2.1.2 A Solution

Surprisingly, there is a very simple hashing scheme (described in this single paragraph)

which fulfills all of the rather stringent requirements set out above. Documents and

“Servers are mapped to points on a circle using standard hash functions. Assume
for intuition that these functions distribute the documents and servers randomly
around the circle. Now, a document is assigned to the server whose point is the first
encountered when the circle is traversed clockwise from the document’s point. An
example is shown in figure 2-4.

Remarkably, this simple construction has all of the desired properties. Following
is an intuitive discussion of the construction and in section 2.2.3 a rigorous analysis
is presented.

Intuitively, if documents and servers are distributed randomly around the circle

then each server should be responsible for roughly the same number of documents.

Of course, there is a possibility that the points could be distrib;xgd badly so that

one server receives a disproportionate fraction of the documents. While we cannot
completely prevent such a misfortune, we can improve the chance of a good result

with a simple trick which is described later (section 2.2.3).

Wnew server is added to the system. The only documents that
are reassigned are those with points that are now nearest to the new server’s point; UP@ «A’WE
the mapping is not completely reshuffeled. Documents are only moved to the newly)

Lamn —

introduced server, and are not moved between old servers. Therefore most of the

previously cached copied of documents are still valid because the newly obtained
mapping is “consistent” with the previous one. Figure 2-4 illustrates this point.
This construction also behaves remarkably well in the presence of multiple views.
Intuitively, if a document is assigned to a server in some view, then that document’s
point is likely to be relatively close to the server’s point!. So only documents with

points close to the server point are likely to be assigned to the server. Since document

. points are distributed randomly around the circle only a few document points fall close

1Since if they were far apart, then another server’s point would be likely to fall in between,
preventing the document from being assigned to the original server.

36

New Server 1 0 (m]

Ft e o B

ET |

Dt n B

cT |

8t

AT B
+ + ——t t $ t D
1 2 3 4 5 6 1 8

(iii)

Figure 2-4: (i) Both documents and servers are mapped to points on a circle using
standard hash functions. A documents is assigned to the closest server going clockwise
around the circle. For example items 6, 7, and 8 are mapped to server F'. Arrows
show the mapping of documents to servers. (ii) When a new server is added the only
documents that are reassigned are those those now closest to the new server going
clockwise around the circle. In this case when we add the new server only items 6 and
7 move to the new server. Items do not move between previously existing servers. (iii)
The mapping of documents to servers before and after the addition of a new server.
Squares show the new mapping and circles are the previous mapping. Compare this
with the results obtained from standard hashing in figure 2-3.

37

to a server’s point. So even if there are a large number of views, only a relatively

small number of documents are assigned to a server. The load of a server does not
0ad ot a server does not

e

W&HMWS. In fact, we show in section 2.2.3 that the load
increases only logarithmically in the number of views, while with standard hashing
this dependence can be linear; clearly a substantial improvement.

‘Turning the above intuition inside out, if a server is responsible for a document
then the server’s point is likely to be relatively close to the document’s point. Since
server points are distributed randomly around the circle only a small number of servers
points fall nearby any document point. So even if there are many views, only a few
servers will have responsibility for any one document. The spread of a document
does not increase dramatically with the number of views. As before, we show in

section 2.2.3 that the spread increases only logarithmically in the number of views,

——

while with standard hashing this dependence can again be linear.

’Following is a summary of the important properties of the “circle hash function”:

—

e Documents are distributd to servers “randomly”.

e When a server is added, the only documents reassigned are those that are

assigned to the new server. The newly obtained and old mappings are consistent

with each other.

e The load of a server increases only logarithmically with the number of views in

contrast to linearly with standard hashing.

o The spread of a document increases only logarithmically with the number of

views in contrast to the linear dependence of standard hashing.

Clearly, using this new hashing technique in the previously described caching
scheme solves the complications raised. The above “consistency properties” allow
the caching scheme to grow gracefully with the growth of the network. Servers can
be added to the network without disrupting the caching and multiple views of the
servers can exist without degrading the performance of the system. Furthermore, the

function is very simple and efficient to evaluate (see section 2.2.4).

38

|

2.2 Consistent Hash Functions

In this section we conceptualize the notion of a consistent hash function intuitively
described in the previous section. Section 2.2.1 reviews the basics of hashing from a
theoretical standpoint. Those familiar with the subject can skip this section. Consis-
tent hash functions are defined in section 2.2.2. The circle construction of a consistent
hash function is described in section 2.2.3, and the properties of this particular con-
struction are derived and proved in section 2.2.3. Implementation issues are discussed
in section 2.2.4.

In the following sections the motivating application of caching, is set aside as the
central issue, and consistent hashing is discussed as a general hashing scheme which
may have many other applications. Nonetheless, some intuitive discussions still derive

from the simple caching scheme presented in the previous section.

2.2.1 Hash Families

We assume that the reader is familiar with the basic notion of a hash table data
structure. In a hash table, a set of items I is mapped to a set of buckets B by a fixed
hash function. In theoretical settings the intuitive notion of hashing is commonly
modeled as follows: You are given a family of hash functions H whose elements are
each functions that map the items I into the buckets B. The hashing is done by
choosing a random function f from the family and using that function to map items
to buckets.

Why do we use this seemingly more complicated model of hashing? Suppose that
a malicious adversary? is aware of the hashing scheme being used and is attempting to
devise an instance on which the scheme behaves poorly. Any scheme that uses a single
fixed function to map items to buckets is vulnerable to an attack by an adversary
since the input that causes the absolute worst case behavior of th- -cheme can be

determined.

2Throughout®&®®Throughout this paper we assume the existence of such adversaries. In fact,
we claim that such adversarizs are ubiquitous, and can be found anywhere you look.

39

This is best explained with an example. Suppose in the caching scheme presented
in section 2.1, that an adversary has the power to permanently crash a number of
servers. Assume in addition, that the mapping of documents (items) and servers
(buckets) to the circle is known to the adversary. This adversary can concoct a plan
to crash servers which would leave a remaining server heavily loaded. Specifically,

e e A

the adversary can crash all servers in a portion of the circle, creating a gap with no

servers at all. All the documents previously assigned to the crashed servers are now

assigned to the server wh int-is d of the gap. This server becomes

overloaded with requests.

A standard method to fu/l such an adversary is adding randomization to the

scheme. For example, if the points associated with servers and documents are chosen

randomly and the adversary is not aware of these random choices, then the above

scheme for overloading some servers does not work. The adversary does not know

the placement of the points in the circle and therefore does not know how to create
a gap.

In this paper, randomization is added to the scheme in a particular way. Choosing
a function from a family of hash functions is done by taking one uniformly and at
random. Thus, “using a hash family H” means that first a function f € H is selected

—
uniformly and at random and then that function is used to map items to buckets.

Hash families are classified by various properties. Using a hash family involves
randomization, so these properties are probabilistic. We say that a property holds
with probability p for a hash family H if for a function chosen from the family uniformly

and at random, the property holds with probability p. Following is an example.

Example 1 (Linear Congruential Hashing) Let both the set of items I and the set
of buckets B be {0,1,2,... ,p — 1} for a prime p. The family H is defined as all the
functions of the form f(z) = az + b (mod p) for all a,b € {0,1,2,...,p~1}.

To use this hash family, a and b are chosen at random (this is ce[Dce[equivalent to

_choosing a function from the family at random). Then, item i is assigned to bucket

ai + b (mod p). The following lemma gives an example of a property of the hash

40

family that holds with a certain probability.

Lemma 2.2.1 Let H be the hash family defined above, and let x and y be distinct
items, then Pr{f(z) =i and f(y) = j] = 1/p%.

In other words, the probability that a randomly chosen function f from the family
H maps the item z to 7 and the item y to j is the same as in the case where the two
items are mapped to the buckets uniformly and independently.
Proof: Since the set {0,1,2,...,p — 1} with operations (mod p) is a field, there is
a unique pair a and b such that ax + b = ¢ and ay + b = j. Thus the probability
that f(z) = i and f(y) = j is equal to the probability of selecting the pair a,b
while choosing a function from H. The probability of selecting any given pair e, b is

1/p%. n

Lemma 2.2.1 shows that a randomly chosen function from H behaves like a com-

pletely random function with respect to pairs of items.> Why would we prefer to use

the family H instead of choosing a completely random function? Notice that choos-
ing, storing, and evaluating functions from H is remarkably simple and efficient. We

pick e and b at random. These values can be stored using very little memory, and

evaluating the function is simple. On the other hand, selecting a truly random func-
tion requires choosing and storing a random table of the value of the function on

every single item.

Hash families similar to the one presented in the above example are important ele-

ments in the practical implementation of our consistent hash functions (section 2.2.4).

2.2.2 Definitions

Unlike traditional hash functions, consistent hash functions are intended to deal with

situations in which the set of buckets (the range of the function) changes. Therefore,

3A hash family that looks random in respect to pairs of items is called pairwise independent.
Similarly, families that look random with respect to k elements are k-way independent. Hash
families that are k-way independent are important in section 2.2.4

41

J&V@ v i el X el Lo
Ol oo il aenxs U,

we introduce the notion of a ranged hash function that permits the set of buckets in

the range of the function to change.

Let the set of items be I and the set of buckets be B. A view is a subset of
the buckets B. A ranged hash function is a function of the form f : 2% x I — B.
Such a function specifies an assignment of items to buckets for every possibie view.

That is, f(V,) is the bucket to which item i is assigned in view V. (We will use the

notation &:(.zr) in place of f(V,1) from now on.) Since items should only be assigned
to available buckets (buckets that are in the current view), we require fy (I) C V for
every view V. —
A ranged hash family is a family of ranged hash functions.
In section 2.1 the following characteristics of ranged hash functions were discussed

informally:

e Balance: Items are distributed to buckets “randomly” in every view.

e Monotonicity: When a bucket is added to a view, the only items reassigned

are those that are assigned to the new bucket.

e Load: The Load of a bucket is the number of items assigned to a bucket over

a set of views. Recall that ideally, the load should be small.
)ac shou’d be Stna®.

e Spread: The Spread of an item is the number of buckets an item is placed in

over a set of views. Ideally, spread should be small.
R e ————

The remainder of this section defines formally these intuitive properties. Through-
out, we use the following notational conventions: H is a ranged hash family, f is a

ranged hash function, V is a view, 7 is an item, and b is a bucket.

| Balance: A ranged hash family is balanced if, given any particular view V an item
_

i, and a bucket b € V, the probability that item 7 is mapped to bucket b in view V is
o1/|v)).

The balance property is what is prized about standard hash functions: an item is

equally likely to be put into any bucket. The balance property does not say anything

12

A B C A B C D A B C D E

123|456} 789 23156 789 |1 4 23| 56 7 931 48
10 10 10

(] (i) (i)

Figure 2-5: (i) The items 1,2,... ,10 hashed into 3 buckets A, B, and C. (ii) A new,
fourth bucket D is added. Since the hash function is monotone, the only items that
are relocated are those that move into the new bucket D. (i.e. items 1, 4 and 10) (ii)
Another new bucket E is added and some items move into E (items 4 and 8). Iterns
do not move between old buckets.

about behavior over changing views, only that in each fixed view items are distributed

with roughly equal probabilities.
TN

Monotonicity: A ranged hash function f is monotone if for all views V) C V, C B,
fv, (i) € V; implies fy, () = fu,(3). A ranged hash family is monotone if every ranged

hash function in it is monotone.

The monotonicity property says that if items are initially assigned to a set of

buckets V; and then some new buckets are added to form V3, then an item may move

from an old bucket to a new bucket, but not from one old bucket to another. This

reflects one intuition about consistency: when the set of usable buckets changes,!items

should not be completely reshuffeled. Figure 2-5 gives an example of the monotonicity
property.

The following lemma is a simple consequence of these two definitions and helps to
clarify them. The lemma gives the the expected number of items that rem#in fixed

when the range of the hash function changes.

Lemma 2.2.2 Let H be a monotonic, balanced ranged hash family. Let V) and V, be

views. The ezpected fraction of items i for which fy, (i) = fy, (i) is Q ({%) where

the probability is over the uniform selection of f € H.

Proof:
In this proof, we count the number of items i for which fy, (i) # fw;(¢). In other
words, as the set of usable buckets changes from V; to V;, we count items that “move”

instead of the number of items that are “fixed”.

43

V1 ViU V2 vz

Figure 2-6: The view V is transformed into the view V; in two steps. First V; is
transformed into V; U V5. In this step, monotonicity implies that items only move
from V; into V2 — W;. Next, V; UV; is transformed into V,. Here monotonicity implies
that items only move from Vi — V, into V,. Balance tells us how many items are
expected to move in each step.

We change the set of usable buckets from V; to V; in two steps. In the first step,
we expand the set of buckets from V; to V; UV (see figure 2-6). Balance implies that
the expected fraction of items that move into V5 — V; is O (%—:;f;—“,’;ll) Monotonicity
implies that no other items move.

In the second step we contract the set of ;buckets from Vi UV, to Vo. Again,
balance implies that the expected fraction of items that move into V5 from Vi—-Vais
0 (ll“:i%l‘::ll) and monotonicity implies that no other items move.

In the first step, items were only moved into V> — V;. In the second step, items

were only moved out of V; — V5. Since these sets are disjoint, no item moved in both

VoWl , o (=) v
O\ 77—) +0 | 57—+

(wow) +o (Wova ;\{Pf
Therefore, the expected fraction of items that remain fixed is:

Va—Wil , VA —Vzl) (IVlﬂVzl)
1-0 + =q (22l
(IquVzl ViuV Viu Vel

steps. Therefore, the expected fraction of items which moved in either step is:

n
We continue to define properties of ranged hash families that capture additional

aspects of the notion of “consistency”.

Spread: Let V = {V;...V;} be a set of views. For a ranged hash function f,and a

particular item i, the spread of the function on item 7 over the set of views V is the

44

quantity [{fv; (2}, f, (), ..., fu.(})}|. This quantity is denoted spread,(V,1).

The spread of an item 7 over a set of views is the number of different buckets over

all views that ¢ is mapped to by f. Figure 2-7 illustrates spread.

In terms of the caching system described in section 2.1 spread is the number
of different caches that are assigned responsibility for am—ment when there exist
multiple views. If ¢ is a document, then {fy, (), i, (%), ... , fy, (i)} is the set of all the
responsible caches. Recall that the central server supplies a copy of the document to
each of these responsible cachf!s, so low spread is vital if the scheme is to eliminate
swamping.

Clearly, spread is very sensitive to the set of views V. For example, if each view
consisted of a single different bucket, then the spread of every item would be the total
number of views! Even if views are restricted to contain at least a 1/t fraction of the
buckets, then there exists a set of t views that force the spread of any item to be t.
Simply take t disjoint views each containing a 1/t fraction of the buckets. In this case
an item is assigned to a different bucket in every view. Hence, the spread of every

item is t.

In general, we study spread under the assumption that each view contains at least

a 1/t fraction of the buckets (¢ does not have to be a constant). As the above example

m this assumption spread cannot be less than ¢, but the question to be M\’
Qﬁ%,o,éiﬁiﬂ
/

answered is: “How does the spread grow as a function of the number of views?”
In some ranged hash families the spread grows linearly with the number of views.

However, there exist families where the spread grows only logarithmically. One such

family is described in section 2.2.3.
——

Load: Let V = {V;j...V,} be a set of views. For a ranged hash function f, and a
particular bucket b, the load of the function on bucket b over the set of views V is the
quantity lUv,ev f7'(®)|- This quantity is denoted loady(V,b).

" Note th‘at f;jl(b) is the set of items assigned to bucket b in view VJ'; Thus,

D e el
load,(V, b) is the total number of items which in some view are assigned to the bucket

b. Figure 2-8 illustrates the concept of load Q/Q,Q/\"’\ﬁ/vx\/\ W

W

A B C D E F G BH A B € D E F G H
LIt T2 T:] CRI-T T T T]
(1 i)

12]43 I] 2 1 |4| 3

iy

{iv

Figure 2-7: Four views of the buckets {A,B,C,D,E,F,G,H } and the mapping of
items 1,2, 3,4 into the buckets for each view. Shaded buckets are not available in the
given view. (i) The mapping for view {B, D, F, H}. (ii) The mapping for the view
{B,C}. (iii) The mapping for the view {A, B,C, D}. (iv) The mapping for the view
{A,B,F,H}. Item 1 is placed in bucket B in all the views. Thus, the spread of item
1 over these views is 1. Item 4 is placed in the buckets D,C, and F over the four
. views. Thus the spread of item 4 over these views 1‘s§3\

The load property measures the effect of multiple views on the number of items
hashed to a given bucket. For example, in the caching scheme of section 2.1 a docu-
ment ¢ contributes to the load on a server b if there is as least one view such that i is
assigned to b in that view (fy () = b). Thus, load measures how many documents a

server is responsible for in the presence of multiple views.

Load is related to spread, but they are not equivalent. For example imagine a

hash function that maps all the items to a single bucket b. For any item and any

set of views all containing b, the spread of i is one. On the other hand, the load of
b is the total number of items. In this case the distribution of items is not balanced
between the buckets.

As in the case of spread, load is generally studied under the assumption that each

view contains at least a 1/t fraction of the buckets. (Again, ¢ does not have to be a

R S,
constant.)

We have defined a number of “consistency properties” of ranged hash families:

Balance, Monotonicity, Spread, and Load. The name consistent hash family is used
- \—_\ \/ el

loosely to describe a ranged hash family that has good behavior with respect to these

properties. When introducing a new hash family the performance relating to each of

the consistency properties is explicitly stated.

46

2 4
1 2 3 4 5 1 s 3 I£Z/£9/~£;//c§{_/
W (i)

(i)

Figure 2-8: The distribution of items 1,2,3,4,5 in buckets A, B,C, D, E for three
different views. The load of bucket A over these views is one since only the item 1 is
placed in it. The load of bucket B is five since all the items, in some view, are placed
in it.

2.2.3 A Consistent Hash Family

This section describes the main example of a consistent hash family presented in

this paper. The informal construction in section 2.1 is formalized as a ranged hash

family in section 2.2.3. This formalization captures the intuition of the circle hash

function. However, this simplified family requires manipulation of real numbers which
L

is clearly a drawback. Nevertheless, in section 2.2.3 we state and prove the consistency

parameters for this family. In section 2.2.4 we show how to modify the family to obtain

one that is efficiently computable (does not rely on real numbers), and also retains

the same consistency properties.

Construction

This section formalizes the intuition of the circle construction presented in section 2.1.
In the basic construction, items and buckets are mapped to “random” points around
a circle, and an item is mapped to the bucket whose point is encountered first when
the circle is traversed ciockwise from the item’s point. Recall that there is a possi-
bility that points could be distributed badly around the circle; one bucket may be
responsible for a disproportionate section of the circle. Such an unfortunate instance
is shown in figure 2-9. In order to decrease the likelihood of such an unlucky event
we slightly modify the basic construction by assigning to a bucket m (m > 1) points

—

around the circle instead of just one. As before, items are assigned to a single point

o a7 O | WCJ)@[

Figure 2-9: An unlucky random placement of bucket points around the unit circle.
Bucket A is responsible for a disproportionately large section of the unit circle. Since
items points are distributed randomly around the circle it is very likely that bucket
A will have many more items assigned to it than other buckets do.

and are mapped to the bucket that has a point nearest to the item’s point in the
clockwise direction. Intuitively, when m is large there is less of a chance that buckets
will be unequally distributed around th circle. We show that m need not be unman-
ageably large for there to be a very good chance of a good distribution of points. This
modified version of the circle hash family is formally described below.

Let_'C be a circle with circumference one. We will call C the unit circlet Let

71 : I C be a function that maps items to the unit circle. Let rp :Bx[m]—C
(fm] = {1,2,3,...,m}) be a function that maps multiple copies of buckets to the
unit circle (Each pair (b, n) is considered a “copy” of the bucket b).

Each hash function in the “unit circle consistent hash family” is represented by a
pair of functions: (rp,r;). Given such a pair, f(i) is defined to be the bucket in the
view V' that has a point closest to r;(z) going clockwise around the circle. Thus, to
compute the mapping of an item 7 in a view V we first map the bucket copies to the
circle. Then, starting from the point r;(i), we sweep around the circle clockwise until
we encounter a bucket point. The bucket associated with this point is the bucket that
1 is mapped to. Figure 2-10 depicts this situation for m = 4.

We say that a bucket point r5(b,n) is responsible for an arc in a view V if the

4Note that “unit circle” usually refers to a circle with radius equal to 1. We will always be

referring to a circle with circumference equal to one.
- J R

48

bucket point is on the right end of the arc, there is no bucket point in the interior of
the arc, and some other bucket point is on the left end of the arc. Any item whose
point falls into this arc is assigned to the bucket b by the function. Figure 2-10 shows
a mapping of bucket points to the unit circle, and the arcs that each bucket point is
responsible for.

If we assume that the family is made up of all possible pairs of functions mapping
buckets and items to the unit circle, then choosing a random function from the family

is equivalent to choosing two completely random functions (rg,r;). Hence, we call

this family UC,andom (for “unit circle - random mappings”).

Using the family UC, andom Tequires the manipulation of real numbers. Clearly this
is impractical, but in section 2.2.4 we show how to modify the construction so that
real numbers are not used. For now, assume that we can compute with real numbers,
that is, we can choose a function from the family and can evaluate functions in the

family.

Analysis

In this section we state and prove the consistency parameters of the ranged hash family

UCrandom- These parameters hold probabilistically over the choice of function from
— =
the family. In particular, the bounds on the parameters will hold with probability
at least 1 — 1/N where N is an arbity .rily chosen confidence factor. The confidence
factor N appears in the bounds themselves so that if a high confidence factor is
desired, then the bounds are degraded accordingly. This approach is a generalization
of the common practice of expressing probabilities as a function of problem size.
Throughout the thesis, logarithms are taken base e unless otherwise ‘s/épciﬁed.

The following theorem states the consistency parameters of the family

U Crandom-

Theorem 2.2.3 Let V = {V},Va,...,Vi} be a set of views of the set of buckets B
such that: IU;;I V,l =T and foralll <j <k, |V;] 2 T/t. Let N > 1 be a confidence

factor. If each bucket is replicated and mapped m times then:

49

- 11— 2" 33—y 5
[-@- © _] 1
A B A B B A B
Buckets
(i)
A| B A I B B A B A

(iii)

Figure 2-10: (i) A unit circle hash function with m = 4. Buckets A and B have 4
points associated with each of them. Items are mapped to the bucket closest to them
going clockwise. Item 1 is closest to a point of bucket B and item 2 is closest to a
point of bucket B. Item 5 is closest clockwise to a point of bucket A. (ii) The unit
circle drawn as an interval with length one where we imagine that the endpoints of the
interval are “glued together”. (iii) The parts of the circle (viewed as an interval) that
buckets A and B are responsible for. Bucket points are responsible for the arc directly
to their left. Since there are multiple copies of each bucket, buckets are responsible
for a set of arcs.

50

