Naïve Bayes Classifiers

Anna Monreale Computer Science Department

Introduction to Data Mining, 2nd Edition Chapter 5.3

Motivation

- Relationship between attributes and class lables may not be deterministic
- Reasons:
 - Noise in the data
 - Confounding factors affecting the classification and not in the data
- Bayesian Classifier exploit the Bayes Theorem that combines prior knowledge on the class labels with knowledge derivable from data

Bayes Classifier

- A probabilistic framework for solving classification problems.
- Let P be a probability function that assigns a number between 0 and 1 to events.
- X = x an events is happening
- P(X = x) is the probability that events X = x.
- Joint Probability P(X = x, Y = y)
- Conditional Probability P(Y = y | X = x)
- Relationship: P(X,Y) = P(Y|X) P(X) = P(X|Y) P(Y)
- Bayes Theorem: P(Y|X) = P(X|Y)P(Y) / P(X)
- Another Useful Property: P(X = x) = P(X = x, Y = 0) + P(X = x, Y = 1)

Bayes Theorem

- Consider a football game. Team 0 wins 65% of the time, Team 1 the remaining 35%. Among the game won by Team 1, 75% of them are won playing at home. Among the games won by Team 0, 30% of them are won at Team 1's field.
- If Team 1 is hosting the next match, which team will most likely win?
- Team 0 wins: P(Y = 0) = 0.65
- Team 1 wins: P(Y = 1) = 0.35
- Team 1 hosted the match won by Team 1: P(X = 1 | Y = 1) = 0.75
- Team 1 hosted the match won by Team 0: P(X = 1 | Y = 0) = 0.30
- Objective P(Y = 1 | X = 1)

Bayes Theorem

- P(Y = 1 | X = 1) = P(X = 1 | Y = 1)P(Y = 1) / P(X = 1) == 0.75 x 0.35 / (P(X = 1, Y = 1) + P(X = 1, Y = 0)) = 0.75 x 0.35 / (P(X = 1 | Y = 1)P(Y=1) + P(X = 1 | Y = 0)P(Y=0)) = 0.75 x 0.35 / (0.75 x 0.35 + 0.30 x 0.65) = 0.5738
- Therefore Team 1 has a better chance to win the match

Bayes Theorem for Classification

- X denotes the attribute sets, $X = \{X_1, X_2, \dots, X_d\}$
- Y denotes the class variable
- We treat the relationship probabilistically using P(Y|X)

Bayes Theorem for Classification

- Learn the posterior P(Y | X) for every combination of X and Y.
- By knowing these probabilities, a test record X' can be classified by finding the class Y' that maximizes the posterior probability P(Y' | X').
- This is equivalent of choosing the value of Y' that maximizes P(X'|Y')P(Y').
- How to estimate it?

Università di Pisa

Naïve Bayes Classifier

- It estimates the class-conditional probability by assuming that the attributes are conditionally independent given the class label y.
- The conditional independence is stated as:

$$P(X|Y = y) = \prod_{i=1}^{d} P(X_i|Y = y)$$

where each attribute set $X = \{X_1, X_2, \dots, X_d\}$

Università di Pisa

Conditional Independence

Given three variables Y, X₁, X₂ we can say that Y is independent from X₁ given X₂ if the following condition holds:

 $P(Y | X_1, X_2) = P(Y | X_2)$

- With the conditional independence assumption, instead of computing the class-conditional probability for every combination of X we only need to estimate the conditional probability of each X_i given Y.
- Thus, to classify a record the naive Bayes classifier computes the posterior for each class Y and takes the maximum class as result

$$P(Y|X) = P(Y) \prod_{i=1}^{d} P(X_i|Y = y) / P(X)$$

How to estimate ?

Università di Pisa

How to Estimate Probability From Data

- Class $P(Y) = N_y / N$
- N_v number of records with outcome y
- N number of records
- Categorical attributes
 P(X = x | Y = y) = N_{xy} / N_y
- N_{xy} records with value x and outcome y
- P(Evade = Yes) = 3/10
- P(Marital Status = Single | Yes) = 2/3

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

How to Estimate Probability From Data

Continuous attributes

- Discretize the range into bins
 - Continuous vs nominal
 - Estimation: count records with class y and falling in the range
- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(X|y)

How to Estimate Probability From Data

• Normal distribution

$$P(X_{i} = x_{i} | Y = y) = \frac{1}{\sqrt{2\pi}\sigma_{ij}} e^{-\frac{(x_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- μ_{ij} can be estimated as the mean of X_i for the records that belongs to class y_i.
- Similarly, σ_{ij} as the standard deviation.
- P(Income = 120 | No) = 0.0072
 - mean = 110
 - std dev = 54.54

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

M-estimate of Conditional Probability

- If one of the conditional probability is zero, then the entire expression becomes zero.
- For example, given X = {Refund = Yes, Divorced, Income = 120k}, if P(Divorced | No) is zero instead of 1/7, then

$$- P(X | No) = 3/7 \times 0 \times 0.00072 = 0$$

$$- P(X | Yes) = 0 \times 1/3 \times 10^{-9} = 0$$

- M-estimate $P(X|Y) = \frac{N_{xy} + mp}{N_y + m}$ (if $P(X|Y) = \frac{N_{xy} + 1}{N_y + |Y|}$ is Laplacian estimation)
- m is a parameter, p is a user-specified parameter (e.g. probability of observing x_i among records with class y_i.
- In the example with m = 3 and p = 1/m = 1/3 (i.e., Laplacian estimation) we have

P(Married | Yes) = (0+3x1/3)/(3+3) = 1/6

Naïve Bayes Classifier

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN, not treated in this course)

References

 Bayesian Classifiers. Chapter
 5.3. Introduction to Data Mining.

EXERCISE - NBC

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook	
P(sunny p) =	P(sunny n) =
P(overcast p) =	P(overcast n) =
P(rain p) =	P(rain n) =
temperature	
P(hot p) =	P(hot n) =
P(mild p) =	P(mild n) =
P(cool p) =	P(cool n) =
humidity	
P(high p) =	P(high n) =
P(normal p) =	P(normal n) =
windy	
P(true p) =	P(true n) =
P(false p) =	P(false n) =

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	Ν
sunny	hot	high	true	Ν
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	Ν
overcast	cool	normal	true	Р
sunny	mild	high	false	Ν
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	Ν

P(p) = 9/14
P(n) = 5/14

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

P(p) = 9/14	Outlook	Temeprature	Humidity	Windy	Class		
P(n) = 5/14	rain	hot	high	false	?		
outlook			()				
P(sunny p) = 2/9	P(sunny n) = 3/5		$ P(X p) \cdot P(p) =$				
P(overcast p) = 4/9	P(overcast n) = 0						
P(rain p) = 3/9	P(rain n) = 2/5	P(X n)·P	(n) =				
temperature							
P(hot p) = 2/9	P(hot n) = 2/5						
P(mild p) = 4/9	P(mild n) = 2/5						
P(cool p) = 3/9	P(cool n) = 1/5						
humidity							
P(high p) = 3/9	P(high n) = 4/5						
P(normal p) = 6/9	P(normal n) = 1/5						
windy							
P(true p) = 3/9	P(true n) = 3/5						
P(false p) = 6/9	P(false n) = 2/5						

P(p) = 9/14	Outlook	Temeprature	Humidity	Windy	Class		
P(n) = 5/14	rain	hot	high	false	N		
outlook			(m) - D/ma	:	• • + • • \		
P(sunny p) = 2/9	P(sunny n) = 3/5		$(\mathbf{p}) = \mathbf{P}(\mathbf{ra})$	mp).P(r 	0 p		
P(overcast p) = 4/9	P(overcast n) = 0)·P(false)	p)·P(p) =	$3/9 \cdot 2/9$		
P(rain p) = 3/9	P(rain n) = 2/5	3/9 · 6/9	$3/9 \cdot 6/9 \cdot 9/14 = 0.010582$				
temperature							
P(hot p) = 2/9	P(hot n) = 2/5						
P(mild p) = 4/9	P(mild n) = 2/5	P(X n)∙P	<pre> P(X n)·P(n) =] P(rain n)·P(hot n)·P(high n)·P(false</pre>				
P(cool p) = 3/9	P(cool n) = 1/5	P(rain n)					
humidity		n)·P(n) =	2/5 · 2/5	$\cdot 4/5 \cdot 2/2$	/5 · 5/14 =		
P(high p) = 3/9	P(high n) = 4/5	0.018286	5				
P(normal p) = 6/9	P(normal n) = 1/5						
windy							
P(true p) = 3/9	P(true n) = 3/5						
P(false p) = 6/9	P(false n) = 2/5						

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

A: attributes

M: mammals

N: non-mammals
$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$
$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$
$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$
$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$

P(A|M)P(M) > P(A|N)P(N) => Mammals

a) Naive Bayes (**3 points**)

Given the training set below, build a Naive Bayes classification model (i.e. the corresponding table of probabilities) using (i) the normal formula and (ii) using Laplace formula. What are the main effects of Laplace on the models?

A	В	class	
no	green	N	
no	red	Y	
yes	green	N	
no	red	N	
no	red	Y	
no	green	Y	
yes	green	N	

Answer: Normal

	Y	N		Y	N
	3	3 4		0.43	0.57
	A Y	AIN		AIY	AIN
yes	0) 2	yes	0.00	0.50
no	3	3 2	no	1.00	0.50
	B Y	B N		BIY	B N
green	1	. 3	green	0.33	0.75
red	2	2 1	red	0.67	0.25

Laplace		Y		N			Y		N	
			3		4			0.43		0.57
		AIY		AIN			AIY		AIN	
	yes		0		2	yes		0.20		0.50
	no		3		2	no		0.80		0.50
		B Y		B N			B Y		BIN	
	green		1		3	green		0.40		0.67
	red		2		1	red		0.60		0.33

References

 Rule-Based Classifiers.
 Chapter 5.1. Introduction to Data Mining.

