measures the linear relationship between objects
- Captures similar behaviour of two attributes





#### Pearson's correlation coefficient

The (sample) Pearson's correlation coefficient is a measure for a linear relationship between two numerical attributes X and Y and is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} \qquad -1 \le r_{xy} \le 1$$

- where x̄ and ȳ are the mean values of the attributes X and Y, respectively. s<sub>x</sub> and s<sub>y</sub> are the corresponding (sample) standard deviations.
- The larger the absolute value of the Pearson correlation coefficient, the stronger the linear relationship between the two attributes.
- For  $|r_{xy}| = 1$  the values of X and Y lie exactly on a line.
- Positive (negative) correlation indicates a line with positive (negative) slope.



#### Visually Evaluating Correlation



Scatter plots showing the similarity from –1 to 1.





#### Visualization of the Iris Correlation Matrix





### Outliers

- **Outliers** are data objects with characteristics that are considerably different than most of the other data objects in the data set
  - Case 1: Outliers are noise that interferes with data analysis
  - Case 2: Outliers are the goal of our analysis
    - Credit card fraud
    - Intrusion detection

#### • Causes:

- Data quality problems (erroneous data coming from wrong measurements or typing mistakes)
- Exceptional or unusual situations/data objects.





#### Outliers as noise

- Outliers coming from erroneous data should be excluded from the analysis
- Even if the outliers are correct (exceptional data), it is sometime useful to exclude them from the analysis.
- For example, a single extremely large outlier can lead to completely **misleading values for the mean value**.



#### **Outlier Detection**

#### • Single attribute:

- Categorical attributes: An outlier is a value that occurs with a frequency extremely lower than the frequency of all other values.
- Numerical attributes: box plots
- Multidimensional attribute:
  - Scatter plots for (visually detecting) outliers w.r.t. two attributes
  - PCA or MDS plots for (visually detecting) outliers
  - Cluster analysis techniques: Outliers are those points which cannot be assigned to any cluster.



# **Missing Values**

- For some instances values of single attributes might be missing
- Reasons for missing values
  - Information is not collected
    (e.g., people decline to give their age and weight)
  - Attributes may not be applicable to all cases
    (e.g., annual income is not applicable to children)
  - broken sensors
    refusal to answer a question
- Missing value might not necessarily be indicated as missing (instead: zero or default values).



## Checklist for Data Understanding

- Determine the quality of the data. (e.g. syntactic accuracy)
- Find outliers. (e.g. using visualization techniques)
- Detect and examine missing values. Possible hidden by default values.
- Discover new or confirm expected dependencies or correlations between attributes.
- Check specific application dependent assumptions (e.g. the attribute follows a normal distribution)
- Compare statistics with the expected behaviour.

