Monotonicity: Th ily UC,, : t rdl YV and N).
e Monotonicity e family ndom z.smtw/omz\e{rega ess of V and N)

o Spread: For any item i € I, spread;(V,i) = O(tlog(Nk)) with probability
greater than 1 — 1/N over the choice of f € UC:andom-

o Load: For any bucket b € B, load;(V,b) = O ((’4.—l + 1) tlog(Nmk)) with
probability greater than 1 — 1/N over the choice of f € UC andom-

o Balance: For any fized view V and item i, the probability that item i is mapped
to bucket b in viewV is O (T‘l71 ('35%11[1 + 1)) + .

The balance claim of theorem 2.2.3 requires clarification. Note that if we choose
'm = Q(log(|V])), and N = poly(|V]), then the bound simplifies into O(1/{V|) which
gives the definition of the balance property.

The proof of theorem 2.2.3 is presented in the remainder of this section as a series
of lemmas.

In a number of the proofs, the Chernoff bound (See appendix A) is used where
a more direct method could be applied. The reason for this is that in section 2.2.4
the family UC;andom is modified so that the mapping of points to the circle is not
completely random. The modification will be such that the Chernoff bounds will
still hold; thus the proofs presented in this section remain valid. Cases in which
superfluous use of Chernoff bounds are made are highlighted, and should not make
reading the proofs any harder.

Intuitively, the family is monotone since when a new bucket is added, the only
items that move are those that are now closest clockwise to points associated with
the new bucket. The proof of monotonicity is simple and is given in the following

Lemma.
Lemma 2.2.4 The family UC,andom s monotone.

Proof:
Let V; C V5 C B be two views of the buckets. Let f be any function in UC;andom.
We need to show that fi, (i) € V; implies fy, (i) = fi,(i). Now, fi,(i) € V; implies
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Figure 2-11: Monotonicity for the family UC,qndom- In this figure the unit circle is
depicted by an interval of length one, which is obtained by cutting the unit circle at an
arbitrary point. (i) The mapping of points to the circle for a view V, = {4, B,C, D}
(m = 2 in this example). The closest bucket point clockwise of i’s point is one
associated with the bucket D. (ii) For any view V) C V, containing the bucket D
(here V; = {C, D}), the point closest to i’s point will still be D.

that when adding buckets to V; to get V3, none of the points that we add to the unit
circle fall in the arc between i’s point and the bucket point that it was previously
closest to in V;. Thus, the item i must be mapped to 16 the same bucket in both V;
and V; (see figure 2-11). 7(

Before showing the bound on spread, a technical lemma is derived which is used
in both the spread and load bound proofs. The lemma shows that an arc does not
» an arc coes hot

have to be very long if we want there to be high probability that at least one bucket

point from every view falls into the arc.

Lemma 2.2.5 Any fized set of measure at least i‘ﬁ’%%ﬂl in the unit circle contains

at least one bucket point from every view with probability greater than 1 — ﬁ,—

Proof:
Note that the probability is over the choice of the function rg. Since in the family
UC:andom 2ll functions are equally likely, we can assume in the proof E@M@L

the buckets are distributed uniformly and at random around the unit circle.
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Let X; be a random variable dencting the number of points associated with buck-
ets in view V; that fall into a set of measure I. There are at least M = '"TT bucket
points associated with each view (since every view contains at least 7'/t buckets).
However, we can assume that there are exactly M points in each view since more
points would imply that a set with smaller measure would suffice (1nore precisely, the
distribution of X; when there are more than M points stochastically dominates the
distribution when there are M points). Thus, we have E[X;] = MI. We will choose
the value of [ so that the probability of X; being 0 is at most 1/2Nk.

Following is a use of the Chernoff bound where we could have made a more direct

argument. 5

-Pr[X; =0] < Pr{|X; — Ml| > MI]
J 2

Ml

< 277

M

So we choose ! so that 2e~ We obtain [ = M&M = 4—‘1’%‘:#1.

=1
= 2N%-
From the union bound we have:

1 1

k
Pr[ Some X; =0] < Y _Pr[X; =0] < ksne = 57

i=1

Thus, any set of measure ﬂ%:—"—"l contains a bucket point from every single view
with probability at least 1 — 1/2N.

We now show the bound on spread.

Lemma 2.2.6 For any item i € I, spreads(V,i) = O(tlog(Nk)) with probability
greater than 1 — 1/N over the choice of f € UC:andom-

5The direct argument is Pr[X; = 0] = (1 — 1) since each point is mapped independently to the
circle.
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Proof:
The proof of the lemma uses a technique that reoccurs many times in this paper.
The basic idea is simple. If we want to show that some event A has low probability,

then we can proceed as follows:

1. Find a set of events B so that the occurrence of event A implies that at least

one of the events in B occurs.
2. Show that there is only a small probability that any event in B occurs.

3. Deduce that the probability of A must also be small.

More formally stated, the technique is to find a set of events B so that A C
Us,es Bi- This implies that:

Pr[A] < Pr [ U B.] < ) PrBi]

B;eB B;eB

So, if the sum of the probabilities of the events in B is small then the probability
of A must also be small.

The first step is to define the event A and the family of events B. In our case, A
is the event that the bound on the spread does not hold. The family B contains two

events: By and B, which are defined as foliows:

1. By: Fix an arc « of length 51!9%‘,1;&‘1 to the right of the point r,(i) associated
with the item i. Denote by B, the event that there is some view that has no
bucket point in the arc a. Note that this is, in some sense, the complement of

the event that we considered in the previous lemma (lemma 2.2.5).

2. By: Let X be the random variable denoting the total number of bucket points
in the arc a.. Let B, denote the event that X is more than 8tlog(4N k);ﬁ ghat is,
more than 8tlog(4/Nk) bucket points fall into the arc a.

The next step is to show that the event A implies at least one of the events B,

and B,. In this case, it is easier to show the contrapositive, or: B; N B, = A.

54



If event B, occurs, we know that every view has at least one bucket point in the
arc a. Now, for each view V, the item i is mapped to the first bucket point from
V encountered in a clockwise traversal of the circle. The event B, implies that this
bucket point will be found somewhere in the arc a. So, it must be that in every
view, i is mapped to some bucket with a point in a. Therefore, the spread of 3
cannot be larger than the total number of bucket points that fall into the arc o! If
in addition to B;, event B, occurs, then we know that the number of buckets in o
is less than 8tlog(4Nk), and hence, the spread of i must be less than 8t log(4Nk) =
O(tlog(4Nk)). This is precisely the event A! This proves that B, N B, = A.

The last and final step is to bound the probabilities of the events B, and B;.

Lemma 2.2.5 shows that Pr{B;] > 1—1/2N, and thus Pr[B,] < 1/2N. It remains
to bound the probability of eveat B,. Ncte that there are a total of T'm points coming
from all the views and thus E[X] = Tm‘—'—"%%(;?—k) = 4tlog(2Nk). The Chernoff bound

impiies that:

< Pr[|X —4tlog(4Nk)| > 4tlog(4Nk)]
. oV Y _< 1
(4NE)t — 2N

< 26-:10};(4)9#)' _

(Assuming that ¢ > 1.)
Consequently, Pr[B,] < 1/2N. To wrap up the proof we have:

PI[A] < Pl'[Bl U Bz] < Pl'[BI] + Pl'[Bz] < 1/2N + 1/2N = l/N

This proves that the probability that the bound on spread does not hold is less
than 1/N, and thus, the probability that the bound does hold is at least 1 — 1/N.
This concludes the proof of the lemma.

The next Lrmma shows the load bound.
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Lemma 2.2.7 For asy bucket b € B, load;(V,b) = O ( (4 + ) log(Nmk)) with
probability greater that 1 — 1/N over the choice of f € UCrandom-

Proof:

The intuition for the proof is simple: An item that is assigned to a bucket must
fall into one of the arcs that the bucket’s points are responsible for. Lemma 2.2.5
implies that the length of the arc that a single bucket point is responsible for over all
views is not too big. Hence the total fraction of the circle that a bucket is responsible
for over all views is relatively small. Thus, only a small fraction of the items are
assigned to a bucket even if there are many views. More precisely, lemma 2.2.5 is
used to bound the length of the arc that a single bucket point is responsible for over
all views. Multiplying this length by m we get a bound on the total measure of the
set in which items could fall and be assigned to the bucket in question. We then
bound the total number of items that fall into this set, getting an upper bound on
the load.

Since in the family UC,andom all functions are equally likely to be chosen, we can
assume in the proof that points for the buckets and items are distributed uniformly
and at random in the unit circle. In addition, we note that item points are distributed
independently of bucket points.

The bucket b has m points associated with it in the circle. An item is assigned to
the bucket b if in some view it is closest clockwise to one of these m points among all
other bucket points.

Fix one of the m points associated with the bucket b. We examine an arc starting
at this point and going counter-clockwise around the circle that is long enough so
that in every view, there is another bucket point in the arc with probability at least

1 - 57— Invoking lemma 2.2.5 we get that the length of such an arc is given by

4tlog(8Nmk)
Tm :

Now, by the union bound we have that with probability at least Elﬁ’ the length of
the arc to the left of every one of the m points associated with b is 3'—“&7‘%’1"2. We
denote by A this event.

Now we have:
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Pr| load;(V,b) > z] = Pr| loads(V,b) > z | A|Pr[4]
+ Pr{ load;(V,b) > z | A] Pr[A]
< Prf load;(V,b) > z | A] + Pr[4]
< Prf loads(V,b) > z | A+ 1/2N

It remains to bound the load on bucket b given that event A has occurred. If
event A occurs then we know that any item assigned to bucket b falls within distance
ﬂ%%’- of one of the m points associated with 4. Thus, if an item is assigned to
bucket b it must fall in a set of total measure at most mfuﬂ,ﬁv—"'ﬂ = M;N—""ﬂ If
there is overlap of arcs then the total measure may be smaller, but this will only lead
to a better bound on the load. Therefore, all we need to do is bound the numter of
item points that fall into a set of measure M‘%N—'ﬂﬂ.

Let X denote the number of item points in the set. The expected number of item
points is E[X] = ﬂﬂ%@i"ﬁ. Since item points are mapped independently of bucket
points we can use Chernoff bounds on X. This unfortunately turns out to be a bit
technical. There are two cases to be considered according to the value of I—Tl‘_l:

Case 1: 0< [; <2 -1

In this case we use a Chernoff bound with § = aTT| This gives us:

T \ 4t|I|log(8Nmk) 1 1
fall < <
Pr [X > (1 Vm ) T S BNmk) S 3N

(Since t,k,m > 1.)

Case 2: 2e—1$%

In this case we use a Chernoff bound with é = |—TI This gives us:
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Pr [X S (1+ 2) 4t}1| log(8Nmk)} < lm _
1| T (8Nmk)t T M)

1

rr—————

<
~ (8Nmk)t
1
< —
-~ 2N
(Since t,k,m > 1.)
Since both (1 + \/I%—l) i‘.lﬂlesi(‘w and (1 + '_11" ) 4t|l[logT_(8Nmk2 are
0O ((%-E + 1) log(Nmk)) we have shown that for 2 = O ((1%15 + 1) log(Nmk)):

Pr[ loads(V,b) > 2] < Prf loads(V,b) > z | A]+1/2N
< 1/2N+1/2N =1/N

This concludes the proof of the lemma.

It remains to show the balance property. If we fix a particular view, then the
probability that an item is assigned to a particular bucket is exactly the total length
of the unit circle that the bucket is “responsible” for. The following lemma bounds
the total length of the set that each bucket is responsible for, and thus will be the
main step in showing the balance property (which is proved in lemma 2.2.9).

For a bucket b, denote by length(b) the measure of the set of points in the unit

circle that b is responsible for.

Lemma 2.2.8 Let V be a fired view containing v = |V| buckets. Then with proba-

bility ot least 1~ 1/N for all b € V, length(t) = O (5 (’—55—,,”—1 + 1))

Proof:

The proof of lemma 2.2.8 is based on the same idea as the proof of lemma 2.2.6.

If we want to show that some event A has low probability, then we can find a set of
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]
events B so that the occurrence of event A implies that at least one of the events in

B occurs. Then, if we show that there is only a small probability that eny event in B
occurs, then the probability of A must also be small.

In our case the event A is that some bucket b has length(b) greater than the
value stated in the lemma. Recall that the part of the unit circle that the bucket b
is “responsible” for is broken up into m non-overlapping arcs. One (not good) set
of events B is obtained by observing that if b is responsible for a set of measure p,
then there is a collection of m arcs of total length p (with right ends at the m points
associated with ) in which no other bucket point falls. Thus each event in B is
described by a set of m arcs of total length p, into which no other bucket point falls.
The problem is that there are uncountable many ways to divide length p among m
arcs. Since we want to use a union bound to bound the probability that any event
from B occurs, the set needs to be finite!

We make B smaller by discretizing the circle and counting the number of ways
to distribute total length p by discrete units. This is of course finite, and the error
introduced by the discretization turns out to be small. We now formalize the above
argument.

Recall that a bucket point is responsible for an arc if the bucket point is on the
right end of the arc, there is no bucket point in the interior of the arc, and some other
bucket point is on the left end of the arc. A bucket b is responsible for the union of
the m arcs that the points associated with b are responsible for.

The main result is that the probability a single bucket b is responsible for more
than an O (% (!‘-’3-(,?') + 1)) fraction of the unit circle is at most 1/Nv. The union
bound then implies that none of the v buckets are responsible for more than an
o (% ('i’ﬂmMl + 1)) fraction of the circle with probability 1 — 1/N.

To show the main result, we begin by fixing a bucket b. The portion of the unit
circle for which b is responsible must consist of m non-overlapping arcs in the circle,
each bounded on the right by one of b’s points. Suppose we shrink all these arcs by
moving the left endpoints rightward, until the length of every arc is a multiple of

A = 22 (o will be set later). Since there are m of these arcs and each shrinks by at
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most A, the decrease in the total length of all arcs is at most 42. So if the total length
of these arcs after shrinking is 43 , then the total length before shrinking is at most
42 +42 = 82. This implies that if bucket b is responsible for a 85 fraction of the unit
circle, then b must be responsible for every point in a collection of non-overlapping
arcs, each bounded on the right with one of b’s points, each a multiple of A in length,
and with total length 42.

Now, given a collection of arcs of total length 4% we will bound the probability
that in these arcs there is no point associated with some other bucket. The expected
number of the mv —m points falling in this collection of arcs is 422=Y S0 we have

from a superfluous use of the Chernoff bounds:

‘U—

PriX=0] < Pr{(X -4am 1) > 4am)]

v
—ami=1
S eamv

The number of collections of m arcs with total length 4—“} and with all lengths
multiples of A is exactly the number of ways to partition 4—0‘3 /A = m into m integral

parts, which is:

2m_. 1 < 22111-—1 < e2m
m—-1/~ -

By the union bound, the probability that any of the above collections of arcs

contains no point associated with other buckets is at most:

—ami=1 - v=1_
e—om% 82m=6 (am ¥4 —2m)

We will choose a so that this probability is at most 1/(Nv). which gives:

a=0(l—9-gf:r—v)+l)
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This proves that with probability at least 1 —1/(Nv) the total length assigned to
a bucket is at most 52 = O(2 (‘355"—'@1 + 1)). Now since there are v buckets the same
bound holds for all buckets with probability 1 — 1/N by the union bound.
]

We now prove the balance bound given in theorem 2.2.3.

Lemma 2.2.9 For any fired view V and item i, the probability that item i is mapped
to bucket b in viewV is O (]—‘17[ (‘Bﬂ%ﬂﬂl + 1)) + &

Proof:
Denote by A the event that for every bucket b in the view V' we have length(b) =

0] (i‘lf_l (M,—","Ml + 1)) . Lemma 2.2.8 says that the probability of A is at least 1-~1/N.
Now for any b € V:

Pel fu()) =8 = Prl fv(i)="b| A]Pr{4]

+ Pr fv(3) =b| 4] Pr[4]
< Prl fy(3) = b| A]+ Pr4]
< Pi fyl(i) =b| A]+1/N

o (22209

Since, given that event A has occurred, the probability that item i is mapped to
any particular bucket b is exactly length(b) (the mapping of items is independent of
the mapping of buckets) which is O (ITl"l (E&!_”Elﬂl + 1)) .

This concludes the proof of theorem 2.2.3. We state and prove one corollary of

theorem 2.2.3 that is useful for various applications.

Corollary 2.2.10 With the seme conditions as theorem 2.2.3, the probability that an
item i is mapped to a bucket b in at least one of the views is O (5'35-(7"—'"—"2) + L.
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Proof:

We saw in the proof of lemma 2.2.7 that with probability at least 1 — 1/N, the
bucket b is not responsible for more than a O (M,}M) fraction of the circle over all
views. Using the same argument as in the proof of lemma 2.2.9, the corollary follows.

2.2.4 A Practical Consistent Hash Family

In the previous section, we showed that the family UC/4ndom has good consistency
properties: the family is monotone, spread and load grow logarithmically with the
number of views, and the family has the balance property.

However, there is a drawback to the family UC\sndom; it requires manipulation of
real numbers. More specifically, storing a function requires infinite space, and fur-
thermore, choosing a function from the family requires an infinite number of random
bits.

In this section we remedy these problems by modifying the basic construction in
two simple ways. We show that limited independence in the mapping of points to
the circle suffices for the family to have the same consistency properties as UC'random-
Using limited independence reduces the number of random bits required to choose
a function from the family, and reduces the space required to store a function from
the family. Furthermore, we show how to use limited precision in the real numbers
used in the basic construction, thus eliminating the need to manipulate arbitrary real
numbers. In section 2.2.4 these two modifications are combined to construct a new,
more practical hash family. An implementation of this family, which is remarkably

simple and efficient, is presented in section 2.2.5.

Using Limited Independence

We say that a family of functions is k-way independent if any k elements from the
domain are mapped independently into the range when we choose a function at ran-

dom from the family. In other words a family is k-way independent if for any distinct
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z;, 1 < i < k from the domain of the family, and any y;, 1 < i < k from the range of
the family:

K
Pr{f(z1) = y1, f(®2) = v2,- .- , flax) = ] = [ | Prif(=:) = vi]
i=1

Where the probability is over a random choice of function f from the family.
Another way of looking at this is that the random variables {f(z)} where ¢ ranges
over the domain of the family are k-way independent.

As an example, consider the linear congruential hash family introduced in exam-
ple 1. This is a 2-way independent family. We showed that the number of random
bits required to choose a function from the family and the space required to store a
function from the family are very small compared to a completely random function.
These are exactly the reasons that we are interested in using limited independence
mappings.

We show that if UC,4ndom is modified so that items and bucket copies are mapped
to the circle using limited independence, then the consistency properties of the family
remain unchanged.

The basic tool used is the following theorem from[17) that shows that Chernoff

bounds apply to cases with certain limited amounts of independence.

Theorem 2.2.11 If X is the sum of k-wise independent random variables each of
which is in the range [0,1] with p = E[X], then:

e Foranyd > 1 and k > [6p]:
Prll X — p| > 6p) <
o Forany 6 <1 and k > |6%ue'/3|:
Prf| X — pu | > 6p] < el 5]

The only probabilistic tool used in the proof of theorem 2.2.3, which states the
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consistent properties of the family UC}sndom, is the Chernoff bound on sums of indi-
cator variables {(other than the union bound which is true regardless of independence
of mappings). Theorem 2.2.11 implies that the claims of theorem 2.2.3 are still valid
even if item and bucket points are mapped to the circle with only limited indepen-
dence and not completely randomly as assumed in the proof. In fact, we show that if
the bucket and item points are each mapped Q(t log(NTk))-way independently then
all the bounds of theorem 2.2.3 still hold.

Theorem 2.2.12 If bucket copies and items are mapped to the unit circle using
Q(tlog(NTk))-way independent families, then, as long as item points are mapped
independently of bucket points, theorem 2.2.3 still holds.

Proof: Monotonicity is not affected by the independence of the mappings.

We need to check that each of the Chernoff bounds used in the proof of spread,
load, and balance are still valid with only Q(tlog(NTk))-way independence. Recall
that the proof of theorem 2.2.3 was divided into lemmas 2.2.6, 2.2.7, and 2.2.9.

For each of lemma 2.2.5, lemmas 2.2.6 and 2.2.7, and also Jemma 2.2.8 we will

show that using a function with Q(t log(N' TI;:))-way independence is sufficient.

e Lemma 2.2.5: The proof uses a Chernoff bound with § = 1 and L= “—""}%—Nﬂ.
Invoking the first case of theorem 2.2.11 we see that we need I-M,%m] -way

T
independence. Since this is O(tlog(NTk)), lemma 2.2.5 holds.

® Lemma 2.2.6 (spread): The proof uses lemma 2.2.5 that we showed above
holds. The proof of the spread bound (lemma 2.2.6) contains one more Chernoff
bound with 6 = 1 and p = 4tlog(2Nk). From the first case of theorem 2.2.11
we see that (tlog(NTk))-way independence suffices.

e Lemma 2.2.7 (load): The first part of the proof relies on lemma 2.2.5 which
we have shown still holds. Item points are mapped independently of bucket
points so the remaining Chernoff bound is still valid as long as we have enough
independence: There are two cases to consider depending on whether T/|I| is

larger or smaller than 1.
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Case 1: T/|I| < 1

In this case we use a Chernoff bound with parameters § = VT/II] < 1 and
u= i‘-wﬂ%!.ﬂl"l. We apply the second case of theorem 2.2.11 and observe that
Q(tlog(NTk))-way independence suffices. This case then parallels the case of
T/|I| < 2e — 1 in the proof of lemma 2.2.7.

Case 2: T/|I] > 1

In this case we use a Chernoff bound with parameters § = T/|II} > 1 and
u = MB,T(.M‘). We invoke the first case of theorem 2.2.11. This case then
parallels the case of T/|I| > 2e — 1 in the proof of lemma 2.2.7.

e Lemma 2.2.8 (balance): The proof relies on a Chernoff bound with § = 1
and p = O(log(NT) + m). Invoking the first case of theorem 2.2.11 we see
that Q(tlog(NTk) + m)-way independence suffices, however if we choose q=
O(log(T)), then Q(tlog(NTk))-way independence suffices. The proof also relies

on the fact the item points are mapped independently of bucket points.

Using Limited Precision

In this section we show how to use limited precision for representing real numbers for
the unit circle hash function. The next section defines the final practical hash family
and proves its properties.

The basic idea is simple. Each function in the family UCsndom is defined by a total
of |I|+m|B| random points on the real unit circle. The important observation is that
what really matters about these points is their clockwise ordering arcund the circle.
Given just the clockwise ordering of all the points, we can reconstruct the mapping
of every item in every view. An item i is mapped to a bucket b with a point closest to
the point of ¢ in the clockwise ordering. The following lemma shows that the ordering

on a set of |I| + m|B| random points is with high probability, already completely
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defined by the O(log(]7| + m|B|)) most significant bits of the binary expansions of
the points.

Lemma 2.2.13 With probability at least 1 — 1 /N', the clockwise ordering on n ran-
dom points in the unit circle is determined by the 2log(N'n) most significant bits of
the points. (N' > 1 is an arbitrary confidence factor.)

Proof:

The probability that any two of the numbers can not be distinguished by their
2log(N'n) most significant bits is 1/(N'n)? (since the probability of an infinite se-
quence of 0's or 1's is zero). By the union bound, the probability that any of the
(2) < n? pairs of points are not distinguished by their 2log(N'n) most significant
bits is less than (1/N')2 < 1/N’.

Thus, for each point we need no more than 2log(N'n) bits to determine the
ordering with probability at least 1 —1/N’.

The following simple corollary shows that lemma 2.2.13 holds even if the points
are distributed only k-way independently for k > 2.

Corollary 2.2.14 Lemma 2.2.13 holds if the points are distributed uniformly and
k-way independently for any k > 2.

Proof: The corollary follows from two observations. The first observation is that
if the points are k-way independent, then the bits at a fixed place in the binary
expansion of the points are k-way independent. The second observation is that in the

proof of Lemma 2.2.13 we only used 2-way independence of these bits.\ B

N,
N

A
Putting it all Together
This section describes the hash family obtained by modifying UC, angom to use f iite
precision, and limited independence mappings. This family is called UC.

Let ¢ = O(log(N'(m|B| + |I]))) for an arbitrary confidence factor N’ > 1. The

family UC is defined in the same way as UC,andom €xcept in the following aspects:
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