4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 77

where for each character x, V.(«, B, i) is computed by replacing each wild card with
character x. In summary,

Theorem 4.3.1. The match-count problem can be solved in O(mlogm) time even if an
unbounded number of wild cards are allowed in either P or T.

Later, after discussing suffix trees and common ancestors, we will presentin Section 9.3
a different, more comparison-based approach to handling wild cards that appear in both
strings.

4.4. Karp-Rabin fingerprint methods for exact match

The Shift-And method assumes that we can efficiently shift a vector of bits, and the
generalized Shift-And method assumes that we can efficiently increment an integer by
one. If we treat a (row) bit vector as an integer number then a left shift by one bit results
in the doubling of the number (assuming no bits fall off the left end). So it is not much of
an extension to assume, in addition to being able to increment an integer, that we can also
efficiently multiply an integer by two. With that added primitive operation we can turn
the exact match problem (again without mismatches) into an arithmetic problem. The first
result will be a simple linear-time method that has a very small probability of making an
error. That method will then be transformed into one that never makes an error, but whose
running time is only expected to be linear. We will explain these results using a binary
string P and a binary text 7. That is, the alphabet is first assumed to be just {0, 1}. The
extension to larger alphabets is immediate and will be left to the reader.

4.4.1. Arithmetic replaces comparisons

Definition For a text string T, let 7 denote the n-length substring of T starting at
character 7. Usually, n is known by context, and T;* will be replaced by T;.

Definition For the binary pattern P, let

H(P) = iZ"‘iP(i).

i=1
Similarly, let

i=n

H(T,)=) 2"'T(r+i-1.
i=l
That is, consider P to be an n-bit binary number. Similarly, consider 7} to be an n-bit
binary number. For example, if P = 0101 thenn = 4 and H(P) = 2> x 0+ 22 x 1 +
21 x0+2°x1=5;if T =101101010, n = 4, and r = 2, then H(T}) = 6.
Clearly, if there is an occurrence of P starting at position r of T then H(P) = H(T,).
However, the converse is also true, so

Theorem 4.4.1. There is an occurrence of P starting at position r of T if and only if
H(P)= H(T,).

78 SEMINUMERICAL STRING MATCHING

The proof, which we leave to the reader, is an immediate consequence of the fact that
every integer can be written in a unique way as the sum of positive powers of two.

Theorem 4.4.1 converts the exact match problem into a numerical problem, comparing
the two numbers H(P) and H(T,) rather than directly comparing characters. But unless
the pattern is fairly small, the computation of H(P) and H(T,) will not be efficient.? The
problem is that the required powers of two used in the definition of H (P) and H(T;)
grow large too rapidly. (From the standpoint of complexity theory, the use of such large
numbers violates the unit-time random access machine (RAM) model. In that model,
the largest allowed numbers must be represented in Ollog(n + m)] bits, but the number
2" requires n bits. Thus the required numbers are exponentially too large.) Even worse,
when the alphabet is not binary but say has ¢ characters, then numbers as large as 1" are
needed.

In 1987 R. Karp and M. Rabin [266] published a method (devised almost ten years
earlier), called the randomized fingerprint method, that preserves the spirit of the above
numerical approach, but that is extremely efficient as well, using numbers that satisfy the
RAM model. It is a randomized method where the only if part of Theorem 4.4.1 continues
to hold, but the if part does not. Instead, the if part will hold with high probability. This is
explained in detail in the next section.

4.4.2. Fingerprints of P and T

The general idea is that, instead of working with numbers as large as H(P) and H(T,), we
will work with those numbers reduced modulo a relatively small integer p. The arithmetic
will then be done on numbers requiring only a small number of bits, and so will be efficient.
But the really attractive feature of this method is a proof that the probability of error can
be made small if p is chosen randomly in a certain range. The following definitions and
lemmas make this precise.

Definition For a positive integer p, H,(P)is defined as H(P) mod p. Thatis H »(P)is
the remainder of H(P) after division by p. Similarly, H »(T) is defined as H(7,) mod p.
The numbers H,(P) and H »(T,) are called fingerprints of P and T,.

Already, the utility of using fingerprints should be apparent. By reducing H(P) and
H(T,) modulo a number p, every fingerprint remains in the range 0 to p — 1, so the size of
a fingerprint does not violate the RAM model. But if H (P) and H(T,) must be computed
before they can be reduced modulo p, then we have the same problem of intermediate
numbers that are too large. Fortunately, modular arithmetic allows one to reduce at any
time (i.e., one can never reduce too much), so that the followin g generalization of Horner’s
rule holds:

Lemmad.4.1. H,(P)={[...({[P(1)x2 mod p+P(2)1x2mod p+P(3)} x2 mod p+
P(4))...1mod p+ P(n)} mod p, and no number ever exceeds 2p during the computation
of H,(P).

2 One can more efficiently compute H (T,) from H(T,) than by following the definition directly (and we will need
that later on), but the time to do the updates is not the issue here.

4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 79

For example, if P = 101111 and p = 7, then H(P) = 47 and H,(P) = 47 mod 7 = 5.
Moreover, this can be computed as follows:

1x2mod7+0=2
2x2mod7+1=5
5x2mod7+1=4
4x2mod7+4+1=2
2x2mod7+1=5
5mod7 = 5.

The point of Horner’s rule is not only that the number of multiplications and additions
required is linear, but that the intermediate numbers are always kept small.

Intermediate numbers are also kept small when computing H,(7,) for any r, since that
computation can be organized the way that H,(P) was. However, even greater efficiency
is possible: For r > 1, H,(T,) can be computed from H,(7,_;) with only a small constant
number of operations. Since

Hy(T,) = H(T,) mod p
and
HT)=2xHI,.)—-2"Tr =D+ T +n-—1),
it follows that
H,(T,)) =[(2x H(T,-;) mod p) — (2" mod p) x T(r — D+ T(r+n— 1)] mod p.
Further,
2" mod p =2 x (2! mod p) mod p.

Therefore, each successive power of two taken mod p and each successive value H,(7,)
can be computed in constant time.

Prime moduli limit false matches

Clearly, if P occurs in T starting at position r then H,(P) = H,(T,), butnow the converse
does not hold for every p. That is, we cannot necessarily conclude that P occurs in T
starting at r just because H,(P) = H,(T,).

Definition If H,(P) = H,(T,) but P does not occur in T starting at position 7, then
we say there is a false match between P and T at position r. If there is some position r
such that there is a false match between P and T at r, then we say there is a false match
between P and 7.

The goal will be to choose a modulus p small enough that the arithmetic is kept
efficient, yet large enough that the probability of a false match between P and T is kept
small. The key comes from choosing p to be a prime number in the proper range and
exploiting properties of prime numbers. We will state the needed properties of prime
numbers without proof.

Definition For a positive integer u, 7 (1) is the number of primes that are less than or
equal to u.

The following theorem is a variant of the famous prime number theorem.

Theorem 4.4.2. In’(‘—u) <mu) <12 ln‘(‘u), where In(u) is the base e logarithm of u [383].

80 SEMINUMERICAL STRING MATCHING

Lemma 4.4.2. Ifu > 29, then the product of all the primes that are less than or equal to
u is greater than 2% [383].

For example, for u = 29 the prime numbers less than or equal to 29 are 2, 5, 7, 11, 13,
17,19, 23, and 29. Their product is 2,156,564,410 whereas 2% is 536,870,912.

Corollary 4.4.1. If u > 29 and x is any number less than or equal to 2“, then x has fewer
than (1) (distinct) prime divisors.

PROOF Suppose x does have k¥ > m(u) distinct prime divisors ¢y, ¢z, ..., gx. Then
2" > x > q1q; .. .q; (the first inequality is from the statement of the corollary, and the
second from the fact that some primes in the factorization of x may be repeated). But
q142 - . . g 1s at least as large as the product of the smallest k primes, which is greater than
the product of the first 77 (1) primes (by assumption that k > 77 (u«)). However, the product
of the primes less than or equal to u is greater than 2" (by Lemma 4.4.2). So the assumption
that k > 7 (u) leads to the contradiction that 2 > 2%, and the lemma is proved. 0O

The central theorem

Now we are ready for the central theorem of the Karp—-Rabin approach.

Theorem 4.4.3. Let P and T be any strings such that nm > 29, where n and m are the

lengths of P and T, respectively. Let I be any positive integer. If p is a randomly chosen

prime number less than or equal to I, then the probability of a false match between P and
w{nm)

T is less than or equal to T

PROOF Let R be the set of positions in 7 where P does not begin. That is, s € R if
and only if P does not occur in T beginning at s. For each s € R, H(P) # H(T,). Now
consider the product I',cz(|H(P) — H(T)|). That product must be at most 2™ since for
any s, H(P) — H(T;) < 2" (recall that we have assumed a binary alphabet). Applying
Corollary 4.4.1, TI;er(|H(P) — H(T;)]) has at most 7 (nm) distinct prime divisors.

Now suppose a false match between P and T occurs at some position r of 7. That
means that H(P)mod p = H(T,) mod p and that p evenly divides H(P) — H(T,).
Trivially then, p evenly divides IT;cx(|H(P) — H(T})}), and so p is one of the prime
divisors of that product. If p allows a false match to occur between P and T, then p must
be one of a set of at most 77 (nm) numbers. But p was chosen randomly from a set of 7 (/)
numbers, so the probability that p is a prime that allows a false match between P and T is at

(nm)
most Z8m. 0

Notice that Theorem 4.4.3 holds for any choice of pattern P and text 7 such that
nm > 29. The probability in the theorem is not taken over choices of P and T but rather
over choices of prime p. Thus, this theorem does not make any (questionable) assumptions
about P or T being random or generated by a Markov process, etc. It works for any P and
T'! Moreover, the theorem doesn’t just bound the probability that a false match occurs at
a fixed position r, it bounds the probability that there is even a single such position r in
T. Itis also notable that the analysis in the proof of the theorem feels “weak”. That is, it
only develops a very weak property of a prime p that allows a false match, namely being
one of at most 7w (nm) numbers that divide [T, x(|H(P) — H(Ty)|). This suggests that the
true probability of a false match occurring between P and T is much less than the bound
established in the theorem.

Theorem 4.4.3 leads to the following random fingerprint algorithm for finding all oc-
currences of P in T.

