7.14. APL13: SUFFIX ARRAYS -~ MORE SPACE REDUCTION 149

linearization of the circular string. If I = 0 or [= n + 1, then cut the circular string
between character n and character 1. Each leaf in the subtree of this point gives a cutting
point yielding the same linear string.

The correctness of this solution is easy to establish and is left as an exercise.

This method runs in linear time and is therefore time optimal. A different linear-time
method with a smaller constant was given by Shiloach [404].

7.14. APL13: Suffix arrays — more space reduction

In Section 6.5.1, we saw that when alphabet size is included in the time and space bounds,
the suffix tree for a string of length m either requires @(m|Z|) space or the minimum
of O(mlogm) and O(mlog|X|) time. Similarly, searching for a pattern P of length n
using a suffix tree can be done in O(n) time only if ®(m|X|) space is used for the tree,
or if we assume that up to | X| character comparisons cost only constant time. Otherwise,
the search takes the minimum of O(nlogm) and O(nlog|X|) comparisons. For these
reasons, a suffix tree may require too much space to be practical in some applications.
Hence a more space efficient approach is desired that still retains most of the advantages
of searching with a suffix tree.

In the context of the substring problem (see Section 7.3) where a fixed string 7 will be
searched many times, the key issues are the time needed for the search and the space used
by the fixed data structure representing 7'. The space used during the preprocessing of T
is of less concern, although it should still be “reasonable”.

Manber and Myers [308] proposed a new data structure, called a suffix array, that
is very space efficient and yet can be used to solve the exact matching problem or the
substring problem almost as efficiently as with a suffix tree. Suffix arrays are likely to be
an important contribution to certain string problems in computational molecular biology,
where the alphabet can be large (we will discuss some of the reasons for large alphabets
below). Interestingly, although the more formal notion of a suffix array and the basic
algorithms for building and using it were developed in [308], many of the ideas were
anticipated in the biological literature by Martinez [310].

After defining suffix arrays we show how to convert a suffix tree to a suffix array
in linear time. It is important to be clear on the setting of the problem. String T will
be held fixed for a long time, while P will vary. Therefore, the goal is to find a space-
efficient representation for 7 (a suffix array) that will be held fixed and that facilitates
search problems in 7. However, the amount of space used during the construction of that
representation is not so critical. In the exercises we consider a more space efficient way
to build the representation itself.

Definition Given an m-character string T, a suffix array for T, called Pos, is an array
of the integers in the range 1 to m, specifying the lexicographic order of the m suffixes
of string T.

That is, the suffix starting at position Pos (1) of T is the lexically smallest suffix, and
in general suffix Pos (i) of T is lexically smaller than suffix Pos (i + 1).

As usual, we will affix a terminal symbol $ to the end of S, but now we interpret
it to be lexically less than any other character in the alphabet. This is in contrast to its
interpretation in the previous section. As an example of a suffix array, if T is mississippi,
then the suffix array Posis 11, 8, 5,2, 1, 10,9, 7, 4, 6, 3. Figure 7.4 lists the eleven suffixes
in lexicographic order.

150 FIRST APPLICATIONS OF SUFFIX TREES

1:
8:
5:
2:
1:
10:
9:
7:
4:
6:

i

ippi
issippi
ississippi
mississippi
pi

ppi

sippi
sisippi
ssippi
ssissippi

W

Figure 7.4: The eleven suffixes of mississippi listed in lexicographic order. The starting positions of those
suffixes define the suffix array Pos.

Notice that the suffix array holds only integers and hence contains no information about
the alphabet used in string 7. Therefore, the space required by suffix arrays is modest -
for a string of length m, the array can be stored in exactly m computer words, assuming a
word size of at least log m bits. ;

When augmented with an additional 2m values (called Lcp values and defined later),
the suffix array can be used to find all the occurrences in T of a pattern P in O(n +
log, m) single-character comparison and bookkeeping operations. Moreover, this bound
is independent of the alphabet size. Since for most problems of interest log, m is O(n), the

substring problem is solved by using suffix arrays as efficiently as by using suffix trees.

7.14.1. Suffix tree to suffix array in linear time

We assume that sufficient space is available to build a suffix tree for T (this is done once
during a preprocessing phase), but that the suffix tree cannot be kept intact to be used in
the (many) subsequent searches for patterns in 7. Instead, we convert the suffix tree to the
more space efficient suffix array. Exercises 53, 54, and 55 develop an alternative, more
space efficient (but slower) method, for building a suffix array.

A suffix array for 7 can be obtained from the suffix tree 7 for 7 by performing
a “lexical” depth-first traversal of 7. Once the suffix array is built, the suffix tree is
discarded.

Definition Define an edge (v, u) to be lexically less than an edge (v, w) if and only if
the first character on the (v, u) edge is lexically less than the first character on (v, w). (In
this application, the end of string character $ is lexically less than any other character.)

Since no two edges out of v have labels beginning with the same character, there is a
strict lexical ordering of the edges out of v. This ordering implies that the path from the
root of 7 following the lexically smallest edge out of each encountered node leads to a leaf
of T representing the lexically smallest suffix of 7. More generally, a depth-first traversal
of T that traverses the edges out of each node v in their lexical order will encounter the
leaves of 7 in the lexical order of the suffixes they represent. Suffix array Pos is therefore
just the ordered list of suffix numbers encountered at the leaves of 7 during the lexical
depth-first search. The suffix tree for T is constructed in linear time, and the traversal also
takes only linear time, so we have the following:

Theorem 7.14.1. The suffix array Pos for a string T of length m can be constructed in
O(m) time.

7.14. APL13: SUFFIX ARRAYS — MORE SPACE REDUCTION 151

Figure 7.5: The lexical depth-first traversal of the suffix tree visits the leaves in order 5, 2, 6, 3, 4, 1.

For example, the suffix tree for T = tartaris shown in Figure 7.5. The lexical depth-first
traversal visits the nodes in the order 5, 2, 6, 3, 4, 1, defining the values of array Pos.

As an implementation detail, if the branches out of each node of the tree are organized
in a sorted linked list (as discussed in Section 6.5, page 116) then the overhead to do a
lexical depth-first search is the same as for any depth-first search. Every time the search

must choose an edge out of a node v to traverse, it simply picks the next edge on v’s
linked list.

7.14.2. How to search for a pattern using a suffix array

The suffix array for string T allows a very simple algorithm to find all occurrences of any
pattern P in 7. The key is that if P occurs in T then all the locations of those occurrences
will be grouped consecutively in Pos. For example, P = issi occurs in mississippi starting
at locations 2 and 5, which are indeed adjacent in Pos (see Figure 7.4). So to search for
occurrences of P in T simply do binary search over the suffix array. In more detail, suppose
that P is lexically less than the suffix in the middle position of Pos (i.e., suffix Pos([m /21)).
In that case, the first place in Pos that contains a position where P occurs in T must be
in the first half of Pos. Similarly, if P is lexically greater than suffix Pos([m/2]), then the
places where P occurs in 7 must be in the second half of Pos. Using binary search, one
can therefore find the smallest index i in Pos (if any) such that P exactly matches the first
Then pattern P occurs in T starting at every location given by Pos(i) through Pos(i").

The lexical comparison of P to any suffix takes time proportional to the length of the
common prefix of those two strings. That prefix has length at most »; hence

Theorem 7.14.2. By using binary search on array Pos, all the occurrences of P in T can
be found in O(nlogm) time.

Of course, the true behavior of the algorithm depends on how many long prefixes of
P occur in T. If very few long prefixes of P occur in T then it will rarely happen that a
specific lexical comparison actually takes ©(n) time and generally the O(n log m) bound
is quite pessimistic. In “random” strings (even on large alphabets) this method should run
in O(n+log m) expected time. In cases where many long prefixes of P do occurin T, then
the method can be improved with the two tricks described in the next two subsections.

e

152 FIRST APPLICATIONS OF SUFFIX TREES

7.14.3. A simple accelerant

As the binary search proceeds, let L and R denote the left and right boundaries of the
“current search interval”. At the start, L equals 1 and R equals m. Then in each iteration
of the binary search, a query is made at location M = [(R + L)/2] of Pos. The search
algorithm keeps track of the longest prefixes of Pos (L) and Pos (R) that match a prefix of
P.Let! and r denote those two prefix lengths, respectively, and let mir = min{/, r).

The value mlr can be used to accelerate the lexical comparison of P and suffix Pos (M).
Since array Pos gives the lexical ordering of the suffixes of T, if is any index between
L and R, the first mlr characters of suffix Pos (i) must be the same as the first mir
characters of suffix Pos (L) and hence of P. Therefore, the lexical comparison of P and
suffix Pos (M) can begin from position mlr + 1 of the two strings, rather than starting
from the first position.

Maintaining m!r during the binary search adds little additional overhead to the algorithm
but avoids many redundant comparisons. At the start of the search, when L = land R = m,
explicitly compare P to suffix Pos(1) and suffix Pos(m) to find [, r, and mir. However,
the worst-case time for this revised method is still O(n logm). Myers and Manber report -
that the use of m!r alone allows the search to run as fast in practice as the O(n + logm)
worst-case method that we first advertised. Still, if only because of its elegance, we present
the full method that guarantees that better worst-case bound.

7.14.4. A super-accelerant

Call an examination of a character in P redundant if that character has been examined
before. The goal of the acceleration is to reduce the number of redundant character ex-
aminations to at most one per iteration of the binary search — hence O(logm) in all. The
desired time bound, O(n + log m), follows immediately. The use of mir alone does not
achieve this goal. Since mlr is the minimum of / and r, whenever | # r, all characters
in P from mlr + 1 to the maximum of [and r will have already been examined. Thus
any comparisons of those characters will be redundant. What is needed is a way to begin
comparisons at the maximum of [and r.

Definition Lcp (i, j)is the length of the longest common prefix of the suffixes specified
in positions i and j of Pos. That is, Lcp (i, j) is the length of the longest prefix common
to suffix Pos (i) and suffix Pos (j). The term Lcp stands for longest common prefix.

For example, when T = mississippi, suffix Pos (3) is issippi, suffix Pos (4) is ississippi,
and so Lcp(3, 4) is four (see Figure 7.4).

To speed up the search, the algorithm uses Lep (L, M) and Lep (M, R) for each triple
(L, M, R) that arises during the execution of the binary search. For now, we assume that
these values can be obtained in constant time when needed and show how they help the
search. Later we will show how to compute the particular Lcp values needed by the binary
search during the preprocessing of 7.

How to use Lcp values

Simplest case In any iteration of the binary search, if [= r, then compare P to suffix
Pos(M) starting from position mir +1 =1+ 1 = r + 1, as before.

General case When [# r, let us assume without loss of generality that [> r. Then
there are three subcases:

7.14. APL13: SUFFIX ARRAYS ~ MORE SPACE REDUCTION 153

lep(L, M)
n g g z
m f f y
e o e x
r
d d d d

o
[

o
o
o
>

a a a a

P L M R

Figure 7.6: Subcase 1 of the super-accelerant. Pattern P is abcdemn, shown vertically running upwards
from the first character. The suffixes Pos(L), Pos(M), and Pos(R) are also shown vertically. In this case,
Lep(L, M) > 0and | > r. Any starting location of Pin T must occur in Pos to the right of M, since Pagrees
with suffix Pos(M) only up to character /.

o If Lep(L, M) > I, then the common prefix of suffix Pos(L) and suffix Pos(M) is longer
than the common prefix of P and Pos(L). Therefore, P agrees with suffix Pos(M) up
through character /. In other words, characters [+ 1 of suffix Pos(L) and suffix Pos(M)
are identical and lexically less than character [+ 1 of P (the last fact follows since P is
lexically greater than suffix Pos(L)). Hence all (if any) starting locations of P in 7 must
occur to the right of position M in Pos. So in any iteration of the binary search where
this case occurs, no examinations of P are needed; L just gets changed to M, and / and r
remain unchanged. (See Figure 7.6.)

e If Lep (L, M) < I, then the common prefix of suffix Pos(L) and Pos(M) is smaller than
the common prefix of suffix Pos(L) and P. Therefore, P agrees with suffix Pos(M) up
through character Lep (L, M). The Lep (L, M) + 1 characters of P and suffix Pos(L) are
identical and lexically less than character Lep (L, M) + 1 of suffix Pos(M). Hence all (if
any) starting locations of P in 7 must occur to the left of position M in Pos. So in any
iteration of the binary search where this case occurs, no examinations of P are needed; r
is changed to Lep (L, M), I remains unchanged, and R is changed to M.

o IfLcp (L, M) =1, then P agrees with suffix Pos(M) up to character /. The algorithm then
lexically compares P to suffix Pos(M) starting from position / + 1. In the usual manner,
the outcome of that lexical comparison determines which of L or R change, along with
the corresponding change of [or r.

Theorem 7.14.3. Using the Lcp values, the search algorithm does at most O(n +logm)
comparisons and runs in that time.

PROOF First, by simple case analysis it is easy to verify that neither [nor r ever decrease
during the binary search. Also, every iteration of the binary search terminates the search,
examines no characters of P, or ends after the first mismatch occurs in that iteration.

In the two cases (= r or Lep (L, M) = | > r) where the algorithm examines a
character during the iteration, the comparisons start with character max(l, r) of P. Suppose
there are k characters of P examined in that iteration. Then there are £ — 1 matches during
the iteration, and at the end of the iteration max(l, r) increases by k — 1 (either [or r
is changed to that value). Hence at the start of any iteration, character max(/, r) of P
may have already been examined, but the next character in P has not been. That means at
most one redundant comparison per iteration is done. Thus no more than log, m redundant
comparisons are done overall. There are at most n nonredundant comparisons of characters

154 FIRST APPLICATIONS OF SUFFIX TREES

1,8

1,1 1,2 23 34 45 56 6,7 7.8

Figure 7.7: Binary tree B representing all the possible search intervals in any execution of binary search
in a list of length m = 8.

of P, giving a total bound of n + log m comparisons. All the other work in the algorithm
can clearly be done in time proportional to these comparisons. O

7.14.5. How to obtain the Lcp values

The Lcp values needed to accelerate searches are precomputed in the preprocessing phase
during the creation of the suffix array. We first consider how many possible Lcp values
are ever needed (over any possible execution of binary search). For convenience, assume
m is a power of two.

Definition Let B be a complete binary tree with m leaves, where each node of B is
labeled with a pair of integers (i, j), 1 <i < j <m. The root of B is labeled (1, m).
Every nonleaf node (i, j) has two children; the left one is labeled (i, (i + j)/2}), and
the right one is labeled (| (i 4+ j)/2], j). The leaves of B are labeled (i, i + 1) (plus one
labeled (1, 1)) and are ordered left to right in increasing order of i. (See Figure 7.7.)

Essentially, the node labels specify the endpoints (L, R) of all the possible search
intervals that could arise in the binary search of an ordered list of length m. Since B isa
binary tree with m leaves, B has 2m — 1 nodes in total. So there are only O(m) Lcp values
that need be precomputed. It is therefore plausible that those values can be accumulated
during the O(m)-time preprocessing of T'; but how exactly? In the next lemma we show
that the Lcp values at the leaves of B are easy to accumulate during the lexical depth-first
traversal of 7 .

Lemma 7.14.1. In the depth-first traversal of T, consider the internal nodes visited
between the visits to leaf Pos(i) and leaf Pos(i + 1), that is, between the i th leaf visited
and the next leaf visited. From among those internal nodes, let v denote the one that is
closest to the root. Then Lep (i, i + 1) equals the string-depth of node v.

For example, consider again the suffix tree shown in Figure 7.5 (page 151). Lcp(5,6)
is the string-depth of the parent of leaves 4 and 1. That string-depth is 3, since the parent
of 4 and 1 is labeled with the string tar. The values of Lep (i, 1 + 1)are2,0,1,0,3fori
from 1 to 5.

The hardest part of Lemma 7.14.1 involves parsing it. Once done, the proofis immediate
from properties of suffix trees, and it is left to the reader.

