# Chapter 5 Association Analysis: Basic Concepts 

## Introduction to Data Mining, $2^{\text {nd }}$ Edition

by

Tan, Steinbach, Karpatne, Kumar

## Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction


## Market-Basket transactions

## Example of Association Rules

| TID | Items |
| :--- | :--- |
| 1 | Bread, Milk |
| 2 | Bread, Diaper, Beer, Eggs |
| 3 | Milk, Diaper, Beer, Coke |
| 4 | Bread, Milk, Diaper, Beer |
| 5 | Bread, Milk, Diaper, Coke |

$$
\begin{aligned}
& \{\text { Diaper }\} \rightarrow\{\text { Beer }\}, \\
& \{\text { Milk, Bread }\} \rightarrow\{\text { Eggs, Coke }\}, \\
& \{\text { Beer, Bread }\} \rightarrow\{\text { Milk }\},
\end{aligned}
$$

Implication means co-occurrence, not causality!

Find groups of items which are frequently purchased together

## Definition: Frequent Itemset

- Itemset
- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains kitems
- Support count ( $\sigma$ )
- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread,Diaper $\})=2$
- Support

| TID | Items |
| :--- | :--- |
| 1 | Bread, Milk |
| 2 | Bread, Diaper, Beer, Eggs |
| 3 | Milk, Diaper, Beer, Coke |
| 4 | Bread, Milk, Diaper, Beer |
| 5 | Bread, Milk, Diaper, Coke |

- Fraction of transactions that contain an itemset
- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold


## Definition: Association Rule

- Association Rule
- An implication expression of the form $X \rightarrow Y$, where $X$ and $Y$ are itemsets
- Example:
\{Milk, Diaper\} $\rightarrow$ \{Beer $\}$
- Rule Evaluation Metrics

| TID | Items |
| :--- | :--- |
| 1 | Bread, Milk |
| 2 | Bread, Diaper, Beer, Eggs |
| 3 | Milk, Diaper, Beer, Coke |
| 4 | Bread, Milk, Diaper, Beer |
| 5 | Bread, Milk, Diaper, Coke |

- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

$$
\begin{aligned}
& s=\frac{\sigma(\text { Milk,Diaper,Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
& c=\frac{\sigma(\text { Milk,Diaper,Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
\end{aligned}
$$

## Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support $\geq$ minsup threshold
- confidence $\geq$ minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
$\Rightarrow$ Computationally prohibitive!


## Mining Association Rules

| TID | Items |
| :--- | :--- |
| 1 | Bread, Milk |
| 2 | Bread, Diaper, Beer, Eggs |
| 3 | Milk, Diaper, Beer, Coke |
| 4 | Bread, Milk, Diaper, Beer |
| 5 | Bread, Milk, Diaper, Coke |

> Example of Rules:
> \{Milk,Diaper\} $\rightarrow$ \{Beer\} (s=0.4, c=0.67)
> \{Milk,Beer\} $\rightarrow$ \{Diaper\} (s=0.4, c=1.0)
> $\{$ Diaper,Beer\} $\rightarrow\{$ Milk\} (s=0.4, c=0.67)
> \{Beer\} $\rightarrow$ \{Milk,Diaper\} (s=0.4, c=0.67)
> $\{$ Diaper $\rightarrow$ \{Milk,Beer\} (s=0.4, c=0.5)
> \{Milk\} $\rightarrow$ \{Diaper,Beer\} (s=0.4, c=0.5)

## Observations:

- All the above rules are binary partitions of the same itemset: \{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements


## Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support $\geq$ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive


## Basic Apriori Algorithm

## Problem Decomposition

(1) Find the frequent itemsets: the sets of items that satisfy the support constraint

- A subset of a frequent itemset is also a frequent itemset, i.e., if $\{A, B\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ should be a frequent itemset
- Iteratively find frequent itemsets with cardinality from 1 to $k$ ( $k$ itemset)
(2) Use the frequent itemsets to generate association rules.


## Frequent Itemset Generation



## Frequent Itemset Generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Transactions

| TID | Items |
| :--- | :--- |
| $\mathbf{1}$ | Bread, Milk |
| $\mathbf{2}$ | Bread, Diaper, Beer, Eggs |
| $\mathbf{3}$ | Milk, Diaper, Beer, Coke |
| 4 | Bread, Milk, Diaper, Beer |
| $\mathbf{5}$ | Bread, Milk, Diaper, Coke |



- Match each transaction against every candidate
- Complexity ~ $\mathrm{O}(\mathrm{NMw})=>$ Expensive since $\mathrm{M}=2^{\mathrm{d}}$ !!!


## Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\text {d }}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction


## Reducing Number of Candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support


## Illustrating Apriori Principle

Found to be Infrequent


## Illustrating Apriori Principle

| TID | Items |
| :--- | :--- |
| 1 | Bread, Milk |
| 2 | Beer, B read, Diaper, Eggs |
| 3 | Beer, Coke, Diaper, Milk |
| 4 | Beer, Bread, Diaper, Milk |
| 5 | Bread, Coke, Diaper, Milk |

Items (1-itemsets)

| Item | Count |
| :--- | :---: |
| Bread | $\mathbf{4}$ |
| Coke | $\mathbf{2}$ |
| Milk | $\mathbf{4}$ |
| Beer | 3 |
| Diaper | $\mathbf{4}$ |
| Eggs | $\mathbf{1}$ |

Minimum Support = 3

## Illustrating Apriori Principle

| TID | Items |
| :--- | :--- |
| $\mathbf{1}$ | Bread, Milk |
| 2 | Beer, Bread, Diaper, Eggs |
| 3 | Beer, Coke, Diaper, Milk |
| 4 | Beer, Bread, Diaper, Milk |
| 5 | Bread, Coke, Diaper, Milk |

Items (1-itemsets)

| Item | Count |
| :--- | :---: |
| Bread | $\mathbf{4}$ |
| Coke | 2 |
| Milk | 4 |
| Beer | 3 |
| Diaper | 4 |
| Eggs | 1 |

Minimum Support $=3$

## Illustrating Apriori Principle

| Item | Count | Items (1-itemsets) |
| :---: | :---: | :---: |
| Bread | 4 |  |
| Coke | 2 | , |
| Milk <br> Beer Diaper | 4 | Itemset |
|  | 3 | \{Bread, Milk |
|  | 4 | \{Bread, Beer \} |
| Eggs | 1 | \{Bread,Diaper\} |
|  |  | \{Beer, Milk |
|  |  | \{Diaper, Milk |
|  |  | \{Beer,Diaper\} |

Pairs (2-itemsets)
(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

## Illustrating Apriori Principle

| Item | Count | Items (1-itemsets) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bread | 4 |  |  |  |
| Coke | 2 | , |  | Pairs (2-itemsets) |
| Milk | 4 | Itemset | Count |  |
| Beer | 3 | \{Bread, Milk | 3 |  |
| Diaper | 4 | \{Beer, Bread\} | 2 | (No need to generate |
| Eggs | 1 | \{Bread,Diaper\} | 3 | candidates involving Coke |
|  |  | \{Beer,Milk\} | 2 |  |
|  |  | \{Diaper,Milk\} <br> \{Beer,Diaper\} | $\begin{aligned} & 3 \\ & 3 \end{aligned}$ | or Eggs) |

Minimum Support = 3

## Illustrating Apriori Principle



## Illustrating Apriori Principle

| Item | Count |
| :--- | :---: |
| Bread | Items |
| Coke | $\mathbf{4}$ |
| Milk | $\mathbf{2}$ |
| Beer | $\mathbf{4}$ |
| Diaper | 3 |
| Eggs | 4 |

## Minimum Support $=3$

| Itemset | Count | Pairs (2-itemsets) |
| :---: | :---: | :---: |
| \{Bread, Milk \} | 3 |  |
| \{Bread,Beer\} | 2 | (No need to generate |
| \{Bread,Diaper\} | 3 | candidates involving Coke |
| \{Milk,Beer\} | 2 | or Eggs) |

Triplets (3-itemsets)

| Itemset | Count |
| :--- | :---: |
| \{Beer, Diaper, Milk\} | 2 |
| \{Beer,Bread, Diaper\} | 2 |
| \{Bread, Diaper, Milk\} | 2 |
| Beer, Bread, Milk\} | 1 |

## Illustrating Apriori Principle

| Item | Count |
| :--- | :---: |
| Bread | Items |
| Coke | $\mathbf{4}$ |
| Milk | $\mathbf{2}$ |
| Beer | $\mathbf{4}$ |
| Diaper | 3 |
| Eggs | 4 |

Minimum Support $=3$

| Itemset | Count | Pairs (2-itemsets) |
| :---: | :---: | :---: |
| \{Bread, Milk | 3 |  |
| \{Bread,Beer\} | 2 | (No need to generate |
| \{Bread,Diaper\} | 3 | candidates involving Coke |
| \{Milk,Beer\} | 2 | or Eggs) |

Triplets (3-itemsets)

| Itemset | Count |
| :--- | :---: |
| \{Beer, Diaper, Milk\} | 2 |
| \{ Beer,Bread, Diaper\} | 2 |
| \{Bread, Diaper, Milk\} | 2 |
| \{Beer, Bread, Milk\} | 1 |

## Apriori Algorithm

$-F_{k}$ : frequent k-itemsets
$-L_{k}$ : candidate $k$-itemsets

- Algorithm
- Let $\mathrm{k}=1$
- Generate $F_{1}=\{$ frequent 1-itemsets $\}$
- Repeat until $F_{k}$ is empty

Candidate Generation: Generate $L_{k+1}$ from $F_{k}$

- Candidate Pruning: Prune candidate itemsets in $L_{k+1}$ containing subsets of length $k$ that are infrequent
- Support Counting: Count the support of each candidate in $\mathrm{L}_{\mathrm{k}+1}$ by scanning the DB
- Candidate Elimination: Eliminate candidates in $L_{k+1}$ that are infrequent, leaving only those that are frequent $=>F_{k+1}$


## Candidate Generation: $\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ Method

- Merge two frequent ( $k-1$ )-itemsets if their first ( $k-2$ ) items are identical
- $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$
$-\operatorname{Merge}(\underline{A B C}, \underline{A B D})=\underline{A B C D}$
- $\operatorname{Merge}(\mathbf{A B C}, \underline{A B E})=\underline{A B C E}$
$-\operatorname{Merge}(\mathbf{A B D}, \underline{A B E})=\underline{A B D E}$
- Do not merge( $\mathbf{A B D}, \mathbf{A C D})$ because they share only prefix of length 1 instead of length 2


## Candidate Pruning

- Let $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$ be the set of frequent 3-itemsets
- $L_{4}=\{A B C D, A B C E, A B D E\}$ is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
- Prune ABCE because ACE and BCE are infrequent
- Prune ABDE because ADE is infrequent
- After candidate pruning: $L_{4}=\{A B C D\}$


## Illustrating Apriori Principle

| Item | Count | Items (1-itemsets) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bread | 4 |  |  |  |  |
| Coke | 2 |  |  |  | Pairs (2-itemsets) |
| Milk Beer Diaper | 4 |  | Itemset | Count |  |
|  | 3 |  | \{Bread, Milk | 3 | (No need to generate |
|  | 4 |  | \{Bread,Beer\} | 2 |  |
| Eggs | 1 |  | \{Bread,Diaper\} | 3 | candidates involving Coke or Eggs) |
|  |  |  | \{Milk,Beer \} | 2 |  |
|  |  |  | \{Milk,Diaper\} \{Beer,Diaper\} | $3$ |  |
| Minimum Support = 3 |  |  | N |  | Triplets (3-itemsets) |
|  |  |  |  | mset | Count |
|  |  |  |  | read, D | er, Milk\} 2 |

Use of $F_{k-1} \times F_{k-1}$ method for candidate generation results in only one 3 -itemset. This is eliminated after the support counting step.

## Alternate $\mathbf{F}_{\mathbf{k}-1} \times \mathbf{F}_{\mathbf{k}-1}$ Method

- Merge two frequent ( $\mathrm{k}-1$ )-itemsets if the last ( $\mathrm{k}-2$ ) items of the first one is identical to the first (k-2) items of the second.
- $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$
- Merge(ABC, $\underline{B C D})=A B C D$
- Merge(ABD, $\underline{B D E}$ ) $=$ ABDE
- Merge(ACD, CDE $)=$ ACDE
- Merge(BCD, $\underline{C D E})=$ BCDE


## Candidate Pruning for Alternate $\mathbf{F}_{\mathbf{k}-1} \times \mathbf{F}_{\mathbf{k}-1}$ Method

- Let $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$ be the set of frequent 3-itemsets
- $L_{4}=\{A B C D, A B D E, A C D E, B C D E\}$ is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
- Prune ABDE because ADE is infrequent
- Prune ACDE because ACE and ADE are infrequent
- Prune BCDE because BCE
- After candidate pruning: $L_{4}=\{A B C D\}$


## Support Counting of Candidate Itemsets

- Scan the database of transactions to determine the support of each candidate itemset
- Must match every candidate itemset against every transaction, which is an expensive operation

| TID | Items |
| :--- | :--- |
| $\mathbf{1}$ | Bread, Milk |
| 2 | Beer, Bread, Diaper, Eggs |
| 3 | Beer, Coke, Diaper, Milk |
| 4 | Beer, Bread, Diaper, Milk |
| 5 | Bread, Coke, Diaper, Milk |


| Itemset |
| :--- |
| \{ Beer, Diaper, Milk |
| \{ Beer, Bread,Diaper\} |
| \{Bread, Diaper, Milk\} |
| \{Beer, Bread, Milk\} |

## Support Counting of Candidate Itemsets

- To reduce number of comparisons, store the candidate itemsets in a hash structure
- Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions
Hash Structure


Buckets

## Support Counting: An Example

Suppose you have 15 candidate itemsets of length 3:

\{3 5 6\}, \{3 5 7\}, \{6 8 9\}, \{3 6 7\}, \{3 6 8\}
How many of these itemsets are supported by transaction (1,2,3,5,6)?


## Support Counting Using a Hash Tree

Suppose you have 15 candidate itemsets of length 3:
$\{14$ 5\}, \{1 2 4\}, \{4 5 7\}, \{1 2 5\}, \{4 5 8\}, \{1 5 9\}, \{1 36$\}$, \{2 34$\}$, \{5 67$\},\{345\}$,
\{3 5 6\}, \{3 5 7\}, \{ 689 9\}, \{3 67$\},\{368\}$
You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)



## Support Counting Using a Hash Tree



## Rule Generation

- Given a frequent itemset $L$, find all non-empty subsets $f \subset L$ such that $f \rightarrow L-f$ satisfies the minimum confidence requirement
- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:
$A B C \rightarrow D, \quad A B D \rightarrow C, \quad A C D \rightarrow B, \quad B C D \rightarrow A$,
$A \rightarrow B C D, \quad B \rightarrow A C D, \quad C \rightarrow A B D, \quad D \rightarrow A B C$
$A B \rightarrow C D, \quad A C \rightarrow B D, \quad A D \rightarrow B C, \quad B C \rightarrow A D$,
$B D \rightarrow A C, \quad C D \rightarrow A B$,
- If $|\mathrm{L}|=k$, then there are $2^{k}-2$ candidate association rules (ignoring $L \rightarrow \varnothing$ and $\varnothing \rightarrow L$ )


## Rule Generation

- In general, confidence does not have an antimonotone property
$c(A B C \rightarrow D)$ can be larger or smaller than $c(A B \rightarrow D)$
- But confidence of rules generated from the same itemset has an anti-monotone property
- E.g., Suppose $\{A, B, C, D\}$ is a frequent 4 -itemset:

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule


## Rule Generation for Apriori Algorithm

## Lattice of rules



## Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- More space is needed to store support count of itemsets
- if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
- run time of algorithm increases with number of transactions
- Average transaction width
- transaction width increases the max length of frequent itemsets
- number of subsets in a transaction increases with its width, increasing computation time for support counting


## Maximal Frequent Itemset

An itemset is maximal frequent if it is frequent and none of its immediate supersets is frequent

```
                                    null
```



## An illustrative example



## An illustrative example



## An illustrative example



## Another illustrative example



## Closed Itemset

- An itemset $X$ is closed if none of its immediate supersets has the same support as the itemset $X$.
- X is not closed if at least one of its immediate supersets has support count as $X$.

| TID | Items |
| :---: | :---: |
| 1 | $\{\mathrm{~A}, \mathrm{~B}\}$ |
| 2 | $\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$ |
| 3 | $\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$ |
| 4 | $\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$ |
| 5 | $\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$ |


| Itemset | Support |
| :---: | :---: |
| $\{A\}$ | 4 |
| $\{B\}$ | 5 |
| $\{C\}$ | 3 |
| $\{D\}$ | 4 |
| $\{A, B\}$ | 4 |
| $\{A, C\}$ | 2 |
| $\{A, D\}$ | 3 |
| $\{B, C\}$ | 3 |
| $\{B, D\}$ | 4 |
| $\{C, D\}$ | 3 |


| Itemset | Support |
| :---: | :---: |
| $\{A, B, C\}$ | 2 |
| $\{A, B, D\}$ | 3 |
| $\{A, C, D\}$ | 2 |
| $\{B, C, D\}$ | 2 |
| $\{A, B, C, D\}$ | 2 |

## Maximal vs Closed Itemsets



## Maximal Frequent vs Closed Frequent Itemsets



## Example 1



## Example 1



## Example 2



## Example 2



## Maximal vs Closed Itemsets



Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

## Pattern Evaluation

- Association rule algorithms can produce large number of rules
- Interestingness measures can be used to prune/rank the patterns
- In the original formulation, support \& confidence are the only measures used


## Computing Interestingness Measure

- Given $X \rightarrow Y$ or $\{X, Y\}$, information needed to compute interestingness can be obtained from a contingency table

Contingency table

|  | $Y$ | $\bar{Y}$ |  |
| :---: | :---: | :---: | :---: |
| $X$ | $f_{11}$ | $f_{10}$ | $f_{1+}$ |
| $\bar{X}$ | $f_{01}$ | $f_{00}$ | $f_{0+}$ |
|  | $f_{+1}$ | $f_{+0}$ | $N$ |

$f_{11}$ : support of $X$ and $Y$
$f_{10}$ : support of $X$ and $\bar{Y}$
$f_{01}$ : support of $\bar{X}$ and $Y$
$f_{00}$ : support of $\bar{X}$ and $\bar{Y}$

Used to define various measures

- support, confidence, Gini, entropy, etc.


## Drawback of Confidence

| Custo <br> mers | Tea | Coffee | $\ldots$ |
| :---: | :---: | :---: | :---: |
| C1 | 0 | 1 | $\ldots$ |
| C2 | 1 | 0 | $\ldots$ |
| C3 | 1 | 1 | $\ldots$ |
| C4 | 1 | 0 | $\ldots$ |
| $\ldots$ |  |  |  |


|  | Coffee | $\overline{\text { Coffee }}$ |  |
| :---: | :---: | :---: | :---: |
| Tea | 150 | 50 | 200 |
| $\overline{T e a}$ | 650 | 150 | 800 |
|  | 800 | 200 | 1000 |

## Association Rule: Tea $\rightarrow$ Coffee

Confidence $\cong P($ Coffee $\mid$ Tea $)=150 / 200=0.75$
Confidence $>50 \%$, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

## Drawback of Confidence

|  | Coffee |  |  |
| :---: | :---: | :---: | :---: |
|  | Coffee |  |  |
| Tea | 150 | 50 | 200 |
| $\overline{\text { Tea }}$ | 650 | 150 | 800 |
|  | 800 | 200 | 1000 |

## Association Rule: Tea $\rightarrow$ Coffee

Confidence $=P($ Coffee $\mid$ Tea $)=150 / 200=0.75$
but $\mathrm{P}($ Coffee $)=0.8$, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!
$\Rightarrow$ Note that $\mathrm{P}($ Coffee $\mid$ Tea $)=650 / 800=0.8125$

## Drawback of Confidence

| Custo <br> mers | Tea | Honey | $\ldots$ |
| :---: | :---: | :---: | :---: |
| C1 | 0 | 1 | $\ldots$ |
| C2 | 1 | 0 | $\ldots$ |
| C3 | 1 | 1 | $\ldots$ |
| C4 | 1 | 0 | $\ldots$ |
| $\ldots$ |  |  |  |


|  | Honey | $\overline{\text { Honey }}$ |  |
| :---: | :---: | :---: | :---: |
| Tea | 100 | 100 | 200 |
| $\overline{\text { Tea }}$ | 20 | 780 | 800 |
|  | 120 | 880 | 1000 |

Association Rule: Tea $\rightarrow$ Honey
Confidence $\cong \mathrm{P}($ Honey $\mid$ Tea $)=100 / 200=0.50$
Confidence $=50 \%$, which may mean that drinking tea has little influence whether honey is used or not
So rule seems uninteresting
But $P($ Honey $)=120 / 1000=.12$ (hence tea drinkers are far more likely to have honey

## Measure for Association Rules

- So, what kind of rules do we really want?
- Confidence $(X \rightarrow Y)$ should be sufficiently high
- To ensure that people who buy X will more likely buy Y than not buy Y
- Confidence $(X \rightarrow Y)>\operatorname{support}(Y)$
- Otherwise, rule will be misleading because having item $X$ actually reduces the chance of having item Y in the same transaction
- Is there any measure that capture this constraint?
- Answer: Yes. There are many of them.


## Statistical Relationship between $X$ and $Y$

- The criterion confidence $(X \rightarrow Y)=\operatorname{support}(Y)$
is equivalent to:
$-P(Y \mid X)=P(Y)$
- $P(X, Y)=P(X) \times P(Y)(X$ and $Y$ are independent)

If $P(X, Y)>P(X) \times P(Y): X \& Y$ are positively correlated

If $P(X, Y)<P(X) \times P(Y): X \& Y$ are negatively correlated

## Measures that take into account statistical dependence

$$
\left.\left.\begin{array}{l}
\text { Lift }=\frac{P(Y \mid X)}{P(Y)} \\
\text { Interest }=\frac{P(X, Y)}{P(X) P(Y)}
\end{array}\right\} \begin{array}{l}
\text { lift is used for rules while } \\
\text { interest is used for itemsets }
\end{array}\right\} \begin{aligned}
& P S=P(X, Y)-P(X) P(Y) \\
& \phi-\text { coefficient }=\frac{P(X, Y)-P(X) P(Y)}{\sqrt{P(X)[1-P(X)] P(Y)[1-P(Y)]}}
\end{aligned}
$$

## Example: Lift/Interest

|  | Coffee |  |  |
| :---: | :---: | :---: | :---: |
|  | Coffee |  |  |
| Tea | 150 | 50 | 200 |
| $\overline{\text { Tea }}$ | 650 | 150 | 800 |
|  | 800 | 200 | 1000 |

## Association Rule: Tea $\rightarrow$ Coffee

Confidence $=P($ Coffee|Tea $)=0.75$
but $\mathrm{P}($ Coffee $)=0.8$
$\Rightarrow$ Interest $=0.15 /(0.2 \times 0.8)=0.9375(<1$, therefore is negatively associated)

There are lots of measures proposed in the literature

| Measure (Symbol) | Definition |
| :--- | :--- |
| Correlation $(\phi)$ | $\frac{N f_{11}-f_{1+} f_{+1}}{\sqrt{f_{1+} f_{+1} f_{0+} f_{+0}}}$ |
| Odds ratio $(\alpha)$ | $\left(f_{11} f_{00}\right) /\left(f_{10} f_{01}\right)$ |
| Kappa $(\kappa)$ | $\frac{N f_{11}+N f_{00}-f_{1+}+f_{+1}-f_{0+} f_{+0}}{N^{2}-f_{1+} f_{+1}-f_{0+} f_{+0}}$ |
| Interest $(I)$ | $\left(N f_{11}\right) /\left(f_{1+} f_{+1}\right)$ |
| Cosine $(I S)$ | $\left(f_{11}\right) /\left(\sqrt{f_{1+} f_{+1}}\right)$ |
| Piatetsky-Shapiro $(P S)$ | $\frac{f_{11}-\frac{f_{1+}+f_{+1}}{N}}{N^{2}}$ |
| Collective strength $(S)$ | $\frac{f_{11}+f_{00}}{f_{1+} f_{+1}+f_{0+} f_{+0}} \times \frac{N-f_{1+} f_{+1}-f_{0+} f_{+0}}{N-f_{11}-f_{00}}$ |
| Jaccard $(\zeta)$ | $f_{11} /\left(f_{1+}+f_{+1}-f_{11}\right)$ |
| All-confidence $(h)$ | $\min \left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$ |

## Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary variables?

| Gender | $\cdots$ | Age | Annual <br> Income | No of hours spent <br> online per week | No of email <br> accounts | Privacy <br> Concern |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Female | $\cdots$ | 26 | 90 K | 20 | 4 | Yes |
| Male | $\cdots$ | 51 | 135 K | 10 | 2 | No |
| Male | $\cdots$ | 29 | 80 K | 10 | 3 | Yes |
| Female | $\cdots$ | 45 | 120 K | 15 | 3 | Yes |
| Female | $\cdots$ | 31 | 95 K | 20 | 5 | Yes |
| Male | $\cdots$ | 25 | 55 K | 25 | 5 | Yes |
| Male | $\cdots$ | 37 | 100 K | 10 | 1 | No |
| Male | $\cdots$ | 41 | 65 K | 8 | 2 | No |
| Female | $\cdots$ | 26 | 85 K | 12 | 1 | No |
| $\cdots$ |

Example of Association Rule:
$\{$ Gender $=$ Male, Age $\in[21,30)\} \rightarrow\{$ No of hours online $\geq 10\}$

## Handling Categorical Attributes

## - Example: Internet Usage Data

| Gender | Level of <br> Education | State | Computer <br> at Home | Online <br> Auction | Chat <br> Online | Online <br> Banking | Privacy <br> Concerns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Female | Graduate | Illinois | Yes | Yes | Daily | Yes | Yes |
| Male | College | California | No | No | Never | No | No |
| Male | Graduate | Michigan | Yes | Yes | Monthly | Yes | Yes |
| Female | College | Virginia | No | Yes | Never | Yes | Yes |
| Female | Graduate | California | Yes | No | Never | No | Yes |
| Male | College | Minnesota | Yes | Yes | Weekly | Yes | Yes |
| Male | College | Alaska | Yes | Yes | Daily | Yes | No |
| Male | High School | Oregon | Yes | No | Never | No | No |
| Female | Graduate | Texas | No | No | Monthly | No | No |
| $\ldots$ | $\cdots$ |

\{Level of Education=Graduate, Online Banking=Yes\} $\rightarrow$ \{Privacy Concerns = Yes $\}$

## Handling Categorical Attributes

- Introduce a new "item" for each distinct attributevalue pair

| Male | Female | Education <br> Graduate | Education <br> = College | Education <br> = High School | $\cdots$ | Privacy <br> = Yes | Privacy <br> $=$ No |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 | 0 | $\cdots$ | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | $\cdots$ | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | $\cdots$ | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | $\cdots$ | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | $\cdots$ | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | $\cdots$ | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | $\cdots$ | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | $\cdots$ | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | $\cdots$ | 0 | 1 |
| $\cdots$ |

## Handling Categorical Attributes

- Some attributes can have many possible values
- Many of their attribute values have very low support
- Potential solution: Aggregate the low-support attribute values



## Handling Categorical Attributes

- Distribution of attribute values can be highly skewed
- Example: 85\% of survey participants own a computer at home
- Most records have Computer at home = Yes
- Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home $=$ Yes)
- Potential solution:
- discard the highly frequent items
- Use alternative measures such as h-confidence
- Computational Complexity
- Binarizing the data increases the number of items
- But the width of the "transactions" remain the same as the number of original (non-binarized) attributes
- Produce more frequent itemsets but maximum size of frequent itemset is limited to the number of original attributes


## Handling Continuous Attributes

- Different methods:
- Discretization-based
- Statistics-based
- Non-discretization based
- minApriori
- Different kinds of rules can be produced:
$-\{$ Age $\in[21,30)$, No of hours online $\in[10,20)\}$ $\rightarrow$ \{Chat Online =Yes\}
- \{Age $\in[21,30$ ), Chat Online $=$ Yes $\}$
$\rightarrow$ No of hours online: $\mu=14, \sigma=4$


## Discretization-based Methods



## Discretization-based Methods

- Unsupervised:
- Equal-width binning <123><456><789>
- Equal-depth binning <12><34567><89>
- Cluster-based
- Supervised discretization

Continuous attribute, v

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Chat Online = Yes | 0 | 0 | 20 | 10 | 20 | 0 | 0 | 0 | 0 |
| Chat Online = No | 150 | 100 | 0 | 0 | 0 | 100 | 100 | 150 | 100 |
| bin1 |  |  |  |  |  |  |  |  |  |

## Discretization Issues

- Interval width
(a) Original Data
(b) $\operatorname{Bin}=30$ years


Pattern A: Age $\in[10,15) \longrightarrow$ Chat Online $=$ Never
Pattern B: Age $\in[26,41) \longrightarrow$ Chat Online $=$ Never
Pattern C: Age $\in[42,48) \longrightarrow$ Online Banking $=$ Yes

## Discretization Issues

- Interval too wide (e.g., Bin size= 30)
- May merge several disparate patterns
- Patterns A and B are merged together
- May lose some of the interesting patterns
- Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
- Pattern A is broken up into two smaller patterns
- Can recover the pattern by merging adjacent subpatterns
- Pattern B is broken up into smaller patterns
- Cannot recover the pattern by merging adjacent subpatterns
- Some windows may not meet support threshold


## Statistics-based Methods

- Example:
$\{$ Income > 100K, Online Banking=Yes\} $\rightarrow$ Age: $\mu=34$
- Rule consequent consists of a continuous variable, characterized by their statistics
- mean, median, standard deviation, etc.
- Approach:
- Withhold the target attribute from the rest of the data
- Extract frequent itemsets from the rest of the attributes
- Binarized the continuous attributes (except for the target attribute)
- For each frequent itemset, compute the corresponding descriptive statistics of the target attribute
- Frequent itemset becomes a rule by introducing the target variable as rule consequent
- Apply statistical test to determine interestingness of the rule


## Statistics-based Methods

| Gender | $\cdots$ | Age | Annual <br> Income | No of hours spent <br> online per week | No of email <br> accounts | Privacy <br> Concern |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
|  | Female | $\cdots$ | 26 | 90 K | 20 | 4 |
| Male | $\cdots$ | 51 | 135 K | 10 | 2 | Yes |
| Male | $\cdots$ | 29 | 80 K | 10 | 3 | No |
| Female | $\cdots$ | 45 | 120 K | 15 | 3 | Yes |
| Female | $\cdots$ | 31 | 95 K | 20 | 5 | Yes |
| Male | $\cdots$ | 25 | 55 K | 25 | 5 | Yes |
| Male | $\cdots$ | 37 | 100 K | 10 | 1 | No |
| Male | $\cdots$ | 41 | 65 K | 8 | 2 | No |
| Female | $\cdots$ | 26 | 85 K | 12 | 1 | No |
| $\cdots$ |

Frequent Itemsets:
\{Male, Income > 100K $\}$
\{Income < 30K, No hours $\in[10,15)\}$
\{Income > 100K, Online Banking = Yes \}

Association Rules:

$$
\begin{aligned}
& \{\text { Male, Income }>100 \mathrm{~K}\} \rightarrow \text { Age: } \mu=30 \\
& \{\text { Income }<40 \mathrm{~K}, \text { No hours } \in[10,15)\} \rightarrow \text { Age: } \mu=24 \\
& \{\text { Income }> \\
& \qquad \text { 100K,Online Banking }=\text { Yes }\} \\
& \\
& \quad \rightarrow \text { Age: } \mu=34
\end{aligned}
$$

## Concept Hierarchies



## Multi-level Association Rules

- Why should we incorporate concept hierarchy?
- Rules at lower levels may not have enough support to appear in any frequent itemsets
- Rules at lower levels of the hierarchy are overly specific
- e.g., skim milk $\rightarrow$ white bread, $2 \%$ milk $\rightarrow$ wheat bread, skim milk $\rightarrow$ wheat bread, etc.
are indicative of association between milk and bread
- Rules at higher level of hierarchy may be too generic


## Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
- If X is the parent item for both X 1 and X 2 , then $\sigma(\mathrm{X}) \leq \sigma(\mathrm{X} 1)+\sigma(\mathrm{X} 2)$
- If $\quad \sigma(\mathrm{X} 1 \cup \mathrm{Y} 1) \geq$ minsup, and $\quad X$ is parent of $X 1, Y$ is parent of $Y 1$ then $\quad \sigma(\mathrm{X} \cup \mathrm{Y} 1) \geq$ minsup, $\sigma(\mathrm{X} 1 \cup \mathrm{Y}) \geq$ minsup $\sigma(X \cup Y) \geq$ minsup
- If $\quad \operatorname{conf}(X 1 \Rightarrow Y 1) \geq$ minconf, then $\operatorname{conf}(X 1 \Rightarrow Y) \geq$ minconf


## Multi-level Association Rules

- Approach 1:
- Extend current association rule formulation by augmenting each transaction with higher level items

Original Transaction: \{skim milk, wheat bread\}
Augmented Transaction:
\{skim milk, wheat bread, milk, bread, food\}

- Issues:
- Items that reside at higher levels have much higher support counts
- if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data


## Multi-level Association Rules

- Approach 2:
- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on
- Issues:
- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

