Problem set for the Algoritmica 2 class (2015/16)

Roberto Grossi
Dipartimento di Informatica, Universita di Pisa
grossi@di.unipi.it

November 17, 2015

Abstract

This is the problem set assigned during class. What is relevant during the resolution
of the problems is the reasoning path that leads to their solutions, thus offering the op-
portunity to learn from mistakes. This is why they are discussed by students in groups,
one class per week, under the supervision of the teacher to guide the brainstorming
process behind the solutions. The wrong way to use this problem set: accumulate the
problems and start solving them alone, a couple of weeks before the exam. The correct
way: solve them each week in groups, discussing them with classmates and teacher.

1. [Randomized selection] Consider the randomized quicksort, analyzed with the indicator
variables, discussed in class (also, paragraph 7.3 in the textbook CLRS - Comern,
Leiserson, Rivest, Stein, Introduction to Algorithms, 3rd edition, MIT Press). Show
how to modify the randomized quicksort so that, given an array A and an integer
1 < k <]A|, it finds the kth largest element in A without fully sorting A. Consider the
analysis with indicator variables seen in class, and adapt it to show that the selection
algorithm thus obtained requires linear expected time. [hint: since the algorithm has
A and k as input, define an indicator variable X;;, for z; and z;, where ¢ < j, with
the knowledge that zj is looked for. The probability will have three cases, according
to the relative order of zj, with respect to z; and z;.]

2. [Randomized min-cut algorithm| Consider the randomized min-cut algorithm discussed
in class. We have seen that its probability of success is about 2/n?.

e Describe how to implement the algorithm when the graph is represented by ad-
jacency lists, and analyze its running time.

e A weighted graph has a weight w(e) on each edge e, which is a positive real
number. The min-cut in this case is meant to be min-weighted cut, where the
sum of the weights in the cut edges is minimum. Describe how to extend the
algorithm to weighted graphs, and show that the probability of success is still
2/n?. [hint: define the weighted degree of a node]

e Show that running the algorithm for N = cn?Inn times, for a constant ¢ > 0,
and taking the minimum among the N min-cuts thus produced, the probability
of success can be made at least 1 —1/n° (hence, with high probability). [hint: use
the fact that (1 — 1/x)* = e~* for small x.]

e Optional. When the graph becomes smaller, the probability of hitting a bad edge
is higher. To reduce this chance, what if the algorithm is stopped when the result-
ing graph contains half of the original vertices? Run it four times independently,
starting from the same graph G, and thus obtaining four graphs G, Gs, G3, G4,
each with n/2 vertices. Apply recursively this idea to each G; independently.
Each time that two vertices are obtained, return the edges (as before). At the
end, choose the best min-cut thus found among all those generated. Show what is
the time complexity and the probability of error. [hint: it is a divide-and-conquer
approach whose time cost is a recurrence relation; same for the probability]

3. [External memory mergesort] In the external-memory model (hereater EM model),
show how to implement the k-way merge (where (k + 1)B < M), namely, how to
simultaneously merge k sorted sequences of total length N, with an I/O cost of O(N/B)
where B is the block transfer size. Also, try to minimize and analyze the CPU time
cost. Using the above k-way merge, show how to implement the EM mergesort and
analyze its /O complexity and CPU complexity.

4. [Family of uniform hash functions] Show that the family of hash functions H = {h(z) =
((ax +)% p)%m} is (almost) “pairwise independent”, where a,b € [m] with a # 0
and p is a sufficiently large prime number (m + 1 < p < 2m). The notion of pairwise
independence says that, for any xq,x2 and ¢, ¢y € [m], we have that Prycy[h(z1) =
c1 A h(xg) = co] = Prpeglh(x1) = 1] X Prpeglh(xs) = co]. In other words, the joint
probability is the product of the two individual probabilities.

5. [Deterministic data streaming] Consider a stream of n items, where items can appear
more than once in the stream. The problem is to find the most frequently appearing
item in the stream (where ties broken arbitrarily if more than one item satisfies the
latter). Suppose that only £ = O(log®n) items can be stored, one item per memory
cell, where the available storage is k + O(1) memory cells. Show that the problem
cannot be solved deterministically under the following rules: the algorithm can access
only O(log®n) information for each of the k items that it can store, and can read the
next item of the stream; you, the adversarty, have access to all the stream, and the
content of the k items stored by the algorithm, and can decide what is the next item
that the algorithm reads (please note that you cannot change the past, namely, the
items already read by the algorithm) . Hint: it is an adversarial argument based on
the k items chosen by the hypothetical determinist streaming algorithm, and the fact
that there can be a tie on > k items till the last minute.

6. [Special case of most frequent item in a stream| Suppose to have a stream of n items,
so that one of them occurs > n/2 times in the stream. Also, the main memory is

2

10.

11.

limited to keeping just two items and their counters, plus the knowledge of the value
of n beforehand. Show how to find deterministically the most frequent item in this
scenario. [Hint: since the problem cannot be solved deterministically if the most
frequent item occurs < n/2 times, the fact that the frequency is > n/2 should be
exploited.]

[Count-min sketch: extension to negative counters] Check the analysis seen in class,
and discuss how to allow F'[i| to change by arbirary values read in the stream. Namely,
the stream is a sequence of pairs of elements, where the first element indicates the
item ¢ whose counter is to be changed, and the second element is the amount v of that
change (v can vary in each pair). In this way, the operation on the counter becomes
Fli] = F[i] + v, where the increment and decrement can be now seen as (i,1) and

(i, —1).

[Count-min sketch: range queries] Show and analyze the application of count-min
sketch to range queries (i,) for computing _. F[k]. Hint: reduce the latter query
to the estimate of just ¢ < 2logn counters ¢y, co, ..., ¢;. Note that in order to obtain
a probability at most & of error (i.e. that Y1, ¢, > 31, F[k] + 2elogn||F||), it does
not suffices to say that it is at most § the probability of error of each counter ¢;: while
each counter is still the actual wanted value plus the residual as before, it is better to
consider the sum V' of these ¢t wanted values and the sum X of these residuals, and
apply Markov’s inequality to V' and X rather than on the individual counters.

[Succinct data structure for range queries] Borrowing the idea of dyadic intervals em-
ployed in the above solution for the count-min sketch for range queries, design a data
structure that uses few additional bits to preprocess a bitvector B of length n, such
that B[i] is the bit in position i for 0 < ¢ < n. After that, the data structure must
support any query of the form xor(7, j) to return the bitwise exclusive or of the bits
Bli], B[i +1],...,B[j] for 0 < i < j < n. Analyze the complexity of the proposed
solution.

[External memory implicit searching] Given a static input array A of N keys in EM,
describe how to organize the keys inside A by suitably permuting them during a pre-
processing step, so that any subequent search of a key requires O(logz N) block trans-
fers using just O(1) blocks of auxiliary storage (besides those necessary to store A).
Clearly, the CPU complexity should remain O(log N). Discuss the I/O complexity of
the above preprocessing, assuming that it can uses O(N/B) blocks of auxiliary storage
(differently form the search).

[Number of splits for (a,b)-trees] Consider the (a,b)-trees with a = 2 and b = 3.
Describe an example of an (a,b)-tree with N keys and choose a value of the search
key k such that performing a sequence of m operations insert(k), delete(k), insert(k),
delete(k), insert(k), delete(k), etc. ..., produces ©(mH) split and fuse operations,
where H = O(log, N/b) is the height. Try to make the example as general as possible.

12.

13.

14.

15.

After that, consider the (a,b)-trees with a = 2 and b = 8: produce some examples to
check that the above situation cannot occur. Try to guess some properties from the
examples using the fact that a = b/4: if they are convincing, try to prove and use
them to show that the situation mentioned above cannot occur, and that the number
of split and fuse operations is O(m/a), which is O(m/B) when a,b = O(B) in external
memory.

[1-D range query| Describe how to perform a one-dimensional range queries in (a, b)-
trees with a,b = ©(B). Given two keys k; < ko, the query asks to report all the keys
k in the (a, b)-tree such that ky < k < ky. Give an analysis of the cost of the proposed
algorithm, which should be output-sensitive, namely, O(logz N + R/B) block transfers,
where R is the number of reported keys.

After that, for a given set of N keys, describe how to build an (a,b)-tree for them
using O(sort(N)) block transfers, where sort(N) = ©(N/Blog,,, 5 N/B) is the optimal
bound for sorting N keys in external memory.

[External memory (EM) permuting] Given two input arrays A and m, where A contains
N elements and 7 contains a permutation of {1,..., N}, describe and analyze an
optimal external-memory algorithm for producing an output array C' of N elements
such that Cr[i]] = A[7] for 1 <i < N.

After that, extend the lower bound argument given for the sorting problem in the
EM model to the permutation problem: given N input elements ey, e, ..., ex and an
input array 7 containing a permutation of the integers in [1,2,..., N], rearrange in
EM the elements according to the permutation in 7, so that they appear in the order

€7T[1], 671—[2}, c. 7e7r[N]-

[Lower bound for searching] For the best possible comparison-based searching algorithm
in a sorted array of N elements stored in external memory, prove that each search
requires Q(logz N) I/Os in the worst case.

[Cache-oblivious selection] Consider the linear-time deterministic selection discussed
in class (see paragraph 9.3 in the textbook CLRS - Comern, Leiserson, Rivest, Stein,
Introduction to Algorithms, 3rd edition, MIT Press). Prove that this algorithm is cache-
oblivious with complexity O(/N/B) block transfers (i.e. cache misses) for NV elements
stored in an array and any unknown block size B.

