Chapter 5 Association Analysis: Basic Concepts

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

10/26/2020

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\{Diaper\} \rightarrow \{Beer\},\$ $\{Milk, Bread\} \rightarrow \{Eggs, Coke\},\$ $\{Beer, Bread\} \rightarrow \{Milk\},\$

Implication means co-occurrence, not causality!

Find groups of items which are frequently purchased together

10/26/2020

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: {Milk, Diaper} \Rightarrow {Beer} $s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - \Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

10/26/2020

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Basic Apriori Algorithm

Problem Decomposition

- Find the *frequent itemsets*: the sets of items that satisfy the support constraint
 - A subset of a frequent itemset is also a frequent itemset, i.e., if {*A*,*B*} is a frequent itemset, both {*A*} and {*B*} should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (kitemset)

② Use the frequent itemsets to generate association rules.

Frequent Itemset Generation

Frequent Itemset Generation

Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate

– Complexity ~ O(NMw) => Expensive since M = 2^d !!!

10/26/2020

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

• Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

10/26/2020

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread, Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- $F_3 = \{ABC, ABD, ABE, ACD, BCD, BDE, CDE\}$
 - Merge($\underline{AB}C$, $\underline{AB}D$) = $\underline{AB}CD$
 - Merge($\underline{AB}C$, $\underline{AB}E$) = $\underline{AB}CE$
 - Merge($\underline{AB}D$, $\underline{AB}E$) = $\underline{AB}DE$
 - Do not merge(<u>A</u>BD,<u>A</u>CD) because they share only prefix of length 1 instead of length 2

Candidate Pruning

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABCE,ABDE} is the set of candidate
 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- After candidate pruning: L₄ = {ABCD}

10/26/2020

Use of $F_{k-1}xF_{k-1}$ method for candidate generation results in only one 3-itemset. This is eliminated after the support counting step.

Alternate $F_{k-1} \times F_{k-1}$ Method

 Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.

•
$$F_3 = \{ABC, ABD, ABE, ACD, BCD, BDE, CDE\}$$

- Merge(A<u>BC</u>, <u>BC</u>D) = A<u>BC</u>D
- Merge(ABD, BDE) = ABDE
- Merge(A<u>CD</u>, <u>CD</u>E) = A<u>CD</u>E
- Merge(B<u>CD</u>, <u>CD</u>E) = B<u>CD</u>E

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABDE because ADE is infrequent
 - Prune ACDE because ACE and ADE are infrequent
 - Prune BCDE because BCE
- After candidate pruning: L₄ = {ABCD}

10/26/2020

Support Counting of Candidate Itemsets

- Scan the database of transactions to determine the support of each candidate itemset
 - Must match every candidate itemset against every transaction, which is an expensive operation

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Itemset
{ Beer, Diaper, Milk}
{ Beer,Bread,Diaper}
{Bread, Diaper, Milk}
{ Beer, Bread, Milk}

Support Counting of Candidate Itemsets

- To reduce number of comparisons, store the candidate itemsets in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Support Counting: An Example

Suppose you have 15 candidate itemsets of length 3:

 $\{1 \ 4 \ 5\}, \{1 \ 2 \ 4\}, \{4 \ 5 \ 7\}, \{1 \ 2 \ 5\}, \{4 \ 5 \ 8\}, \{1 \ 5 \ 9\}, \{1 \ 3 \ 6\}, \{2 \ 3 \ 4\}, \{5 \ 6 \ 7\}, \{3 \ 4 \ 5\}, \{3 \ 5 \ 6\}, \{3 \ 5 \ 7\}, \{6 \ 8 \ 9\}, \{3 \ 6 \ 7\}, \{3 \ 6 \ 8\}$

How many of these itemsets are supported by transaction (1,2,3,5,6)?

10/26/2020

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

10/26/2020

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

$ABC \rightarrow D$,	$ABD \rightarrow C$,	$ACD \rightarrow B$,	$BCD \to A,$
$A \rightarrow BCD$,	$B \rightarrow ACD$,	$C \rightarrow ABD$,	$D \rightarrow ABC$
$AB \rightarrow CD$,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	$BC \to AD,$
$BD \to AC,$	$CD \rightarrow AB$,		

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

Rule Generation

 In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

 $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

10/26/2020

Rule Generation for Apriori Algorithm

10/26/2020

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
 - run time of algorithm increases with number of transactions
- Average transaction width
 - transaction width increases the max length of frequent itemsets
 - number of subsets in a transaction increases with its width, increasing computation time for support counting

Maximal Frequent Itemset

An illustrative example

Support threshold (by count) : 5

Frequent itemsets: ? Maximal itemsets: ?

An illustrative example

Support threshold (by count) : 5

Frequent itemsets: {F} Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: ? Maximal itemsets: ?

10/26/2020

An illustrative example

Support threshold (by count) : 5

Frequent itemsets: {F} Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J} Maximal itemsets: {E,F}, {J}

Another illustrative example

Closed Itemset

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

TID	ltems
1	{A,B}
2	{B,C,D}
3	{A,B,C,D}
4	{A,B,D}
5	{A,B,C,D}

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	2
{A,B,C,D}	2

Maximal vs Closed Itemsets

10/26/2020

Maximal Frequent vs Closed Frequent Itemsets

					пе	1115								
	4	Α	В	С	D	Е	F	G	Н	I	J	Itemsets	Support (counts)	Closed itemsets
	1											{C}	3	
	2											رO}	0	
	3											{D}	2	
su	4											{C,D}	2	
tio														
sac	5													
Transactions	6													
	7													
	8													
	9													
	10													

Items

					100	1113								
	1	Α	В	С	D	Е	F	G	Н	1	J	Itemsets	Support (counts)	Closed itemsets
	1 2											{C}	3	✓
	3											{D}	2	
suc	4											{C,D}	2	√
Transactions	5													
Irans	6													
	7													
	8													
	9													
	10													

Items

					100	1115								
	1	Α	В	С	D	Е	F	G	н	1	J	Itemsets	Support (counts)	Closed itemsets
	2											{C}	3	
	3											{D}	2	
su	4											{E}	2	
Transactions	5											{C,D}	2	
rans;	6											{C,E}	2	
F	7											{D,E}	2	
	8											{C,D,E}	2	
	9													
	10													

Items

	1	Α	В	С	D	Е	F	G	Н	1	J	Itemsets	Support (counts)	Closed itemsets
	2											{C}	3	✓
	3											{D}	2	
su	4											{E}	2	
Transactions	5											{C,D}	2	
rans	6											{C,E}	2	
F	7											{D,E}	2	
	8											{C,D,E}	2	✓
	9													
	10													

Items

10/26/2020

Maximal vs Closed Itemsets

Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

Pattern Evaluation

 Association rule algorithms can produce large number of rules

- Interestingness measures can be used to prune/rank the patterns
 - In the original formulation, support & confidence are the only measures used

Computing Interestingness Measure

• Given $X \rightarrow Y$ or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

Contingency table

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Y	Y	
	Х	f ₁₁	f ₁₀	f ₁₊
f ₊₁ f ₊₀ N	X	f ₀₁	f ₀₀	f _{o+}
		f ₊₁	f ₊₀	Ν

 $\begin{array}{l} f_{11} : \text{ support of X and Y} \\ f_{10} : \text{ support of } \underline{X} \text{ and } \overline{Y} \\ f_{01} : \text{ support of } \underline{X} \text{ and } \underline{Y} \\ f_{00} : \text{ support of } \overline{X} \text{ and } \underline{Y} \end{array}$

Used to define various measures

 support, confidence, Gini, entropy, etc.

Drawback of Confidence

Custo	Теа	Coffee	
mers			
C1	0	1	
C2	1	0	
C3	1	1	
C4	1	0	

	Coffee	\overline{Coffee}	
Tea	150	50	200
\overline{Tea}	650	150	800
	800	200	1000

Association Rule: Tea \rightarrow Coffee

Confidence \cong P(Coffee|Tea) = 150/200 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

10/26/2020

Drawback of Confidence

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea \rightarrow Coffee

Confidence = P(Coffee | Tea) = 150/200 = 0.75

but P(Coffee) = 0.8, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 \Rightarrow Note that P(Coffee|Tea) = 650/800 = 0.8125

10/26/2020

Drawback of Confidence

Custo mers	Tea	Honey	
C1	0	1	
C2	1	0	
C3	1	1	
C4	1	0	

	Honey	\overline{Honey}	
Tea	100	100	200
\overline{Tea}	20	780	800
	120	880	1000

Association Rule: Tea \rightarrow Honey Confidence \cong P(Honey|Tea) = 100/200 = 0.50

Confidence = 50%, which may mean that drinking tea has little influence whether honey is used or not

So rule seems uninteresting

But P(Honey) = 120/1000 = .12 (hence tea drinkers are far more likely to have honey

10/26/2020

Measure for Association Rules

- So, what kind of rules do we really want?
 - Confidence($X \rightarrow Y$) should be sufficiently high

 To ensure that people who buy X will more likely buy Y than not buy Y

- Confidence(X \rightarrow Y) > support(Y)

 Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction

Is there any measure that capture this constraint?

– Answer: Yes. There are many of them.

Statistical Relationship between X and Y

• The criterion confidence($X \rightarrow Y$) = support(Y)

is equivalent to:

- P(Y|X) = P(Y)
- $P(X,Y) = P(X) \times P(Y)$ (X and Y are independent)

If $P(X,Y) > P(X) \times P(Y) : X \& Y$ are positively correlated

If $P(X,Y) < P(X) \times P(Y) : X \& Y$ are negatively correlated

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X, Y)}{P(X)P(Y)}$$

$$PS = P(X, Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X, Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

10/26/2020

Example: Lift/Interest

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea \rightarrow Coffee

```
Confidence= P(Coffee|Tea) = 0.75
```

but P(Coffee) = 0.8

 \Rightarrow Interest = 0.15 / (0.2×0.8) = 0.9375 (< 1, therefore is negatively associated)

There are lots of measures proposed in the literature

Measure (Symbol)	Definition
Correlation (ϕ)	$\frac{Nf_{11} - f_{1+}f_{+1}}{\sqrt{f_{1+}f_{+1}f_{0+}f_{+0}}}$
Odds ratio (α)	$(f_{11}f_{00})/(f_{10}f_{01})$
Kappa (κ)	$\frac{Nf_{11} + Nf_{00} - f_{1+}f_{+1} - f_{0+}f_{+0}}{N^2 - f_{1+}f_{+1} - f_{0+}f_{+0}}$
Interest (I)	$(Nf_{11})/(f_{1+}f_{+1})$
Cosine (IS)	$(f_{11})/(\sqrt{f_{1+}f_{+1}})$
Piatetsky-Shapiro (PS)	$\frac{f_{11}}{N} - \frac{f_{1+}f_{+1}}{N^2}$
Collective strength (S)	$\frac{f_{11}+f_{00}}{f_{1+}f_{+1}+f_{0+}f_{+0}} \times \frac{N-f_{1+}f_{+1}-f_{0+}f_{+0}}{N-f_{11}-f_{00}}$
Jaccard (ζ)	$f_{11}/(f_{1+}+f_{+1}-f_{11})$
All-confidence (h)	$\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$

Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary variables?

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	$\operatorname{Concern}$
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	65K	8	2	No
Female	 26	85K	12	1	No

Example of Association Rule:

{Gender=Male, Age \in [21,30)} \rightarrow {No of hours online \geq 10}

10/26/2020

Example: Internet Usage Data

Gender	Level of	State	Computer	Online	Chat	Online	Privacy
	Education		at Home	Auction	Online	Banking	Concerns
Female	Graduate	Illinois	Yes	Yes	Daily	Yes	Yes
Male	College	California	No	No	Never	No	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
Female	Graduate	California	Yes	No	Never	No	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	College	Alaska	Yes	Yes	Daily	Yes	No
Male	High School	Oregon	Yes	No	Never	No	No
Female	Graduate	Texas	No	No	Monthly	No	No

{Level of Education=Graduate, Online Banking=Yes} \rightarrow {Privacy Concerns = Yes}

 Introduce a new "item" for each distinct attributevalue pair

Male	Female	Education	Education	Education	 Privacy	Privacy
		= Graduate	= College	= High School	= Yes	= No
0	1	1	0	0	 1	0
1	0	0	1	0	 0	1
1	0	1	0	0	 1	0
0	1	0	1	0	 1	0
0	1	1	0	0	 1	0
1	0	0	1	0	 1	0
1	0	0	0	0	 0	1
1	0	0	0	1	 0	1
0	1	1	0	0	 0	1

• Some attributes can have many possible values

- Many of their attribute values have very low support
 - Potential solution: Aggregate the low-support attribute values

Distribution of attribute values can be highly skewed

- Example: 85% of survey participants own a computer at home
 - Most records have Computer at home = Yes
 - Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home = Yes)
 - Potential solution:
 - discard the highly frequent items
 - Use alternative measures such as h-confidence
- Computational Complexity
 - Binarizing the data increases the number of items
 - But the width of the "transactions" remain the same as the number of original (non-binarized) attributes
 - Produce more frequent itemsets but maximum size of frequent itemset is limited to the number of original attributes

Handling Continuous Attributes

- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori

Different kinds of rules can be produced:

- {Age∈[21,30), No of hours online∈[10,20)} → {Chat Online =Yes}
- {Age \in [21,30), Chat Online = Yes} \rightarrow No of hours online: μ =14, σ =4

Discretization-based Methods

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	$\operatorname{Concern}$
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	65K	8	2	No
Female	 26	85K	12	1	No

Male	Female	 Age	Age	Age	 Privacy	Privacy
		 < 13	$\in [13, 21)$	$\in [21, 30)$	 = Yes	= No
0	1	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	1	 1	0
0	1	 0	0	0	 1	0
0	1	 0	0	0	 1	0
1	0	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	0	 0	1
0	1	 0	0	1	 0	1

Discretization-based Methods

• Unsupervised:

- Equal-width binning
- Equal-depth binning
- Cluster-based

<1 2 3> <4 5 6> <7 8 9>

<1 2 > <3 4 5 6 7 > < 8 9>

Supervised discretization

Continuous attribute, v

Discretization Issues

Discretization Issues

Interval too wide (e.g., Bin size= 30)

- May merge several disparate patterns
 - Patterns A and B are merged together
- May lose some of the interesting patterns
 - Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
 - Pattern A is broken up into two smaller patterns
 - Can recover the pattern by merging adjacent subpatterns
 - Pattern B is broken up into smaller patterns
 - Cannot recover the pattern by merging adjacent subpatterns
 - Some windows may not meet support threshold

Statistics-based Methods

• Example:

```
{Income > 100K, Online Banking=Yes} \rightarrow Age: \mu=34
```

- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.
- Approach:
 - Withhold the target attribute from the rest of the data
 - Extract frequent itemsets from the rest of the attributes
 - Binarized the continuous attributes (except for the target attribute)
 - For each frequent itemset, compute the corresponding descriptive statistics of the target attribute
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule

Statistics-based Methods

	Gender	 Age	Annual	No of hours spent	No of email	Privacy
			Income	online per week	accounts	$\operatorname{Concern}$
	Female	 26	90K	20	4	Yes
	Male	 51	135K	10	2	No
	Male	 29	80K	10	3	Yes
	Female	 45	120K	15	3	Yes
	Female	 31	95K	20	5	Yes
7	Male	 25	55K	25	5	Yes
	Male	 37	100K	10	1	No
	Male	 41	65K	8	2	No
	Female	 26	85K	12	1	No

Frequent Itemsets:

```
{Male, Income > 100K}
```

```
{Income < 30K, No hours ∈[10,15)}
```

```
{Income > 100K, Online Banking = Yes}
```

Association Rules:

```
{Male, Income > 100K} \rightarrow Age: \mu = 30
{Income < 40K, No hours \in [10,15)} \rightarrow Age: \mu = 24
{Income > 100K,Online Banking = Yes}
\rightarrow Age: \mu = 34
```

....

Concept Hierarchies

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - ◆ e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
 are indicative of association between milk and bread

- Rules at higher level of hierarchy may be too generic

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$
 - $\begin{array}{ll} & \text{If} & \sigma(X1 \cup Y1) \geq \text{minsup,} \\ \text{and} & X \text{ is parent of } X1, Y \text{ is parent of } Y1 \\ \text{then} & \sigma(X \cup Y1) \geq \text{minsup, } \sigma(X1 \cup Y) \geq \text{minsup} \\ & \sigma(X \cup Y) \geq \text{minsup} \end{array}$
 - $\begin{array}{ll} & If & conf(X1 \Rightarrow Y1) \geq minconf, \\ & then & conf(X1 \Rightarrow Y) \geq minconf \end{array}$

- Approach 1:
 - Extend current association rule formulation by augmenting each transaction with higher level items

Original Transaction: {skim milk, wheat bread}

Augmented Transaction:

{skim milk, wheat bread, milk, bread, food}

Issues:

- Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

10/26/2020

- Approach 2:
 - Generate frequent patterns at highest level first
 - Then, generate frequent patterns at the next highest level, and so on

Issues:

- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns