
Problem set for the Algoritmica 2 class (2016/7)

Roberto Grossi
Dipartimento di Informatica, Università di Pisa

grossi@di.unipi.it

October 20, 2016

Abstract

This is the problem set assigned during class. What is relevant during the resolution
of the problems is the reasoning path that leads to their solutions, thus offering the op-
portunity to learn from mistakes. This is why they are discussed by students in groups,
one class per week, under the supervision of the teacher to guide the brainstorming
process behind the solutions. The wrong way to use this problem set: accumulate the
problems and start solving them alone, a couple of weeks before the exam. The correct
way: solve them each week in groups, discussing them with classmates and teacher.

1. [Range updates] Consider an array C of n integers, initially all equal to zero. We want
to support the following operations:

• update(i, j, c), where 0 ≤ i ≤ j ≤ n − 1 and c is an integer: it changes C such
that C[k] := C[k] + c for every i ≤ k ≤ j.

• query(i), where 0 ≤ i ≤ n− 1: it returns the value of C[i].

• sum(i, j), where 0 ≤ i ≤ j ≤ n− 1: it returns
∑j

k=i C[k].

Design a data structure that uses O(n) space, takes O(n log n) construction time, and
implements each operation above in O(log n) time. Note that query(i) = sum(i, i) but
it helps to reason.

[Hint: For the general case, use the segment tree seen in class, which uses O(n log n)
space: prove that its space is actually O(n) when it is employed for this problem.]
[Hint to further save space in practice when the only changes are update(i, i, c): use
an implicit tree such as the Fenwick tree (see wikipedia).]

2. [Depth of a node in a random search tree] A random search tree for a set S can be
defined as follows: if S is empty, then the null tree is a random search tree; otherwise,
choose uniformly at random a key k ∈ S: the random search tree is obtained by picking
k as root, and the random search trees on L = {x ∈ S : x < k} and R = {x ∈ S :

1

x > k} become, respectively, the left and right subtree of the root k. Consider the
randomized QuickSort discussed in class and analyzed with indicator variables [CLRS
7.3], and observe that the random selection of the pivots follows the above process,
thus producing a random search tree of n nodes. Using a variation of the analysis with
indicator variables, prove that the expected depth of a node (i.e. the random variable
representing the distance of the node from the root) is nearly 2 lnn. Prove that the
expected size of its subtree is nearly 2 lnn too, observing that it is a simple variation
of the previous analysis.

Prove that the probability that the expected depth of a node exceeds c2 lnn is small for
any given constant c > 1. [Note: the latter point can be solved after we see Chernoff’s
bounds.]

3. [Karp-Rabin fingerprinting on strings] Given a string S ≡ S[0 . . . n − 1], and two
positions 0 ≤ i < j ≤ n− 1, the longest common extension lceS(i, j) is the length of
the maximal run of matching characters from those positions, namely: if S[i] 6= S[j]
then lceS(i, j) = 0; otherwise, lceS(i, j) = max{` ≥ 1 : S[i . . . i + `− 1] = S[j . . . j +
` − 1]}. For example, if S = abracadabra, then lceS(1, 2) = 0, lceS(0, 3) = 1, and
lceS(0, 7) = 4. Given S in advance for preprocessing, build a data structure for S based
on the Karp-Rabin fingerprinting, in O(n log n) time, so that it supports subsequent
online queries of the following two types:

• lceS(i, j): it computes the longest common extension at positions i and j in
O(log n) time.

• equalS(i, j, `): it checks if S[i . . . i + `− 1] = S[j . . . j + `− 1] in constant time.

Analyze the cost and the error probability. The space occupied by the data structure
can be O(n log n) but it is possible to use O(n) space. [Note: in this exercise, a one-
time preprocessing is performed, and then many online queries are to be answered on
the fly.]

4. [Hashing sets] Your company has a database S ⊆ U of keys. For this database, it uses
a randomly chosen hash function h from a universal family H (as seen in class); it also
keeps a bit vector BS of m entries, initialized to zeroes, which are then set BS[h(k)] = 1
for every k ∈ S (note that collisions may happen). Unfortunately, the database S has
been lost, thus only BS and h are known, and the rest is no more accessible. Now,
given k ∈ U , how can you establish if k was in S or not? What is the probability of
error? Under the hypothesis that m ≥ c|S| for some c > 1 (note: we do not know the
actual values of c and |S|...) can you estimate the size |S|, i.e. the size of S, looking
at just h and BS? What is the probability of error? Note that S is no more accessible
as it disappeared.

[Optional: Another database R has been found to be lost: it was using the same hash
function h, and the bit vector BR defined analogously as above. Using h, BS, and

2

BR, how can you establish if k was in S ∪ R (union), S ∩ R (intersection), or S \ R
(difference)? What is the probability of error?]

5. [Family of uniform hash functions] The notion of pairwise independence says that, for
any x1 6= x2 and c1, c2 ∈ Zp, we have that

Pr
h∈H

[h(x1) = c1 ∧ h(x2) = c2] = Pr
h∈H

[h(x1) = c1]× Pr
h∈H

[h(x2) = c2]

In other words, the joint probability is the product of the two individual probabilities.
Show that the family of hash functions H = {hab(x) = ((ax + b) mod p) mod m : a ∈
Z∗p , b ∈ Zp} (seen in class) is “pairwise independent”, where p is a sufficiently large
prime number (m + 1 ≤ p ≤ 2m).

3

