ALGORITMI 2 Noom\ﬁ
PROBLEMI DIFFICiL]

DALTESTO: HOROWITZ =~ SAHN]
FUNDAMENTALS OF COMPUTER RLGORITHMS
CoOMPLTER SCENCE PRESS

Chapter 11

NP-HARD AND NP-COMPLETE
PROBLEMS

11.1 BASIC CONCEPTS

This chapter contains what is perhaps the most important theoretical de-
velopment in algorithms research in the past decade. Its importance arises
from the fact that the results have meaning for all researchers who are
developing computer algorithms, not only computer scientists but electrical
engineers, operations researchers, etc. Thus we believe that many people
will turn immediately to this chapter. In recognition of this we have tried
to make the chapter self-contained. Also, we have organized the later sec-
tions according to different areas of interest.

There are however some basic ideas which one should be familiar with
before reading on. The first is the idea of analyzing apriori the computing
time of an algorithm by studying the frequency of execution of its state-
ments given various sets of data. A second notion is the concept of the
order of magnitude of the time complexity of an algorithm and its expres-
sion by asymptotic notation. If T(n) is the time for an algorithm on rn in-
puts, then, we write T(n) = O(f{r)) to mean that the time is bounded
above by the function An), and T(n) = (g(n)) to mean that the time is
bounded below by the function g(n). Precise definitions and greater elabo-
ration of these ideas can be found in Section 1.4.

Another important idea is the distinction between problems whose solu-
tion is by a polynomial time algorithm (An) is a polynomial) and problems
for which no polynomial time algorithm is known (g(n) is larger than any
polynomial). It is an unexplained phenomena that for many of the problems
we know and study, the best algorithms for their solution have computing
times which cluster into two groups. The first group consists of problems
whose solution is bounded by a polynomial of small degree. Examples we
have seen in this book include ordered searching which is O(log n), poly-

501

502 NP-Hard and NP-Complete Problems

nomial evaluation is O(n), sorting is O(n log n), and matrix multiplication
which is O(n 281). /

The second group contains problems whose best known algorithms are
nonpolynomial. Examples we have seen include the traveling salesperson
and the knapsack problem for which the best algorithms given in this text
have a complexity O(n?2") and O(2"?) respectively. In the quest to develop
efficient algorithms, no one has been able to develop a polynomial time
algorithm for any problem in the second group. This is very important
because algorithms whose computing time is greater than polynomial
(typically the time is exponential) very quickly require such vast amounts
of time to execute that even moderate size problems cannot be solved. (See
Section 1.4 for more details.) »

The theory of NP-completeness which we present here does not provide
a method of obtaining polynomial time algorithms for problems in the
second group. Nor does it say that algorithms of this complexity do not
exist. Instead, what we shall do is show that many of the EoEg{ for
which there is no known polynomial time algorithm are computationally
related. In fact, we shall establish two classes of problems. These will be
given the names NP-hard and NP-complete. A problem which is NP-
complete will have the property that it can be solved in polynomial time iff
all other NP-complete problems can also be solved in polynomial time.
If an NP-hard problem can be solved in polynomial time then all NP-
complete problems can be solved in polynomial time. As we shall see all
NP-complete problems are NP-hard but all NP-hard problems are not
NP-complete. —

While one can define many distinct problem classes having the prop-
erties stated above for the NP-hard and NP-complete classes, the classes
we study are related to nondeterministic computations (to be defined later).
The relationship of these classes to nondeterministic computations together
with the “apparent” power of nondeterminism leads to the “intuitive”
(though as yet unproved) conclusion that no NP-complete or NP-hard
problem is polyzomially solvable.

We shall see that the class of NP-hard problems (and the subclass of
NP-complete problems) is very rich as it contains many interesting prob-
lems from a wide variety of disciplines. First, we formalize the preceding
discussion of the classes.

Nondeterministic Algorithms

Up to now the notion of algorithm that we have been using has the property
that the result of every operation is uniquely defined. Algorithms with this

Basic Concepts 503

property are termed deterministic algorithms. Such algorithms agree

the way programs are executed on a computer. In a Ewom.mz a m.mBmsoLn_
We can remove this restriction on the outcome of every operation. We ca
allow algorithms to contain operations whose outcome : ;
fined but is limited to a specified set of possibilities. The
such owaﬂmaonm is allowed to choose any one of these o
a termination condition to be defined later. This leads
nondeterministic algorithm. To specify such algorithm
new function and two new statements into SPARKS:

is not uniquely de-
machine executing
utcomes subject to
to the concept of a
s we introduce one

€ nr.cmoo (5).. .m.ngﬁmnmw chooses one of the elements of set .§
Ev failare .. signals an unsuccessful completion
(iii) success .. .signals a successful completion.

. The assignment statement X — choice(1:7) could result in X being as-
signed any one of the integers in the range [1, n]. There is no rule specifyin
how this choice is to be made. The failure and success signals are used ﬁm
define a computation of the algorithm. These statements are equivalent to
a stop m\Ban.dai and cannot be used to effect a return. Whenever there is
a mm.ﬁ of .oro_omm that leads to a successful completion then one such set of
oro_nmm._m. m._im%m made and the algorithm terminates successfully. A ron-
deterministic algorithm terminates unsuccessfuly if and only if there exists
no set of choices leading to a success signal. The computing times for choice
success, and mwm_E.m are taken to be O(1). A machine capable of mxmo:a:.
a no:.aﬁmnBEmﬂmo algorithm in this way is called a :o:&mﬁwwsmi&m
.Sn%::m.. While nondeterministic machines (as defined here) do not exist
In practice, we shall see that they will provide strong intuitive reasons to

conclude that certain problems cannot b “fast”
. .
eorithe solved by ‘“‘fast” deterministic

Example 11.1 Consider the problem of searching for an element x in a

given set of elements A(1:n), n > 1. We are required to determine an

EQ@N.\. mﬁOU ﬁ:mﬁ \&Cv = X Oor y — H . .
. J=0ifxisnotin A. A
algorithm for this is nondeterministic

J = choice(1:n)
if A(j) = x then print(/); success endif
print(‘0’); failure

From the way a nondeterministic com

utation i :
the number ‘0’ putation is defined, it follows that

can be output if and only if there is no J such that A(j) = x.

504 NP-Hard and NP-Complete Problems

The above algorithm is of nondeterministic 85@_@%@ O‘:v.‘. Note that
since A is not ordered, every deterministic search algorithm is of complexity

Qn). 4

Example 11.2 [Sorting] Let A(i), 1 < i< n be an unsorted set of posi-
tive rﬂamonm. dgﬂm :oaawmnaw:mmaa algorithm ZmOw‘Emn:v mo.nm the HEM.“
bers into nondecreasing order and then oiw:ﬁ. Emj in ¢.:m order.

auxiliary array B(1:n) is used for oo=<mim=.om. .hEm 1 initializes B ﬁm _mmno
though any value different from all the A(i) i:._ do. In the ﬂoom of E_M\m
2-6 each A(i) is assigned to a position in B. H.Ea. 3 nondeterministically
determines this position. Line 4 ascertains Emﬁ. B(j) has not m:..m»aw _uawz
used. Thus, the order of the numbers in B is some vmwaﬁwcon of H e
initial order in A. Lines 7 to 9 verify that B s sorted in no:amnnmmm:._m
order. A successful completion is achieved iff the ::Bc.anm are A.Eﬁ_:m_:
nondecreasing order. Since there is m_im&m a set A.um nro_nmm at line 3 for
such an output order, algorithm NSORT is a mo.nEm w_mwnﬁva. Its o%B-
plexity is O(n). Recall that all deterministic sorting algorithms must have

a complexity Q(r log n). .

procedure NSORT(A, n)
//sort n positive integers//
integer A(n), B(n), n, i, j
B — 0 //initialize B to zero//
for i — 1to ndo
J — choice(l:n)
if B(j) # 0 then failure endif
B(j) — A®)
t
Nwonm —1to n— 1do //verify order//
if B(i) > B(i + 1) then failure endif
repeat
print(B)
success
end NSORT

O WOWOoo 1O N W=

[e R
[S

Algorithm 11.1 Nondeterministic sorting

A deterministic interpretation of a nondeterministic .m_mon#ra can be
made by allowing unbounded parallelism in computation. Each time a

choice is to be made, the algorithm makes several copies of itself. One copy

Basic Concepts 505

is made for each of the possible choices. Thus, many copies are executi

1

at the same time. The first copy to reach a successful completion termi-
nates all other computations. If a copy reaches a failure completion then
only that copy of the algorithm terminates. Recall that the success and
failure signals are equivalent to stop statements in deterministic algorithms.
They may not be used in place of return statements. While this interpre-
tation may enable one to better understand pondeterministic algorithms,
it is important to remember that a nondeterministic machine does not
make any copies of an algorithm every time a choice is to be made. Instead,
it has the ability to select a “‘correct” element from the set of allowable
choices (if such an element exists) every time a choice is to be made. A
“‘correct” element is defined relative to a shortest sequence of choices that
leads to a successful termination. In case there is no sequence of choices
leading to a successful termination, we shall assume that the algorithm
terminates in one unit of time with output “unsuccessful computation.”
Whenever successful termination is possible, a nondeterministic machine
makes a sequence of choices which is a shortest sequence leading to a suc-
cessful termination. Since, the machine we are defining is fictitious, it is
not necessary for us to concern ourselves with how the machine can make
a correct choice at each step.

It is possible to construct nondeterministic algorithms for which many
different choice sequences lead to a successful completion. Procedure
NSORT of Example 11.2 is one such algorithm. If the numbers A(7) are
not distinct then many different permutations will result in a sorted se-
quence. If NSORT were written to output the permutation used rather
than the A(i)’s in sorted order then its output would not be uniquely de-
fined. We shall concern ourselves only with those nondeterministic algo-
rithms that generate a unique output. In particular we shall consider only
nondeterministic decision algorithms. Such algorithms generate only a zero
or one as their output. A binary decision is made. A successful completion
is made iff the output is ‘1’. A ‘0’ is output iff there is no sequence of
choices leading to a successful completion. The output statement is im-
plicit in the signals success and failure. No explicit output statements
are permitted in a decision algorithm. Clearly, our earlier definition of a
nondeterministic computation implies that the output from a decision algo-
rithm is uniquely defined by the input parameters and the algorithm
specification.

While the idea of a decision algorithm may appear very restrictive at this
time, many optimization problems can be recast into decision problems
with the property that the decision problem can be solved in polynomial
time iff the corresponding optimization problem can. In other cases, we

506 NP-Hard and NP-Complete Problems

N
can at least make the statement that if the decision problem cannot be
solved in polynomial time then the optimization problem cannot either.

Example 11.3 [Max Clique] A maximal complete subgraph of a graph G
= (V, E) is a clique. The size of the clique is the number of vertices in it.
The max cligue problem is to determine the size of a largest clique in G.
The corresponding decision problem is to determine if G has a clique of
size at least k for some given k. Let DCLIQUE(G, k) be a deterministic
decision algorithm for the clique decision problem. If the number of ver-
tices in G is n, the size of a max clique in G can be found by making
several applications of DCLIQUE. DCLIQUE is used once for each k,
k=nn-1,n - 2, ... until the output from DCLIQUE is 1. If the
time complexity of DCLIQUE is f(n) then the size of a max clique can
be found in time n*f (n). Also, if the size of a max clique can be determined
in time g (n) then the decision problem may be solved in time g (n). Hence,
the max clique problem can be solved in polynomial time iff the clique
decision problem can be solved in polynomial time. O

Example 11.4 [0/1-Knapsack] The knapsack decision problem is to
determine if there is a 0/1 assignment of values to x;, 1 < i< n such that
Lpx; =R and Zwx; < M.R is a given nurber. The p/s and w/s are
nonnegative numbers. Clearly, if the knapsack uecision problem cannot be
solved in deterministic polynomial time then the optimization problem
cannot either. d

Before proceeding further, it is necessary to arrive at a uniform parameter,
n, to measure complexity. We shall assume that n is the length of the
input to the algorithm. We shall also assume that all inputs are integer.
Rational inputs can be provided by specifying pairs of integers. Generally,
the length of an input is measured assuming a binary representation. Le., if
the number 10 is to be input then, in binary it is represented as 1010. Its
length is 4. In general, a positive integer k has a length of | log; k| + 1
bits when represented in binary. The length of the binary representation
of 0 is 1. The size or length, n, of the input to an algorithm is the sum of
the lengths of the individual numbers being input. In case the input is
given using a different representation (say radix r), then the length of a
positive number kis | log, k| + 1. Thus, in decimal notation, r = 10
and the number 100 has a length log,, 100 + 1 = 3 digits. Since log, k =
log, k/log, r, the length of any input using radix r(r > 1) representation
is ¢(r)- n where n is the length using a binary representation and c(r) is a
number which is fixed for a given r.

Basic Concepts 507

When inputs are given using the radix r = 1, we shall say the input is in
unary form. F \unary form, the number 5 is input as 11111. ﬂw:w, the
length of a positive integer k is k. It is important to observe that the length

of a unary input is exponentially rel i
. y related to the length of th
r-ary mput for radix r, r > 1. ® © corresponding

Example :..m [Max Clique] The input to the max clique decision problem
ﬁ.dmw be .@aoﬁama as a sequence of edges and an integer k. Each edge in E(G)
Is a pair of numbers (i, j). The size of the input for each edge (i, j) is

Llog,] + |log, j| + 2 if a bina ion i
. . . ry represantation is assumed.
Input size of any instance is e

:H :.;.V.WEQQ_OWN N.._+_,_omz.(_+wv+_._owwﬁ+~.
1<y

Zﬁm 9.&. if G has only one connected component then n = | V|. Thus, if
this decision problem cannot be solved by an algorithm of complexity p(r)

for some polynomial p() then it cannot b .
e solved
complexity p(| V|). 0 solved by an algorithm of

Example :u.a G\ 1 Knapsack] Assuming p,, w;,, M and R are all in-
tegers, the input size for the knapsack decision problem is

m = EMM,_:LQWNEL + [logaw,|) + loga M| + [log; R| +2n + 2.

Zoﬁo ﬁmﬂ, m 2 n. If the input is given in unary notation then the input
size s is M pi + T w; + M + R. Note that the knapsack decision and
optimization problems can be solved in time p(s) for some polynomial p()
(see ?@ avq.::io programming algorithm). However, there is no known
algorithm with complexity O(p(n)) for some polynomial p().]

<<m are now ready to formally define the complexity of a nondeterministic
algorithm.

Uomano.a ‘E.._o time required by a nondeterministic algorithm performing
on any given input is the minimum number of steps needed to reach a suc-
cessful moBanon if there exists a sequence of choices leading to such a
ooﬂﬁmﬁom. In case successful completion is not possible then the time re-
mE.nma is O(1). A nondeterministic algorithm is of complexity O(An)) if for
all :wwﬁm. of size, n, n = r, that result in a successful completion the time
required is at most c- f(r) for some constants ¢ and n,.

508 NP-Hard and NP-Complete Problems

In the above definition we assume that each computation step is of a
fixed cost. In word oriented computers this is guaranteed by the finiteness
of each word. When each step is not of a fixed cost it is necessary to con-
sider the cost of individual instructions. Thus, the additon of two m bit
numbers takes O(m) time, their multiplication takes O(m ?) time (using clas-
sical multiplication) etc. To see the necessity of this consider procedure
SUM (Algorithm 11.2). This is a deterministic algorithm for the sum of sub-
sets decision problem. It uses an M + 1 bit word S. The {’th bit in S is zero
iff no subset of the integers A(j), 1 <j =< n sums to . Bit 0 of S is always
1 and the bits are numbered 0, 1, 2, ..., M right to left. The function
SHIFT shifts the bits in S to the left by A({) bits. The total number of steps
for this algorithm is only O(n). However, mmow_- step moves M + 1 bits of
data and would really take O(M) time on a conventional computer. As-
suming one unit of time is needed for each basic operation for a fixed word
size, the true complexity is O(nM) and not O(n).

procedure SUM(A, n, M)
integer A(n), S, n, M
§S—1 //Sisan M + 1 bit word. Bit zerois 1//
for i — 1 to ndo
S — S or SHIFI(S, A()))

repeat
if Mth bit in S = Othen print (‘no subset sums to M) -
else print (‘a subset sums to M)
endif
end SUM

Algorithm 11.2 Deterministic sum of subsets

The virtue of conceiving of nondeterministic algorithms is that often
what would be very complex to write down deterministically is very easy to
write nondeterministically. In fact, it is very easy to obtain polynomial
time nondeterministic algorithms for many problems that can be deter-
ministically solved by a systematic search of a solution space of exponential
size.

Example 11.7 [Knapsack decision problem] Procedure DKP (Algo-
rithm 11.3) is a nondeterministic polynomial time algorithm for the knap-
sack decision problem. Lines 1 to 3 assign 0/1 values to X(i), 1 < i =< n.
Line 4 checks to see if this assignment is feasible and if the resulting profit

Basic Concepts 509

_m at least R. A successful termination is possible iff the answer to the deci-
sion problem is yes. The time complexity is O(n). If m is the input length
using a binary representation, the time is O(m). |

procedure DKP(P, W, n, M, R, X)
integer P(n), W(n), R, X(n), n, M, i
for i — 1 to ndo
X (i) — choice(0, 1)
repeat
if L (WH+X@) > Mor L (P()#*X(i) < R then failure

1<isn l<i<n
else success
S endif

end DKP

BN

Algorithm 11.3 Nondeterministic Knapsack problem

Example 11.8 [Max Clique] Procedure DCK (Algorithm 11.4) is a non-
deterministic algorithm for the clique decision problem. The algorithm
begins by trying to form a set of k distinct vertices. Then it tests to see if
these vertices form a complete subgraph. If G is given by its adjacency matrix
and | V| = n, the input length m is n? + llog: k| + [logan] + 2.
Lines 2 to 6 can easily be implemented to run in nondeterministic time O(n).
The time for lines 7-10 is O(k). Hence the overall nondeterministic time is
O(n + k3 = O(n?) = O(m). There is known polynomial time determinis-
tic algorithm for this problem. U

procedure DCK (G, n, k)
§ — ¢ //§is aninitially empty set//
for i —1to kdo //select k distinct vertices//
t — choice (1:n)
if t€¢ S then failure endif
S~ 8SU ¢t //add ttoset S//
repeat
//at this point § contains k distinct vertex indices//
for all pairs (7, j) such thati € S, 7 € S and i # j do
if (i, j) is not an edge of the graph
then failure endif
1 repeat
11 success
end DCK

N AW

[N ale RN |

Algorithm 11.4 Nondeterministic clique

510 NP-Hard and NP-Complete Problems

Example 11.9 [Satisfiability] Let x,, x,, ..., denote boolean variables
(their value is either true or false). Let %, denote the negation of x .. A literal
is either a variable or its negation. A formula in the propositional calculus
is an expression that can be constructed using literals and the operations
and andor. Examples of such formulas are (x; A x;) V(x; A Xq); (X3 V X4)
A (x; V X;). V denotes or and A denotes and. A formula is in conjunctive
normal form (CNF) iff it is represented as A%, c; where the ¢, are clauses
each represented as V [;. The [; are literals. It is in disjunctive normal
form (DNF) iff it is represented as VY., ¢; and each clause c; is represented
as Al;. Thus (x; A x;) V(x; A X,) is in DNF while (x; V X4) A(x; V X3)
is in CNF. The satisfiability problem is to determine if a formula is true
for any assignment of truth values to the <mﬁw¢_mm. CNF -satisfiability is
the satisfiability problem for CNF formulas.

It is easy to obtain a polynomial time nondeterministic algorithm that
terminates successfully if and only if a given propositional formula E(x;,
..., x,) is satisfiable. Such an algorithm could proceed by simply choosing
(nondeterministically) one of the 2" possible assignments of truth values
to (xy, ..., x,) and verifying that E(x,, ..., x,) is true for that as-
signment.

Procedure EVAL (Algorithm 11.5) does this. The nondeterministic time
required by the algorithm is O(n) to choose the value of (x;, ..., x,) plus
the time needed to deterministically evaluate E for that assignment. This
time is proportional to the length of E. O

procedure EFVAL(FE, n)
//Determine if the propositional formula F is satisfiable. The variables//
/larex;, 1 =i <n//
boolean x(n)
for i — 1 to ndo //choose a truth value assignment//

x; — choice (trae, false)

repeat
if E(x,, ..., x,) is true then success //satisfiable//
else failure
endif
end FVAL

Algorithm 11.5 Nondeterministic satisfiability

The Classes NP-hard and NP-complete

In measuring the complexity of an algorithm we shall use the input length

Basic Concepts 511

as the parameter. An algorithm A is of polynomial complexity if there

exists a polynomial p() such that the computing time of A is O(p(n)) for
every input of size n.

Definition P is the set of all decision problems solvable by a deterministic
algorithm in polynomial time. NP is the set of all decision problems soly-
able by a nondeterministic algorithm in polynomial time.

Since deterministic algorithms are just a special case of nondeterministic
ones, we can conclude that P € NP. What we do not know, and what
has become perhaps the most famous unsolved problem in computer science
is whether P = NP or P # NP.

Is it possible that for all of the problems in NP there exist polynomial
time deterministic algorithms which have remained undiscovered? This
seems unlikely, at least because of the tremendous effort which has already
been expended by so many people on these problems. Nevertheless, a
proof that P # NP is just as elusive and seems to require as yet undis-
covered techniques. But as with many famous unsolved problems, they
serve to generate other useful results, and the P £ NP question is no
exception.

In considering this problem S. Cook formulated the following question:
Is there any single problem in NP such that if we showed it to be in P, then
that would imply that P = NP. Cook answered his own question in the
affirmative with the following theorem.

Theorem 11.1 (Cook) Satisfiability is in P if and only if P = NP.
Proof: See Section 11.2 U

We are now ready to define the NP-hard and NP-complete classes of
problems. First we define the notion of reducibility.

Definition I.et L, and L, be problems. L reduces to L, (also written
L, o L;) if and only if there is a way to solve L; by a deterministic poly-
nomial time algorithm using a deterministic algorithm that solves L, in
polynomial time.

This definition implies that if we have a polynomial time algorithm for
L, then we can solve L, in polynomial time. One may readily verify that
« is a transitive relation (i.e. if LyaL; and L,aL; then L;aL;).

Definition A problem L is NP-hard if and only if satisfiability reduces

512 NP-Hard and NP-Complete Problems

to L (satisfiability oc L). A problem L is NP-complete if and only if L is
INFP-hard and L € NP.

It is easy to see that there are NP-hard problems that are not NP-com-
plete. Only a decision problem can be NP-complete. However, an opti-
mization problem may be NP-hard. Furthermore if L, is a decision prob-
lem and L, an optimization problem, it is quite possible that L; o L,.
One may trivially show that the knapsack decision problem reduces to the
knapsack optimization problem. For the clique problem one may easily
show that the clique decision problem reduces to the clique optimization
problem. In fact, we can also show that these optimization problems re-
duce to their corresponding decision problems (see exercises). Yet, opti-
mization problems cannot be NP-complete €€_m decision problems can.
There also exist NP-hard decision problems that are not NP-complete.

Example 11.10 As an extreme example of an NP-hard decision problem
that is not NP-complete consider the halting problem for deterministic
algorithms. The halting problem is to determine for an arbitrary deter-
ministic algorithm A and an input I whether algorithm A with input 7
ever terminates (or enters an infinite loop). It is well known that this prob-
lem is undecidable. Hence, there exists no algorithm (of any complexity)
to solve this problem. So, it clearly cannot be in NP. To show satisfiability
o halting problem simply construct an algorithm A whose input is a
propositional formula X. If X has n variables then A tries out all 2" pos-
sible truth assignments and verifies if X is satisfiable. If it is then A stops.
If X is not satisfiable then A enters an infinite loop. Hence, A halts on
input X iff X is satisfiable. If we had a polynomial time algorithm for the
halting problem then we could solve the satisfiability problem in poly-
nomial time using A and X as input to the algorithm for the halting
problem. Hence, the halting problem is an NP-hard problem which is not
in NP. il

Definition Two problems L ; and L ; are said to be polynomially equivalent
iff L, &« Lyand L, « L,.

In order to show that a problem, L, is NP-hard it is adequate to show
L, o« L, where L is some problem already known to be NP-hard. Since
o is a transitive relation, it follows that if satisfiability o< L, and L, « L,
then satisfiability o« L,. To show an NP-hard decision problem NP-com-
plete we have just to exhibit a polynomial time nondeterministic algorithm
for it. Later sections will show many problems to be NP-hard. While we
shall restrict ourselves to decision problems, it should be clear that the

Cook’s Theorem 513

corresponding optimization problems are also NP-hard. The NP-com-

pleteness proofs will be left as exercises (for those problems that are NP-
complete).

11.2 COOK’S THEOREM

Cook’s theorem (Theorem 11.1) states that satisfiability is in P iff P =
NP. We shall now prove this important theorem. We have already seen
that satisfiability is in NP (Example 11.9). Hence, if P = NP then satis-
fiability is in P. It remains to be shown that if satisfiability is in P then
P = NP. In order to prove this latter statement, we shall show how to
obtain from any polynomial time nondeterministic decision algorithm A
and input I a formula Q(A, I) such that Q is satisfiable iff A has a suc-
cessful termination with input 1. If the length of I'is n and the time com-
plexity of A is p(n) for some polynomial p() then the length of Q will be
O(p3(n) log n) = O(p4n)). The time needed to construct Q will also be
O(p¥n) log n). A deterministic algorithm Z to determine the outcome of
A on any input I may be easily obtained. Z simply computes Q and then
uses a deterministic algorithm for the satisfiability problem to determine
whether or not Q is satisfiable. If O(g(m)) is the time needed to deter-
mine if a formula of length m is satisfiable then the complexity of Z is
O(p3(n) log n + q(pXn) log n)). If satisfiability is in P then g(m) is a
polynomial function of m and the complexity of Z becomes O(r(n)) for
some polynomial r(). Hence, if satisfiability is in P then for every non-
deterministic algorithm A4 in NP we can obtain a deterministic Z in P. So,
the above construction will show that if satisfiability is in P then P = NP.

Before going into the construction of Q from A and I, we shall make
some simplifying assumptions on our nondeterministic machine model and
on the form of A. These assumptions will not in any way alter the class of
decision problems in NP or P. The simplifying assumptions are:

1) The machine on which A is to be executed is word oriented. Each
word is w bits long. Multiplication, addition, subtraction etc. between
numbers one word long take one unit of time. In case numbers are
longer than a word then the corresponding operations take at least
as many units as the number of words making up the longest number.

it) A simple expression is an expression that contains at most one opera-
tor and all operands are simple variables (i.e., no array variables are
used). Some sample simple expressions are —B, B + C, D or E, F.

514

NP-Hard and NP-Complete Problems

We shall assume that all assignment statements in A are of one of the
following forms:

a) (simple variable) — (simple mx.@nmmmmoa
b) (array variable) — (simple <m:m¢_mw
. . _ able
¢) (simple variable) — (array variab .
d) (simple variable) — cheice (§) where S may be a finite set {5,

S, ..., 8} or S may be l:u. In the latter case the function chooses
an integer in the range [l:u].

Indexing within an array is done using a simplg integer <mzmvnﬂm @:M%:
index values are positive. Only one dimensional arrays are allowed. Cle i M,
all assignment statements not falling into one of the above oM.ﬁomon\HoaoM
be replaced by a set of statements of these types. Hence, this res

does not alter the class NP.

iii)

All variables in A are of type integer or boolean.

iv) A contains no read or print statements. The only input to A is via

V)

vi)

its parameters. At the time A is :Eowwa all variables (other than
the parameters) have value zero (or false if @oo_.omsv. " .
A contains no constants. Clearly, all oonmnma.m in any algori M Mzﬁw
be replaced by new variables. These new <msz.am may M@ ﬁwa J o
the parameter list of A and the constants associated with them

” MMMWMMM:W#MMMME assignment statements, A is allowed to contain
only the following types of statements:

. . . ber

a) goto k where k is an instruction num . .

b) mnma. then go to a endif. c is a simple boolean variable (i.e., not an
array) and a is an instruction number

¢) success, failure, end . .

d) A may contain type declaration and dimension statments. Hrmmm
are not used during execution of A and so need not be translate
into Q. The dimension information is used to allocate array space.
It is assumed that successive elements in an array are assigned to
consective words in memory.

It is assumed that the instructions in A are 5::&@.8& sequentially
from 1 to I (if A has / instructions). Every mﬁmﬁmz.ﬁa in A rmm a wEBn..\
ber. The go to instructions in a) and b) use this ccaga.ﬁ s¢ —W_s-
to effect a branch. It should be easy to see how to rewrite ‘while

vii)

Cook’s Theorem 515

’

repeat’, ‘repeat.until’ ‘case-endcase’, ‘for-repeat’, etc. statements
in terms of go to and if ¢ then g0 to a endif statements. Also, note
that the go to k statement can be replaced by the statement if true
then go to k endif. So, this may also be eliminated.

Let p(n) be a polynomial such that A takes no more than p(n) time
units on any input of length n. Because of the complexity assump-
tions of (i), A cannot change or use more than p(n) words of memory,
We may assume that 4 uses some subset of the words indexed 1, 2,
3, ..., p(n). This assumption does not restrict the class of decision
problems in NP. To see this letf(1), £(2), ..., f(k), 1 <k < p(n), be
the distinct words used by A while working on input I. We can con-
struct another polynomial time nondeterministic algorithm A’ which
uses 2p(n) words indexed 1,2, ..., 2p(n) and solves the same deci-
sion problem as does A. A’ simulates the behavior of A. However,
A’ maps the addresses), 72, ..., k) onto the set {1, 2,
..., k}. The mapping function used is determined dynamically and
is stored as a table in words p(n) + 1 through 2 p(n). If the entry at
word p(n) + iis jthen A’ uses word 7 to hold the same value that
A stored in word j. The simulation of A proceeds as follows: Let £
be the number of distinct words referenced by A up to this time. Let
J be a word referenced by A in the current step. A’ searches its table
to find word p(n) + 7 1< I < ksuch that the contents of this word
is j. If no such / exists then A'setsk —k + 1,i — k and word
p(n) + k is given the value ;. A4’ makes use of the word i to do
whatever 4 would have done with word J- Clearly, A’ and A solve
the same decision problem. The complexity of 4" is O(PHn)) as it
takes 4’ p(n) time to search its table and simulate a step of A. Since
P(n) is also a polynomial in n, restricting our algorithms to use
only consecutive words does not alter the classes P and NP.

Formula Q will make use of several boolean variables, We state the

semantics of two sets of variables used in Q:

D Bljthl<i<pn),l<js<w, 0<t<pn).

B(i, J, 1) represents the status of bit j of word 7 following ¢ steps
(or time units) of computation. The bits in a word are numbered
from right to left. The rightmost bit is numbered 1. Q will be con-
structed such that in any truth assignment for which Q is true,
B(i, j, t) is true iff the corresponding bit has value 1 following ¢
steps of some successful computation of 4 on input /.

516

NP-Hard and NP-Complete Problems

i) SG.thl=j=slL1l1=<t=phn)

Recall that / is the number of instructions in A. S(j, ¢) represents
the instruction to be executed at time t. Q will be constructed such
that in any truth assignment for which Q is true, S(J, ?) is true iff
the instruction executed by A at time ¢ is instruction j.

Q will be made up of six subformulas C, D, E, F, Gand H Q =
C AD ANE AF NG A H. These subformulas will make the foliowing
assertions:

The initial status of the p(n) words represents the input I All
non-input variables are zero.

D: Instruction 1 is the first instruction to gxecute.
E: At the end of the {"th step, there can be only one next instruction

to execute. Hence, for any fixed 7, at most one of the S(j, 1), 1 =<
J = lcan be true.

If S(j, 0 is true then S(j, i + 1) is also true if instruction jis a
success, failure or end statement. S(j + 1,7 + 1) is true ifj is an
assignment statement. If j is a go to k statement then Sk, i + 1)
is true. The last possibility for j is the if c¢ them a endif statement.
In this case S(a, i + 1) istrueif cistrueand S(j + 1, i + 1) is
true if c is false.

G: If the instruction executed at step ¢ is not an assignment statement

then the B(i, j, t)s are unchanged. If this instruction is an assign-
ment and the variable on the left hand side is X, then only X may
change. This change is determined by the right hand side of the
instruction.

H: The instruction to be executed at time p(n) is a success instruction.

Hence the computation terminates successfuily.

Clearly, if C through H make the above assertions, then Q = C A D A
E AF AG A His satisfiable iff there is a successful computation of 4 on
input I. We now give the formulas C through H. While presenting these
formulas we shall also indicate how each may be transformed into CNF.
This transformation will increase the length of Q by an amount indepen-
dent of n (but dependent on w and /). This will enable us to show that
CNF-satisfiability is NP-complete. .

1.

Formula C describes the input I. We have:

C= AN TG0

Cook’s Theorem 517

TG, j, 0)isB(,J, ov.mw the input calls for bit B(, j, 0) (i.e. bitj of word i)
tobel. T'(, j, 0)is B(i, j, 0) otherwise. Thus, if there is no input then

C= A BGj0.
‘sz

Clearly, C is uniquely determined by I and is in CNF. Also, C is satis-

fiable only by a truth assignment representing the initial values of all
variables in A.

D=SA,1DASR DASG DA ... ASU 1).
Clearly, D is satisfiable only by the assignment S(1, 1) = true and S(, 1)
= false, 2 < i =< [Using our interpretation of S(i, 1), this means that

D is true iff instruction 1 is the first to be executed. Note that D is in
CNF.

E= A FE.

1<t=<p(n)

Each E, will assert that there is a unique instruction for step t. We may
define E, to be:

E. =1, nvSCHv...vS6,)yn(A
1%
J2k

(8, &) v Sk, 1))

One may verify that £, is true iff exactly one of the S(j, #)s, 1 <j <l is
true. Also, note that F is in CNF.

F= A F,.
1=<i={ !
I=t<p(n)

Each F;, asserts that either instruction { is not the one to be executed at
time ¢, or if it is then the instruction to be executed at time z + 1 is cor-
rectly determined by instruction ;. Formally, we have

F,=58G1t)VL

where L is defined as follows:

i) if instruction i is success, failure or end then L is S(/, # + 1). Hence
the program cannot leave such an instruction.

518

NP-Hard and NP-Complete Problems

il) ifinstructioniisgotok thenLisS(k, ¢t + 1).

iii) if instruction { is if X then go to k endif and variable X is repre-
sented by wordjthen Lis((B(j, 1,t — DAS(k, t + D)V (B(, 1,
t — 1)ASGE + 1, + 1))). This assumesthatbit1 of X is1iff X is
true.

iv) if instruction i is not any of the above thenLis S(i + 1,¢ + 1).

The F s defined in cases (i), (ii) and (iv) above are in CNF. The F,, in
case (iii) may be transformed into CNF using the boolean identity a Vv
bAac)vdne)=(avbvdin(@avevd)A{avbVve)A(@VcecVe).

Each G, asserts that at time ¢ either (i) instruction / is not executed or
(ii) it is and the status of the p(n) words after step ¢ is correct with re-
spect to the status before step ¢ and the changes resulting from instruc-
tion i. Formally, we have

G,=SGtVvM

where M is defined as follows:

i) if instruction { is a go to, if—then go to—endif, success, failure,
or end statement then M asserts that the status of the p(n) words is
unchanged. l.e., Bk, j,t — 1) = Bk, j, t),1 <k < p(n) and
1=<j=<w

M= A (Bkjt-1DABkjt)VBkjt-1)ABk], 1)

1sk=pn)
1sjsw

In this case, G,, may be rewritten as

Gu= A A va..c.. t)V(B(k,jt — 1)AB(k,j, t)
' 1<k=p(n
1<j<w

V(B jt — D)ANBK,j 1)

Each clause in G, is of the form z V (x A s) V (X A §) where z is
S(@i, t), x represents a B(,, t — 1) and s a B(,, t). Note that z Vv
(x As) V(X AS)is equivalent to (x V § V z) A (X Vs V z). Hence,
G, may be transformed into CNF easily.

Cook’s Theorem 519

ii) if / is an assignment statement of type a) then M depends on the
operator (if any) on the right hand side. We shall first describe the
form of M for the case when instruction i is of the type Y — V + Z.
Let Y, V and Z be respectively represented in words ¥y, v and z.
We shall make the simplifying assumption that all numbers are
non-negative. The exercises examine the case when negative num-
bers are allowed and 1's complement arithmetic is being used. In
order to get a formula asserting that the bits B(y, j, 1), 1 < J=<w
represent the sum of B(v, j, t ~ 1) and B(z,j,t -1l =<j=<w
we shall have to make use of w additional bits Cy,n,1=j=<
C(j, t) will represent the carry from the addition of the bits B(v, 7,
t —1),Bzj,t — 1D)and C(j - 1,8),1 <j < w. C({, ¢) is the
carry from the addition of B(v, 1,¢t — 1)and B(z, 1, t — 1). Recall
that a bit is 1 iff the corresponding variable is true. Performing a
bit wise addition of V and Z, we obtain C(1, 1) = Bv,1,t - DA
Bz, 1,t - Dand By, 1,¢t) =B, 1,t - 1) @ Bz, 1,¢t — 1)
where @ is the exclusive or operation (@ @ b is true iff exactly
one of @ and b is true). Note thata @ b = @V b) A (@ A b) =
(a vV b) A (a Vv b). Hence, the right hand side of the expression for
B(y, 1, t) may be transformed into CNF using this identity. For
the other bits of Y, one may verify that

’

By.jt)=BMjt-1D®MBEjt-1)@C{-1,1)

and

C(j,t) = Bv,j,t — DAB(E jt - 1)V B, jt -1
ANCG - 1L,))V(B(z,j,t — 1)ACY - 1,1).

Finally, we require that C(w, ¢) = false. (i.e. there is no overflow).
Let M’ be the and of all the equations for B(y, j,) and C U 1,
1 =j <= w. M is given by

M= A
<k <pin)
k#y i
lgjsw w

(Blk,j, t — 1) ABk,j, 1))

VBE jt -)ABKk,j,ONAM

G, may be converted into CNF using the idea of 5 (i). This trans-
formation will increase the length of G,, by a constant factor inde-

520

NP-Hard and NP-Complete Problems

pendent of n. We leave it to the reader to figure out what M is when
instruction { is either of the form ¥ — V; Y — V(& Z for Gpone of —,
/,* <, >, =, =, etc.

When i is an assignment statement of types b) or c) then it neces-
sary to select the correct array element. Consider an instruction of
type b): R(m) — X. In this case the formula M may be written as:

M=WA(A M)

l<j<u

where u is the dimension of R. Note that because of restriction (vii) on
the algorithm A, ¥ < p(n)- W asserts that 1 < m =< u. The specifica-
tion of W is left as an exercise. Each M, #sserts that either m # j or
m = j and only the jth element of R changes. Let us assume that the
values of X and m are respectively stored in words x and m and that
R(1:u) is stored in words o, @ + 1, ..., @ + u — 1. M, is given by:

M= VvV Tmkt-1)vZ

1<k=

where T is B if the k’th bit in the binary representation of j is O and T
is B otherwise. Z is defined as

Z = A
I<k=w
L <r#p(n)
reEc -1

(B(r,k,t =)NB@r, k, t) V(B(r,k, t — 1)

AB(r,k,t — 1))

_A\»/A {(Bla+j -1,k t)ANB(x, k,t — 1))
VBa+j—-1,k,)ABx kit - 1)) .

Note that the number of literals in M is O(p2(n). Since j is w bits
long it can represent only numbers smaller than 2*. Hence, foru = 2~
we need a different indexing scheme. A simple generalization is to
allow multiprecision arithmetic. The index variable j could use as
many words as needed. The number of words used would depend on u.
At most log (p(n)) words are needed. This calls for a slight change in
M ; but the number of literals in M remains O(p %(n)). There is no need
to explicitly incorporate multiprecision arithmetic as by giving the

Cook’s Theorem 521

program access to individual words in a multiprecision index j we can
require the program to simulate multiprecision arithmetic.

When { is an instruction of type c) the form of M is similar to that
obtained for instructions of type b). Next, we describe how to construct
M for the case [is of the form Y — choice (§) where S is either a set

of the form S = {§, S, ..., S«} or S is of the form r:u. Assume Y
is represented by word y. Is S is a set then we define
M=v M,
1<jsk

M; asserts that Y'is S . This is easily a.ono by choosing M; = a; A a, A
<<+ A a, where ap = By, 1, ¢)ifbitlis 1 in %& anda;, = B(y, | t)if
bit / is zero in § /. If S is of the form r:u then M is just the formula
that asserts r < Y < u. This is left as an exercise. In both cases, G,,
may be transformed into CNF increasing the length of G, by at most
a constant amount.

6. Leti,i,, ..., i, be the statement numbers corresponding to the suc-

cess statements in A. H is given by:
H=S6,pm) VSl p@)Vv -V Si,ph).

One may readily verify that Q = C A D A E AN F A G A H is satis-
fiable iff the computation of algorithm A with input I terminates success-
fully. Further, Q may be transformed into CNF as described above. For-
mula C contains wp (n) literals, D contains [literals, E contains O(/2p(n))
literals, F contains O(lp(n)) literals, G contains O(lwp3(n)) literals and H
contains at most / literals. The total number of literals appearing in Q is
O(lwp3(n)) = O(p3n)) as Iw is constant. Since, there are O(wp(n) +
Ip(n)) distinct literals in Q, each literal can be written down using O(log
(wp3(n) + Ip(n))) = O(log n) bits. The length of Q is therefore O(p (n)
log n) = O(p*(n)) as p(n) is at least n. The time to construct Q from A
and [is also O(p3(n) log n).

The above construction, shows that every problem in NP reduces to
satisfiability and also to CNF-satisfiability. Hence, if either of these two
problems is in P then NP < P and so P = NP. Also, since satisfiability
is in NP, the construction of a CNF formula Q shows that satisfiability «
CNF-satisfiability. This together with the knowledge that CNF-satisfiability
is in NP, implies that CNF-satisfiability is NP-complete. Note that satis-
fiability is also NP-complete as satisfiability « satisfiability and satisfia-
bility is in NP.

522 NP-Hard and NP-Complete Problems

11.3 NP-HARD GRAPH PROBLEMS
The strategy we shall adopt to show that a problem L, is NP-hard is:

i) Pick a problem L ; already known to be NP-hard.

ii) Show how to obtain (in polynomial deterministic time) an instance
I’ of L, from any instance I of L, such that from the solution of 1’
we can determine (in polynomial deterministic time) the solution to
instance I to L';.

iii) Conclude from (ii) that L, o« L,.

iv) Conclude from (i), (iii) and the transitivity of o that L, is NP-hard.

For the first few proofs we shall go through all the above steps. Later
proofs will explicitly deal only with steps (i) amd (ii). An NP-hard decision
problem L, can be shown NP-complete by exhibiting a polynomial time
nondeterministic algorithm for L, All the NP-hard decision problems we
shall deal with here are also NP-complete. The construction of polynomial
time nondeterministic algorithms for these problems is left as an exercise.

Clique Decision Problem (CDP)

The clique decision problem was introduced in Section 11.1. We shall show
in Theorem 11.2 that CNF-satisfiability o« CDP. Using this result, the tran-
sitivity of o« and the knowledge that satisfiability o« CNF-satisfiability
(Section 11.2) we can readily establish that satisfiability o« CDP. Hence,
CDP is NP-hard. Since, CDP ¢ NP, CDP is also NP-complete.

Theorem 11.2 CNF-satisfiability o clique decision problem (CDP)

Proof: Let F = A ., C, be a propositional formula in CNF. Let x;, 1 =
i < n be the variables in F. We shall show how to construct from F a
graph G = (V, E) such that G will have a clique of size at least k iff F is
satisfiable. If the length of F is m, then G will be obtainable from F in
O(m) time. Hence, if we have a polynomial time algorithm for CDP, then
we can obtain a polynomial time algorithm for CNF-satisfiability using this
construction.

For any F, G = (V, E) is defined as follows: V = {(o, i)|o is a literal
in clause C;}; E = {({0, i), €8, j))|i #jand ¢ # 6}. A sample construc-
tion is given in Example 11.11.

If F is satisfiable then there is a set of truth values forx;, 1 =i = n
such that each clause is true with this assignment. Thus, with this assign-
ment there is at least one literal o in each C, such that ¢ is true. Let § =
{(o, iy|o is true in C,} be a set containing exactly one (o,) for each i.

NP-Hard Graph Problems 523

S forms a clique in G of size k&

. 0 k. Simila has a clique K = (V', E’)
of size at least k then let § = {< o, i)[<a, i> e V' QMM&W _.w_:u .Mumm
G has no .o_Ecm of size more than k. Furthermore, if §' = mq_ (o,i) €S
for some .L then S’ cannot contain both a literal § and its o@BEmBmE 5
as there is no edge connecting (4, i) and (3, J» in G. Hence by setting
x, = true if X; €5’ and x;, = false if %, € S’ and choosing arbitrary truth
<m_.:mm for variables not in S, we can satisfy all clauses in F. Hence, F is
satisfiable iff G has a clique of size at least k. O . ,

Example 11.11 Consider F = (x, vVx X X
. = Vx)A@E, VvV V X,). -
struction of Theorem 11.2 yields E_o m@w? ’ Y VR The con

<X 1> AM_.NV
<X, ,1> Awm 2>
<Xz ,I> AMu 2>

Figure 11.1 A sample graph and satisfiability

H.Em graph contains six cliques of size two. Consider the clique with
vertices A (x b 1), {(x; 2)}. By setting x| = true and %, = true (i.e. x, =
false) F is satisfied. x, may be set either to true or false. |

Node Cover Decision Problem
A set S S Vis a node cover for a graph G = (V, E) iff all edges in E are

incident to at least one vertex in The si i
R ize of the cover, -
ber of vertices in . 51,18 the num

Example 11.12 Consider the graph:

5 71

Figure 11.2 A sample graph and node cover

524 NP-Hard and NP-Complete Problems

S = {2, 4} is a node cover of size 2. § = {1, 3, 5} is a node cover of
size 3. U

In the node cover decision problem (NCDP) we are given a graph G m.aa
an integer k. We are required to determine if G has a node cover of size
at most k.

Theorem 11.3 Clique decision problem (CDP) o node cover decision
problem (NCDP)

Proof: Let G = (V, E) and k define an instance of CDP. Assume that
| V| = n. We shall construct a graph G’ mEmg that G’ has a node oﬁw<mn
of size at most n — k iff G has a clique of size at least k. Graph G’ is
givenby G’ = (V, E) where E = {(u, v)|u € V, v € Vand A:‘. V) mwﬂ

Now, we shall show that G has a clique of size at least k iff .Q has a
node cover of size at most n — k. Let K be any o_Enm.E G. Since there
are no edges in £ connecting vertices in K, the RE.mEEm n - {K| ver-
tices in G’ must cover all edges in E. Similarly, if § is a node cover of G
then V ~ § must form a complete subgraph in G.

Since G’ can be obtained from G in polynomial time, CDP can be .mo?m.a
in polynomial deterministic time if we have a polynomial time deterministic

algorithm for NCDP. U

Note that since CNF-satisfiability « CDP, CDP o« NCDP and « is tran-
sitive, it follows that NCDP is NP-hard.

Chromatic Number Decision Problem (CN)

A coloring of a graph G = (V, E) is a function f:V — {1, 2, . S k} de-
fined for alt i € V. If (4, v) € E then f(u) # f(v). ga Q:.QS&.R. number
decision problem (CN) is to determine if G has a coloring for a given k.

Example 11.13 A possible 2-coloring of the graph of .Emcnm 11.2 is:
f) = f(3) = f(5) = 1 and f(2) = f(4) = 2. Clearly, this graph has no
1-coloring. O .

In proving CN to be NP-hard we shall make use of the Zw&mwa prob-
lem SATY. This is the CNF staisfiability problem with the nmmﬂdocnj that
each clause has at most three literals. The reduction CNF-satisfiability o
SATY is left as an exercise.

NP-Hard Graph Problems 525

Theorem 11.4 Satisfiability with at most three i
o chromatic number (CN)

Proof: Let F be a CNF formula having at most three literals per clause
and having r clauses. Let x;, 1 =i < n be the n variables in F, We may
assume n = 4. If n < 4 then we can determine if F is satisfiable by trying
out all eight possible truth value assignments to x,, x, and x,. We shall
construct, in polynomial time, a graph G that is n + 1 colorable iff F is
satisfiable. The graph G = (V, E) is defined by:

V=Ax,x, ...,x,} U {2,,%,, ..., %,}

C Au_,u\? ..i.f:v C AQTQN, ...'wa

and

E=AGn), 1=i<sn} UG, y)li #/} UL, x)|i =)
UHO: 2)1i # /3 U {(x C)lx, €G3 U {2, €2, £ C,}

To see that Gis n + 1 colorable iff F is satisfiable, we first observe that
the y/s form a complete subgraph on n vertices. Hence, each y: must be
assigned a distinct color. Without loss of generality we may assume that
in any coloring of G y: is given the color i. Since yi is also connected to
all the x’s and ;s except x; and %, the color i can be assigned to only
x;and x;. However (x, ;) ¢ F and so a new color n + 1, is needed for
one of these vertices. The vertex that is assigned the new color, n + 1,
will be called the false vertex. The other vertex is a true vertex. The only
way to color G using n + 1 colors is to assign color n + 1 to one of {x, x,}

foreachi, 1 < i < n.

Under what conditions can the remaining vertices be colored using no
new colors? Since » = 4 and each clause has at most three literals, each
C, is adjacent to a pair of vertices x;, x; for at least one J. Consequently, no
C: may be assigned the color n + 1. Also, no C, may be assigned a color
corresponding to an x; or %, not in clause C,. The last two statements imply
that the only colors that can be assigned to C; correspond to vertices x jOr X;
that are in clause C, and are true vertices. Hence, G is n + 1 colorable iff

there is a true vertex corresponding to each C,. So, Gis n + 1 colorable
iff F is satisfiable. O

Chapter 12

APPROXIMATION ALGORITHMS
FOR NP-HARD PROBLEMS

12.1 INTRODUCTION

In the preceding chapter we saw strong evidence to support the claim that
no NP-hard problem can be solved in polynomial time. Yet, many NP-hard
optimization problems have great practical importance and it is desirable
to solve large instances of these problems in a “‘reasonable’” amount of time.
The best known algorithms for NP-hard problems have a worst case com-
plexity that is exponential in the number of inputs. While the results of the
last chapter may favor abandoning the quest for polynomial time algo-
rithms, there is still plenty of room for improvement in an exponential
algorithm. We may look for algorithms with subexponential complexity,
say 2 (for ¢ > 1), 2¥" or n's", In the exercises of Chapter S an O(2"?)
algorithm for the knapsack problem was developed. This algorithm can also
be used for the partition, sum of subsets and exact cover problem. Tarjan
and Trojanowski (‘‘Finding a maximum independent set,” SIAM Com-
puting, 6(3), pp. 537-546, 1977.) have obtained an O(2"?) algorithm for
the max-clique, max-independent set and minimum node cover problems.
The discovery of a subexponential algorithm for an NP-hard problem in-
creases the maximum problem size that can actually be solved. However,
for large problem instances, even an O(n*) algorithm requires too much
computational effort. Clearly, what is needed is an algorithm of low poly-
nomial complexity (say O(n) or O(n?)).

The use of heuristics in an existing algorithm may enable it to quickly
solve a large instance of a problem provided the heuristic “works’’ on that
instance. This was clearly demonstrated in the chapters on bactracking and
branch-and-bound. A heuristic, however, does not “‘work’ equally effec-
tively on all problem instances. Exponential time algorithms, even coupled
with heuristics will still show exponential behavior on some set of inputs.

559

560 Approximation Algorithms for NP-Hard Problems

If we are to produce an algorithm of low polynomial complexity to solve
an NP-hard optimization problem, then it will be necessary to relax the
meaning of solve. In this chapter we shall discuss two relaxations of the
meaning of solve. In the first we shall remove the requirement that the
algorithm that solves the optimization problem P must always generate an
optimal solution. This requirement will be replaced by the requirement
that the algorithm for P must always generate a feasible solution with value
*“close” to the value of an optimal solution. A feasible solution with value
close to the value of an optimal solution is called an approximate solution.
An approximation algorithm for Pis an algorithm that generates approxi-
mate solutions for P.

While at first one may discount the virtue gf an approximate solution,
one should bear in mind that often, the data for the problem instance
being solved is only known approximately. Hence, an approximate solution
(provided its value is “‘sufficiently” close to that of an exact solution) may
be no less meaningful than an exact solution. In the case of NP-hard prob-
lems approximate solutions have added importance as it may be true that
exact solutions (i.e. optimal solutions) cannot be obtained in a feasible
amount of computing time. An approximate solution may be all one can
get using a reasonable amount of computing time.

In the second relaxation we shall look for an algorithm for P that almost
always generates optimal solutions. Algorithms with this property are called
probabilistically good algorithms. These are considered in Section 12.6. In
the remainder of this section we develop the terminology to be used in dis-
cussing approximation algorithms.

Let P be a problem such as the knapsack or the traveling salesperson
problem. Let I be an instance of problem P and let F*(I) be the value of
an optimal solution to I. An approximation algorithm will in general pro-
duce a feasible solution to I whose value F(I) is less than (greater than)
F*(I) in case Pis a maximization (minimization) problem. Several cate-
gories of approximation algorithms may be defined.

Let G be an algorithm which generates a feasible solution to every in-
stance [of a problem P. Let F*(I) be the value of an optimal solution to
I and let F(I) be the value of the feasible solution generated by Q.

Definition Q@ is an absolute approximation algorithm for problem P if
and only if for every instance I of P, |F*(I) — F(I) < k for some con-
stant k.

Definition Q@ is an finj)-approximate algorithm if and only if for every

Introduction 561

instance I of size n, |F*(I) — F(I)|/F*(I) = f(n). It is assumed that

Tde s M o n

L)y > U,

Definition An ¢-approximate algorithm is an f{n)-approximate algorithm
for which f(n) < e for some constant e.

Note that for a maximization problem, |F*(I) — F (| /F*(I) < 1 for
every feasible solution to /. Hence, for maximization problems we will nor-
mally require ¢ < 1 for an algorithm to be judged e-approximate. In the
next few definitions we consider algorithms ®(e) with ¢ an input to Q.

Definition QG (e) is an approximation scheme iff for every given ¢ > 0 and
NSEoB instance I, ((e) generates a feasible solution such that | F*(I) ~
F()|/F*(I) < e. Again, we assume F*(I) > 0.

Definition An approximation scheme is a polynomial time approximation
scheme iff for every fixed e > 0 it has a computing time that is polynomial
in the problem size.

Definition An approximation scheme whose computing time is a poly-
nomial both in the problem size and in 1/¢ is a fully polynomial time ap-
proximation scheme.

Clearly, the most desirable kind of approximation algorithm is an abso-
lute approximation algorithm. Unfortunately, for most NP-hard problems
it can be shown that fast algorithms of this type exist only if P = NP. Sur-
prisingly, this statement is true even for the existence of fn)-approximate
algorithms for certain NP-hard problems.

Example 12.1 Consider the knapsack instance n = 3, M = 100, { p1, p2,
pa} = {20, 10, Hov and {wi, w2, w3} = {65, 20, 35}, (x1, x2, x3) =
(1, 1, 1) is not a feasible solution as L w.x; > M. The solution (xi, x2, x3)
= (1, 0, 1) is an optimal solution. Its value ¥ p.x;is 39. Hence, F*(I) =
39 for this instance. The solution (x1, x2, x3) = (1, 1, 0) is suboptimal.
Its value is ¥ pax; = 30. This is a candidate for a possible output from
an approximation algorithm. In fact, every feasible solution (in this case
all three element 0/1 vectors other than (1, 1, 1) are feasible) is a candidate
for output by an approximation algorithm. If the solution (1, 1, 0) is gen-
erated by an approximation algorithm on this instance then F(J) = 30.
| F¥(I) - F(I)| = 9and | FXJI) - F(D)|/F¥I) = 0.3. O

562 Approximation Algorithms for NP-Hard Problems

Example 12.2 Consider the following approximation algorithm for the
0/1 knapsack problem: consider the objects in nonincreasing order of
p/wi If object ifits then set x; = 1 otherwise set x; = 0. When this algo-
rithm is used on the instance of Example 12.1, the objects are considered
in the order 1, 3, 2. The result is (x1, x2, x3) = (1, 0, 1). The optimal
solution is obtained. Now, consider the following instance: n = 2, (p1, p2)
= (2, r), (w1, w2) = (1, r) and M = r. When r > 1, the optimal solution
is (x1, x2) = (0, 1). Its value, F*(I), is r. The solution generated by the
approximation algorithm is (xi1, x2) = {, 0). Its value, F(I), is 2. Hence,
| F¥(I) — F(I)| = r — 2. Our approximation algorithm is not an abso-
lute approximation algorithm as there exists no constant k such that | F*(I)
— F(I)| = k for all instances I. Furthermorg, note that |FYI) - M.AO_\
F*(I) = 1 — 2/r. This approaches 1 as rbecomes large. | F¥(I) — F(I)|/
F*I) < 1 for every feasible solution to every knapsack instance. Since
the above algorithm always generates a feasible solution it is a 1-approxi-

mate algorithm. It is, however, not an e-approximate algorithm for any ¢,
e < 1. O

Corresponding to the notions of absolute approximation algorithm and
f(n)-approximate algorithm, we may define approximation problems in
the obvious way. So, we can speak of k-absolute approximate problems
and f(n)-approximate problems. The .S-approximate knapsack problem
is to find any 0/1 feasible solution with | F*(I) — FW)|/F*() < 5.

As we shall see, approximation algorithms are usually just heuristics
or rules that on the surface look like they might solve the optimization
problem exactly. However, they do not. Instead, they only guarantee to
generate feasible solutions with value within some constant or some factor
of the optimal value. Being heuristic in nature, these algorithms are very
much dependent on the individual problem being solved.

12.2 ABSOLUTE APPROXIMATIONS

Planar Graph Coloring

There are very few NP-hard optimization problems for which polynomial
time absolute approximation algorithms are known. One problem is that
of determining the minimum number of colors needed to color a planar
graph G = (V, E). It is known that every planar graph is four colorable.

One may easily determine if a graph is 0, 1 or 2 colorable. It is zero color-
able iff V = ¢. It is 1 colorable iff E = ¢. G is two colorable iff it is bi

partite (see Exercise 6.41). Determining if a planar graph is three colorable

Absolute Approximations 563

is NP-hard. However, all planar graphs _are four colorable. An absolute

approximation algorithm with |F#{I) = F(I)| < 1 is easy to obtain. Algo-
rithm 12.1 is such an algorithm. It finds an exact answer when the graph
can be colored using at most two colors. Since we can determine whether

or not a graph is bipartite in time O(] V| + |E|), the complexity of the
algorithm is O(| V| + |E]).

procedure ACOLOR(V, E)

//determine an approximation to the minimum number of colors//
//needed to color the planar graph G = (V, E)//

case g
: V= ¢: retarm (0)
: F = ¢: retwrn (1)
: G is bipartite: return (2)
: else: return (4)
endcase
end ACOLOR

Algorithm 12.1 Approximate coloring

Maximum Programs Stored Problem

Assume that we have n programs and two storage devices (say disks or
tapes). We shall assume the devices are disks. Qur discussion applies to
any kind of storage device. Let /; be the amount of storage needed to store
the ith program. Let L be the storage capacity of each disk. Determining
the maximum number of these n programs that can be stored on the two
disks (without splitting a program over the disks) is NP-hard.

Theorem 12.1 Partition « Maximum Programs Stored.

Proof: Let {a1, a2, ..., a,} define an instance of the partition problem.
We may assume L a; = 27. Define an instance of the maximum programs

stored problem as follows: L = Tand I; = ai, 1 < i < n. Clearly, {a,,

.-+, @»} has a partition iff all » programs can be stored on the two
disks. 0

By considering programs in order of nondecreasing storage requirement

/i, we can obtain a polynomial time absolute approximation algorithm.

Procedure PSTORE assumes [, < [< --- < [/, and assigns programs

564 Approximation Algorithms for NP-Hard Problems

to disk 1 so long as enough space remains on Em.m tape. Then F Ac.m.mmcm
assigning programs to disk 2. In addition to the time nmmam@ to initially
sort the programs into nondecreasing order of /, O(n) time is needed to
obtain the storage assignment.

procedure PSTORE ([, n, L)
//assume [; < liv, 1 <= i< n//
i—1
forj— 1to2do
sum — 0 //amount of disk j already assigned//
while sum + i< Ldo /
print (‘store program’, i, ‘on disk’, P
sum — sum + [I;
[—i+1
if i > »n then retuarn endif
repeat
repeat
end PSTORE

Algorithm 12.2 Approximation algorithm to store programs

Example 12.3 Let L = 10, n = 4 and (I, I, I3, 1s) = (2, 4, 5, 6). Pro-
cedure PSTORE will store programs 1 and 2 on disk 1 and only program 3
on disk 2. An optimal storage scheme stores all four programs. One way
to do this is to store programs 1 and 4 on disk 1 and the other two on

disk 2. |

Theorem 12.2 Let I be any instance of the maximum programs stored
problem. Let F*(I) be the maximum number of programs that can be
stored on two disks of length L each. Let F(I) be the number of programs
stored using procedure PSTORE. Then, | FXI) - F(I)| = 1.

Proof: Assume that k programs are stored when Algorithm HN‘.N is used.
Then, F(I) = k. Consider the program storage EwEoE when o.Ew one
disk of capacity 2L is available. In this case, considering programs in order
of nondecreasing storage requirement maximizes the number wm programs
stored. Assume that p programs get stored when this strategy 1s :%a on a
single disk of length 2L. Clearly, p = F*(I) and L{l; < 2L. Letj be the

largest index such that LJ/, < L. It is easy to verify thatj < p and that

PSTORE assigns the firstj programs to disk 1. Also,

Absolute Approximations 565

p-1 p

i=j+1 i=j+2

Hence, PSTORE assigns at least programs j + 1, j + 2, ..., p -~ 1to
disk 2. So, F(I) = p — 1 and | F¥I) - F(I)| < 1. g

Algorithm PSTORE may be extended in the obvious way to obtain a
k — 1 absolute approximation algorithm for the case of k disks.

NP-hard Absolute Approximations

The absolute approximation algorithms for the planar graph coloring and
the maximum program storage problems are very simple and straightfor-
ward. Thus, one may expect that polynomial time absolute approximation
algorithms exist for most other NP-hard problems. Unfortunately, for the
majority of NP-hard problems one can provide very simple proofs to show
that a polynomial time absolute approximation algorithm exists iff a poly-
nomial time exact algorithm does. Let us look at some sample proofs.

Theorem 12.3 The absolute approximate knapsack problem is NP-hard.

Proof: We shall show that the 0/1 knapsack problem with integer profits
reduces to the absolute approximate knapsack problem. The theorem then
follows from the observation that the knapsack problem with integer profits
is NP-hard. Assume there is a polynomial time algorithm @ that guaran-
tees feasible solutions such that | F¥(I) — F(I)| < k for every instance I
and a fixed k. Let (pi, w), 1 < i < n and M define an instance of the
knapsack problem. Assume the p; are integer. Let I’ be the instance de-
fined by (k + Dpi, w), 1 < i < nand M. Clearly, I and I’ have the
same set of feasible solutions. Further, F*(I') = (k + 1) F¥(I) and I and
I' have the same optimal solutions. Also, since all the i are integer, it
follows that all feasible solutions to I’ either have value F *(I') or have
value at most F*¥(I') — (k + 1). If F(I’) is the value of the solution gen-
erated by @ for instance I’ then F*(I') — F(I’) is either O or at least k + 1.
Hence if F*(I') — F(I') < k then F¥I') = E(I’). So, @ can be used to
obtain an optimal solution for I’ and hence I. Since the length of I’ is at
most (log k)*(length of I), it follows that using the above construction
Wwe can obtain a polynomial time algorithm for the knapsack problem with
integer profits. 1

Example 12.4 Consider the knapsack instance n = 3, M = 100, (p1, p2,

566 Approximation Algorithms for NP-Hard Problems

p3) = (1, 2, 3) and (w1, w2, wi) = (50, 60, 30). The feasible solutions
are (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1) and (0, 1, 1). The values of these
solutions are 1, 2, 3, 4 and 3 respectively. If we multiply the p's by S then
(1, P2, P3) = (5, 10, 15). The feasible solutions are unchanged. Their
values are now 5, 10, 15, 20 and 25 respectively. If we had an absolute
approximation algorithm for k£ = 4 then, this algorithm will have to output
the solution (0, 1, 1) as no other solution is within 4 of the optimal solution
value. O

Now, consider the problem of obtaining a maximum clique of an un-
directed graph. The following theorem shows that obtaining a polynomial
time absolute approximation algorithm for ﬁw:m problem is as hard as ob-
taining a polynomial time algorithm for the exact problem.

Theorem 12.4 Max clique o absolute approximation max clique.

Proof: Assume that the algorithm for the absolute approximation problem
finds solutions such that | F*(I) — F(I)| < k. From any given graph G =
(V, E), we construct another graph G° = (V’, E’) such that G’ consists
of k + 1 copies of G connected together such that there is an edge between
every two vertices in distinct copies of G. Le., if V = {vi, v2, ..., va}
then

k+1

v = U ASE vah ..., <=@

i=1

and

E nAd_?i v 0, v2) € Sv U {(vj, vDli #j}.

i=1

Clearly, the maximum clique size in G is g iff the maximum clique size
in G’ is (k + 1) q. Further, any clique in G’ which is within k of the op-
timal clique size in G’ must contain a sub-clique of size ¢ which is a clique
of size g in G. Hence, we can obtain a maximum clique for G from a
k-absolute approximate maximum clique for G’. O

Example 12.5 Figure 12.1(b) shows the graph G’ that results when the
construction of Theorem 12.4 is applied to the graph of Figure 12.1(a).
We have assumed k = 1. The graph of Figure 12.1(a) has two cliques.

e-Approximations 567

One consists of the vertex set {1, 2} and the other {2, 3, 4}. Thus, an
absolute approximation algorithm for k = 1 could output either of the
two as solution cliques. In the graph of Figure 12.1(b), however, the two
cliques are {1, 2, 1’, 2"} and {2, 3, 4, 2', 3', 4"}. Only the latter may
be output. Hence, an absolute approximation algorithm with & = 1 will
output the maximum clique. U

(b)

Figure 12.1 Graphs for Example 12.5

12.3 -APPROXIMATIONS

Scheduling Independent Tasks

Obtaining minimum finish time schedules on m, m > 2 identical processors
is NP-hard. There exists a very simple scheduling rule that generates
schedules with a finish time very close to that of an optimal schedule. An
instance I of the scheduling problem is defined by a set of n task times,
t;; 1 < i < n, and m, the number of processors. The scheduling rule we
are about to describe is known as the LPT (longest processing time) rule.
An LPT schedule is a schedule that results from this rule.

568 Approximation Algorithms for NP-Hard Problems

Definition An LPT schedule is one that is the result of an algorithm
which, whenever a processor becomes free, assigns to that processor a task
whose time is the largest of those tasks not yet assigned. Ties are broken
in an arbitrary manner.

Example 12.6 Let m = 3, n = 6 and (¢, t3, 13, t4, L5, ts) = (8,7, 6,5,
4, 3). In an LPT schedule tasks 1, 2 and 3 are assigned to processors 1,
2 and 3 respectively. Tasks 4, 5 and 6 are respectively assigned to proces-
sors 3, 2 and 1. Figure 12.2 shows this LPT schedule. The finish time is
11. Since, L ¢,;/3 = 11, the schedule is also optimal.

AR
SN
NN

Figure 12.2 LPT schedule for Example 12.6

Example 12.7 let m = 3, n = 7 and (¢, t,, t3, ts, ts, te, t7) = (5, 5,
4, 4, 3, 3, 3). Figure 12.3(a) shows the LPT schedule. This has a finish
time of 11. Figure 12.3(b) shows an optimal schedule. Its finish time is 9.
Hence, for this instance | F*(I) — MA:_\M*AC =(11 -9)/9 =2/9. O

It is possible to implement the LPT rule so that at most O(n log n)
time is needed to generate an LPT schedule for n tasks on m processors.
An exercise examines this. The preceding examples show that while the
LPT rule may generate optimal schedules for some problem instances, it
does not do so for all instances. How bad can LPT schedules be relative
to optimal schedules? This question is answered by the following theorem.

Theorem 12.5 {Graham] Let F*(I) be the finish time of an owmam_, m
processor schedule for instance I of the task scheduling problem. Let F()
be the finish time of an LPT schedule for the same instance. Then,

1

LEXD) - F(D)|
FXI)

=

1
3 Im

e-Approximations 569

2NN,
\m\

RS

(a) LPT Schedule

_\\ 3
NN \»\
NNV

(b} Optimal Schedule

Figure 12.3 LPT and optimal schedules for Example 12.7

Proof: The theorem is clearly true for m = 1. So, assume m = 2. Assume
that for some m, m > 1, there exists a set of tasks for which the theorem
is not true. Then, let (z,, t;, ..., t.) define an instance I with the fewest
number of tasks for which the theorem is violated. We may assume ¢, =
t2 = -+ = t, and that an LPT schedule is obtained by assigning tasks in
the order 1, 2, 3, ..., n.

Let § be the LPT schedule obtained by assigning these n tasks in this
order. Let F(I) be its finish time. Let k be the index of a task with latest
completion time. Then, k = n. To see this, suppose & < n. Then, the
finish time \ of the LPT schedule for tasks 1, 2, ..., kis also F(I). The
finish time, f*, of an optimal schedule for these k tasks is no more than
F*(I). Hence, |f* — f| /f* = |F*{) - %S_\?S > 1/3 = 1/(3m). (The
latter inequality follows from the assumption on 1.) |f* — f|/f* > 1/3 -
1/(3m) contradicts the assumption that I is the smallest m processor in-
stance for which the theorem does not hold. Hence, k = n.

Now, we show that in no optimal schedule for I can more than two tasks
be assigned to any processor. Hence, n < 2m. Since task n has the latest
completion time in the LPT schedule for I, it follows that this task is started

570 Approximation Algorithms for NP-Hard Problems

at time F(I) — t.in this schedule. Further, no processor can have any
idle time until this time. Hence, we obtain:

N H n-1
FI) - t.= =L t;
m 1
So,
) <LtEe+ =1,
m m
Since, *
F*(I) = mlm ti
= m3"
we can conclude that
B - FxI) = 2=1,,
- m

or

| F*(I) — F(I)]| m-1 t,
FXI) m F¥*I)

1A

But, from the assumption on I, the left hand side of the above inequality
is greater than 1/3 — 1/(3m). So,

3 3m m F*)

or
m—1<3(m~ 1Dt/ F¥I)
or

F*I) < 3ta.

e-Approximatiens 571

Hence, in an optimal schedule for I, no more than two tasks can be
assigned to any processor. When the o
two tasks on any processor then it may be shown that the LPT schedule
is also optimal. We leave this part of the proof as an exercise. Hence,
| F*(I) — FUu Y|/ F*I) = 0 for this case. This contradicts the assumption

on I. So, there can be no [that violates the theorem. d

Q Nt vmact

s Ty
ptlimai sCneduic Cofitaifis at imost

sl caladsila A

Theorem 12.5 establishes the LPT rule as a (1/3 — 1/(3m))-approxi-
mate rule for task scheduling. As remarked earlier, this rule can be imple-
mented to have complexity O(n log n). The following example shows that
1/3 — 1/(3m) is a tight bound on the worst case performance of the LPT
rule. -

Example 12.8 letn=2m+ 1,t:=2m - |[(i+ 1)/2],i=1,2, ...,
2m and t,,,, = m. Figure 12.4(a) shows the LPT schedule. This has a
finish time of 4m — 1. Figure 12.4(b) shows an optimal schedule. Its finish
time is 3m. Hence, | F*(I) — F(D|/F*I) = 1/3 - 1/3m). O

3m-l 4m-| 3m
u v | 2m 2m+i Py _\,m:..lv
um 2 vmsn vm 2 m:._nu
_uu 2 3 %NS-N vu 7 U%NS-A

7 < \

Po.p [/m-2 m+3 P2 a-m?:
\ 7

Pr-i M-I m+2 g Pt M-

ua m+l J: 2m-| /mq:/ N\?_\,_

(a) LPT Schedule (b) Optimal Schedule

Figure 12.4 Schedules for Example 12.8

For LPT schedules, the worst case error bound of 1/3 — 1/(3m) is not
very indicative of the expected closeness of LPT finish times to optimal
finish times. When m = 10, the worst case error bound is .3. Two experi-
ments were conducted (‘‘An application of bin-packing to multiprocessor
scheduleing,” by E. Coffman, M. Garey and D. Johnson, SIAM Computing,

572 Approximation Algorithms for NP-Hard Problems

7(1), pp- 1-17, 1978.) to see what kind of error one might expect on a ran-
dom problem for m = 10. In the first experiment, 30 tasks with task times
chosen according to a uniform distribution between 0 and 1 were generated.
F*(I) was estimated to be L1 ¢t,/10 and F(I) was the length of the LPT
schedule generated. The experiment was repeated ten times and the average
value of |F*(I) — F)|/F*(I) computed. This value was 0.074. In the
second experiment task times were chosen according to a normal distribution.
The average |F*(I) — F(I)|/F*(I) was 0.023 this time. These figures
are probably a little inflated as L{° /10 is probably an underestimation
of the true F*(I).

Efficient ¢-approximate algorithms exist for many scheduling problems.
The references at the end of this chapter point to some of the better known

e-approximate scheduling algorithms. Some of these algorithms are also

discussed in the exercises.

Bin Packing

In this problem we are given n objects which have to be placed in bins of
equal capacity L. Object i requires /; units of bin capacity. The objective is
to determine the minimum number of bins needed to accommodate all
n objects. No object may be placed partly in one bin and partly in another.

Example 12.9 Let L = 10, n = 6and (I}, I, 15, I,, s, 1) = (5,6, 3, 7,
S, 4). Figure 12.5 shows a packing of the 6 objects using only three bins.

Numbers in bins are object indices. It is easy to see that at least 3 bins are

needed.

M [

| — —2 —

S g—

I
1l

Figure 12.5 Optimal packing for Example 12.9

The bin packing problem may be regarded as a variation of the sched-
uling problem considered earlier. The bins represent processors and L is
the time by which all tasks must be completed. /, is the processing require-
ment of task i The problem is to determine the minimum number of
processors needed to accomplish this. An alternative interpretation is to
regard the bins as tapes. L is the length of a tape and /: the tape length
needed to store program i The problem is to determine the minimum

e-Approximations 573

number of tapes needed to store all n programs. Clearly, many interpre-
tations exist for this problem.

Theorem 12.6 The bin packing problem is NP-hard.

Proof: To see this consider the partition problem. Let {a,, a;, ..., aa}
be an instance of the partition problem. Define an instance of the bin
packing problem as follows: /i = a;, 1 < i < nand L = T a/2. Clearly,
the minimum number of bins needed is 2 iff there is a partition for
{ai, aj, ..., a.}. O

One can devise many simple heuristics for the bin packing problem.
These will not, in general, obtain optimal packings. They will, however,
obtain packings that use only a ‘‘small”” fraction of bins more than an opti-
mal packing. Four simple heuristics are:

1. First Fit (FF)

Index the bins 1, 2, 3, All bins are initially filled to level zero.
Objects are considered for packing in the order 1, 2, ..., n. To pack ob-
ject 7, find the least index j such that bin jis filledto alevel r, r < L — [..
Pack iinto bin j. Bin j is now filled to level r + [..

II. Best Fit (BF)

The initial conditions on the bins and objects are the same as for FF.
When object i is being considered, find the least j such that bin j is filled
toalevel r, r <= L — l;and ris as large as possible. Pack i into bin j. Bin j
is now filled to level r + ..

II1. First Fit Decreasing (FFD)

Reorder the objects so that /; = iy, 1
pack the objects.

\
A

i < n. Now use First Fit to

IV. Best Fit Decreasing (BFD)

Reorder the objects so that [; = lis1, 1 < [< n. Now use Best Fit to
pack the objects.

Example 12.10 Consider the problem instance of Example 12.9. Figure
12.6 shows the packings resulting when each of the above four packing
rules is used. For FFD and BFD the six objects are considered in the order

574 Approximation Algorithms for NP-Hard Problems

(4,2, 1,5, 6, 3). As is evident from the figure, FFD and BFD do better

than .m#ron FF or BF on this instance. While FFD and BFD obtain optimal
packings on this instance, they do not in general obtain such a packing. [J

3 —.6
T I : T
I 2 4 s
| 1 1l L
| 2 3 4
{a) First Fit
¥
F—5—] — 3 —
_ T ! r
I 2 6
! | | |
! 2 3 4
(b) Best Fit
. _I F— 6 — — 5 —]
T]
4 2 _
| [{
| 2 3

(c) First Fit Decreasing and Best Fit Decreasing

Figure 12.6 Packings resulting from the four heuristics

Theorem 12.7 Let I be an instance of the bin packing problem and let
F*(I) be the minimum number of bins needed for this instance. The
packing generated by either FF or BF uses no more than (17/10) F*(I) + 2
bins. The packing generated by either FFD or BFD uses no more than
(11/9) F*(I) + 4 bins. These bounds are the best possible bounds for the
respective algorithms.

Proof: The proof of this theorem is rather long and complex. It may be
mo.cba in the paper: “Worst-Case Performance Bounds For Simple One-
Dimensional Packing Algorithms,” by Johnson, Demers, Ullman, Garey
and Graham, SIAM Jr. On Computing, 3(4), pp. 299-325 (1974). [

e-Approximations 575

As in the case of absolute approximations, there exist many NP-hard
optimization problems for which the corresponding e-approximation prob-
lems are also NP-hard. Let us look at some of these. To begin, consider
the traveling salesperson problem.

Theorem 12.8 Hamiltonian cycle « e-approximate traveling salesperson.

Proof: Let G(N,A) be any graph. Construct the complete graph G (V, E)
such that V = Nand E = {(u, v)|u, v € Vand u # v}. Define the edge
weighting function w to be ’

1 if(u,v) €A

w(u, v) =
k otherwise

Let n = | N|. For k > 1, the traveling salesperson problem on G has a
solution of length n if and only if G has a Hamiltonian cycle. Otherwise,
all solutions to G, have length = k + n — 1. If we choose k = (1 + ©)n,
then the only solutions approximating a solution with value # (if there was
a Hamiltonian cycle in G,) also have length n. Consequently, if the e-ap-
proximate solution has length < (1 + €)n then it must be of length n. If it
has length >(1 + €)nthen G has no Hamiltonian cycle.]

Another NP-hard e-approximation problem is the 0/1 integer program-
ming problem. In the optimization version of this problem we are provided
with a linear optimization function f(x) = L pix; + po. We are required
to find a 0/1 vector (x,, x;, ..., X, such that f(x) is optimized (either
maximized or minimized) subject to the constraints that L a;x; < b,
1 < i < k. kis the number of constraints. Note that the 0/1-knapsack
problem is a special case of the 0/1 integer programming problem just
described. Hence, the integer programming problem is also NP-hard. We
shall now show that the corresponding e-approximation problem is NP-hard
for all ¢, ¢ > 0. This is true even when there is only one constraint (i.e.,
k= 1).

