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Abstract. In this paper, we present randomized algorithms over binary search trees such that: (a) the
insertion of a set of keys, in any fixed order, into an initially empty tree always produces a random
binary search tree; (b) the deletion of any key from a random binary search tree results in a random
binary search tree; (c) the random choices made by the algorithms are based upon the sizes of the
subtrees of the tree; this implies that we can support accesses by rank without additional storage
requirements or modification of the data structures; and (d) the cost of any elementary operation,
measured as the number of visited nodes, is the same as the expected cost of its standard
deterministic counterpart; hence, all search and update operations have guaranteed expected cost
2(log n), but now irrespective of any assumption on the input distribution.

Categories and Subject Descriptors: E.1 [Data Structures]; F.2 [Analysis of Algorithms and Problem
Complexity]

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Balanced trees, probabilistic algebraic specification, randomized
data structures, search trees, self-organizing data structures

1. Introduction

Given a binary search tree (BST, for short), common operations are the search of
an item given its key and the retrieval of the information associated to that key if
it is present, the insertion of a new item in the tree and the deletion of some item
given its key. The standard implementation of searches and updates in unbal-
anced BSTs is (except for deletions) simple and elegant, and the cost of any of
these operations is always linearly bounded by the height of the tree.

For random binary search trees, the expected performance of a search, whether
successful or not, and that of update operations is 2(log n) [Knuth 1973;
Mahmoud 1992; Sedgewick and Flajolet 1996], with small hidden constant factors
involved (here and unless otherwise stated, n denotes the number of items in the
tree or size of the tree). Random BSTs are those built using only random
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insertions. An insertion in a BST of size j 2 1 is random if there is the same
probability for the inserted key to fall into any of the j intervals defined by the
keys already in the tree.

However, if the input is not random (e.g., long ordered subsequences of keys
are likely to be inserted), then the performance of the operations can dramati-
cally degrade and become linear. Moreover, little is known about the behavior of
BSTs in the presence of both insertions and deletions. None of the known
deletion algorithms, including Hibbard’s deletion algorithm [Hibbard 1962] and
its multiple variants, preserve randomness–a surprising fact that was first noticed
by Knott [1975]. There have been several interesting empirical and theoretical
studies around this question,1 but their results are partial or inconclusive. There
is some evidence that some deletion algorithms degrade the overall performance
to U(=n); for others, empirical evidence suggests that this degradation does not
take place, but the experiments were only conducted for long runs of deletion/
insertion pairs applied to an initially random BST.

The traditional approach to elude these problems is to impose additional
constraints on the heights, sizes, etc. of the subtrees; many kinds of balanced
search trees have been proposed, like AVLs [Adel’son-Vel’skii and Landis 1962],
red-black trees [Guibas and Sedgewick 1978], weight-balanced trees (also known
as BB[a] trees) [Nievergelt and Reingold 1973], height-ratio-balanced trees
[Gonnet et al. 1983], . . . . All balanced search trees guarantee logarithmic
performance of the search and update operations in the worst-case. The insertion
and deletion algorithms must guarantee that the resulting BST does not violate
any of the constraints; typically, this is achieved using rotations. The disadvantage
of balanced search trees is that the update algorithms are rather complex, and
the constant factors in the performance can become large. Furthermore, each
internal node must also contain balance information, needed only to verify
whether the constraints are satisfied at that particular location or not.

Another approach to cope with the problem of worst-case sequences is the use
of randomization techniques. In many situations, randomized algorithms are
simple and elegant, and their expected performance is the same as the worst-case
performance of much more complicated deterministic algorithms; we should not
forget that randomized algorithms provide a guarantee for their expected
performance, which is no longer dependent on any assumption about the input
distribution [Raghavan and Matwani 1995]. Therefore, unless the random
choices made by these algorithms were known, a sequence of operations that
forced some designated behavior (say, the worst-case) could not be constructed.

Randomization techniques were used by Aragon and Seidel [1989] for their
randomized treaps and by Pugh [1990] in his definition of skip lists. Thanks to the
randomization process, skip lists and randomized treaps achieve logarithmic
expected performance.

In this paper, we consider randomized algorithms to dynamically maintain a
dictionary in a BST. We call the BSTs produced by our algorithms randomized
binary search trees (RBSTs). In Sections 2 and 3, we show that RBSTs are, in
fact, random binary search trees, irrespective of the order in which the keys were
inserted or deleted, the actual pattern of insertions and deletions, etc. Hence,

1 See, for example, Jonassen and Knuth [1978], Knuth [1977], Eppinger [1983], Culberson [1985], and
Baeza-Yates [1986].
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RBSTs have guaranteed logarithmic expected performance, provided that the
random decisions made by the algorithms remain unknown to an hypothetical
adversary trying to force worst-case performance.

It is important to point out here that our deletion algorithm is the only one
known that really preserves randomness in a strict sense [Knuth 1977]; that is, a
subsequent insertion will not destroy randomness, like it happens if Hibbard’s
deletion algorithm or some of its variants is used [Knott 1975]. In Theorem 3.2,
we formally prove that our deletion algorithm always produces a random BST, if
the input tree was a random BST, and irrespective of the key that is deleted. This
provides a satisfactory answer to the long standing open question about the
existence of such a randomness-preserving deletion algorithm [Knuth 1977].

Our algorithms yield similar results to those for randomized treaps [Aragon
and Seidel 1989]. Rather than discussing similarities and differences between
RBSTs and randomized treaps at different places of this paper, we will make a
single general comment about these topics at this point. Considering their
external behavior, randomized treaps and RBSTs yield exactly the same results
under insertions and deletions, because those results are, in both cases, always
random binary search trees. In particular, the main results of Sections 2 and 3
apply for both RBSTs and randomized treaps because the insertion and deletion
algorithms are externally equivalent: the random choices for RBSTs and random-
ized treaps are made using quite different mechanisms, but the probability that a
given random choice is taken is the same in both RBSTs and randomized treaps.
One of the differences between our insertion and deletion algorithms and those
of Aragon and Seidel is that ours generate random integers in the range 0..n,
where n is the current size of the RBST, while randomized treaps use theoreti-
cally unbounded random numbers in the unit interval (the so-called random
priorities). In practice, though, only finite precision numbers need to be gener-
ated, since it is rather unlikely that two random priorities have a very large
common prefix in their binary representations.

This difference between RBSTs and randomized treaps is significant, since the
random choices made by our algorithms are based upon structural information,
namely, the size of the subtree rooted at each node of the RBST. Hence, RBSTs
support searches and deletions by rank and the computation of the rank of a
given item without additional storage requirements or modification of the data
structure. In contrast, the random choices of treaps are based upon nonstructural
information: each node stores a random priority, a real number in [0, 1], which is
only useful for the randomization process. A similar discussion applies if we
compare our algorithms with random skip lists.

Regarding the analysis of the performance of our algorithms, we will exploit
the large amount of known results about random BSTs, after we have explicitly
noticed and proved that a RBST is always a random BST. In contrast, Aragon
and Seidel (see also Raghavan and Motwani [1995] and Kozen [1992]) made use
of Mulmuley games to analyze the performance of randomized treaps.

The paper is organized as follows: In Sections 2 and 3, the insertion and
deletion algorithms are described and their main properties stated. We present
the analysis of the performance of the basic operations in Section 4. Section 5
describes other operations: a variant for the insertion of repeated keys, set
operations over RBSTs and a family of related self-adjusting strategies. In
Section 6, we discuss several implementation-related issues: efficient strategies
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for the dynamic management of subtree sizes, space requirements, etc. In Section
7, we introduce a formal framework for the description of randomized algorithms
and the study of their properties, and show how to derive all the results in the
preceding sections in a unified, rigorous and elegant way. We conclude in Section
8 with some remarks and future research lines.

An early version of this work appeared in Roura and Martı́nez [1996].

2. Insertions

We assume that the reader is familiar with the definition of binary search tree
and its standard insertion algorithm [Knuth 1973; Sedgewick 1988; Gonnet and
Baeza-Yates 1991]. To make the description and analysis simpler, we will assume
without loss of generality that each item in the tree consists of a key with no
associated information, and that all keys are nonnegative integers. The empty
tree or external node is denoted by h.

Besides the definition of random BSTs in terms of random insertions given in
the introduction, there are several equivalent characterizations of random BSTs
that we will find useful in our investigation [Knuth 1973; Mahmoud 1992]. In
particular, we will use the following nice recursive definition for random BSTs.

DEFINITION 2.1. Let T be a binary search tree of size n.

—If n 5 0, then T 5 h and it is a random binary search tree;
—If n . 0, the tree T is a random binary search tree if and only if both its left

subtree L and its right subtree R are independent random binary search trees,
and

Pr{size~L! 5 iusize~T! 5 n} 5
1

n
, i 5 0, . . . , n 2 1, n . 0. (1)

An immediate consequence of Eq. (1) in the definition above is that any of the
keys of a random BST of size n . 0 has the same probability, namely 1/n, of
being the root of the tree. This property of random BSTs is crucial in our study,
as it provides the basic idea for the randomized insertion algorithm that we
describe next (see Algorithm 1). Informally, in order to produce random BSTs, a
newly inserted key should have some chance of becoming the root, or the root of
one of the subtrees of the root, and so forth. We assume for simplicity that x, the
key to be inserted, is not yet in the tree T. The algorithm is written in C-like
notation and we assume that a tree is actually represented by a pointer to its
root. The field T 3 key is the key at the root of T. The fields T 3 size, T 3
left, and T 3 right store the size, the left subtree and the right subtree of the
tree T, respectively. We assume that the expression T 3 size is correct even if
T 5 h (i.e., T is a null pointer), and evaluates to 0 in that case.

We begin generating a random integer r in the range 0 . . n, where n 5 T 3
size. If n 5 0, then the test r 5 n? will succeed and the call to insert_at_root
will return a tree with a single node containing x at its root and two empty
subtrees.

If the tree T is not empty, with probability 1/(n 1 1), we place x as the root of
the new RBST using insert_at_root (notice that the new RBST will have size n 1
1), and with probability 1 2 1/(n 1 1) 5 n/(n 1 1), we recursively insert x in
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the left or right subtree of T, depending on the relation of x with the key at the
root of T. To keep the algorithm as simple as possible, we have refrained from
including the code that updates the size field when a new item is inserted. We
address this question later, in Section 6.

We have not said yet how to insert x at the root of T, that is, how to build a
new tree T9 containing x and the keys that were present in T, such that T9 3
key 5 x. This is the job performed by insert_at_root( x, T), which implements
the algorithm developed by Stephenson [1980]. The process is analogous to the
partition of an array around a pivot element in the quicksort algorithm. Here, the
tree T is split into two trees T, and T., which contain the keys of T that are
smaller than x and larger than x, respectively. Then, T, and T. are attached as
the left and right subtrees of a new node holding x (see Algorithm 2). We present
a recursive implementation of split( x, T), but it is also straightforward to write a
nonrecursive top-down implementation.

If T is empty, nothing must be done and both T, and T. are also empty.
Otherwise, if x , T 3 key then the right subtree of T and the root of T belong
to T.. To compute T, and the remaining part of T., that is, the subtree that
contains the keys in T 3 left which are greater than x, we make a recursive call
to split( x, T 3 left). If x . T 3 key, we proceed in a similar manner.

It is not difficult to see that split( x, T) compares x against the same keys in T
as if we were making an unsuccessful search for x in T. Therefore, the cost of an
insertion at the root is proportional to the cost of the insertion of the same item
in the same tree using the standard insertion algorithm.

The randomized insertion algorithm always preserves randomness, no matter
which is the item x that we insert (we should better say that the algorithm forces
randomness). We give a precise meaning to this claim and prove it in Theorem
2.3, but first we need to establish an intermediate result that states that the
splitting process carried out during an insertion at root also preserves random-
ness. This result is given in the following lemma:

LEMMA 2.2. Let T, and T. be the BSTs produced by split( x, T). If T is a
random BST containing the set of keys K, then T, and T. are independent
random BSTs containing the sets of keys K,x 5 { y [ T uy , x} and K.x 5
{ y [ T uy . x}, respectively.
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PROOF. We prove the lemma by induction on n, the size of T. If n 5 0, then
T 5 h and split( x, T) yields T, 5 T. 5 h, so the lemma trivially holds.

Now assume n . 0 and let y 5 T 3 key, L 5 T 3 left, and R 5 T 3 right.
If x . y, then the root of T, is y and its left subtree is L. The tree T. and the
right subtree of T, (let us call it R9) are computed when the splitting process is
recursively applied to R. By the inductive hypothesis, this splitting process will
produce two trees that are independent random BSTs; one of them, R9, contains
the set of keys { z [ t uy , z , x} and the other is T.. The subtree L of T is not
modified in any way and is a random BST, since T is, by hypothesis, a random
BST. Furthermore, L is independent of R9 and T., since L and R are
independent, too. It follows then that the trees T, and T. are also independent
because R9 and T. are independent. Finally, in order to show that the lemma is
true when n . 0 and x . y 5 T 3 key, we have to prove that, for any z [ T,,
the probability that z is the root of T, is 1/m, where m is the size of T,. Indeed,
it is the case, since

P@ z is root of T,uroot of T is , x# 5
P@ z is root of T and root of T is , x#

P@root of T is , x#

5
1/n

m/n
5

1

m
.

The same reasoning applies for the case x , y, interchanging the roles of T, and
T., left and right, and so on. e
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We are now ready to state the main result of this section, which is also one of
the main results in this work.

THEOREM 2.3. If T is a random BST that contains the set of keys K and x is any
key not in K, then insert( x, T) produces a random BST containing the set of
keys K ø { x}.

PROOF. Again, we use induction on n, the size of T. If n 5 0, then T 5 h

(indeed it is a random BST), and insert( x, T) returns the random BST with x at
its root and two empty subtrees.

Assume now that n . 0 and that the theorem is true for all sizes , n.
Consider an item y [ K. The probability that y is the root of T, before the
insertion of x, is 1/n, since T is a random BST. The only way for y to stay as the
root of T after the insertion of x is that the random choice made during the first
stage of the insertion is not to insert x at the root. This happens with probability
n/(n 1 1); hence, the probability that some item y [ K is the root of T9 5
insert( x, T) is 1/n 3 n/(n 1 1) 5 1/(n 1 1). Moreover, if x is not inserted at
the root during the first stage, it will be inserted at either the left or the right
subtree of T; by the inductive hypothesis the result will be a random BST. To
finish the proof we shall now consider the case where x is inserted at the root of
T. First, this is the only way to have x at the root of T9; then we may conclude
that x is the root of T9 with probability 1/(n 1 1), as expected. On the other
hand, from Lemma 2.2, we know that both the left and the right subtrees of T9,
constructed by the splitting process, are independent random BSTs; therefore, T9
is a random BST. e

Figure 1 shows the effects of the insertion of x 5 3 in a random BST when
K 5 {1, 2, 4}. The probability that each BST has according to the random BST
model appears enclosed in parentheses. The arrows indicate the possible out-
comes of the insertion of x 5 3 in each tree and are labelled by the
corresponding probabilities. This figure also gives us an example of Lemma 2.2.
Consider only the arrows that end in trees whose root is 3. These arrows show
the result of inserting at root the key 3 in a random BST for the set of keys {1, 2,
4}. Notice that the root of the left subtree is either 1 or 2 with the same
probability. Hence, the tree containing the keys smaller than 3 in the original
random BST is also a random BST for the set of keys {1, 2}.

As an immediate consequence of the Theorem 2.3, the next corollary follows:

COROLLARY 2.4. Let K 5 { x1, . . . , xn} be any set of keys, where n $ 0. Let p 5
xi1

, . . . , xin
be any fixed permutation of the keys in K. Then the RBST that we obtain

after the insertion of the keys of p into an initially empty tree is a random binary
search tree. More formally, if

T 5 insert~ xin
, insert~ xin21

, . . . , insert~ xi1
, h! · · ·!! ,

then T is a random BST for the set of keys K.

This corollary can be put into sharp contrast with the well-known fact that the
standard insertion of a random permutation of a set of keys into an initially
empty tree yields a random BST; the corollary states that for any fixed permuta-
tion we will get a random BST if we use the RBST insertion algorithm.
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3. Deletions

The deletion algorithm uses a procedure called join, which actually performs the
removal of the desired key (see Algorithm 3). To delete a key x from the given
RBST, we first search for x, using the standard search algorithm until an external
node or x is found. In the first case, x is not in the tree, so nothing must be done.
In the second case, only the subtree whose root is x will be modified. Notice that
most (if not all) deletion algorithms work so.

FIG. 1. Insertion of x 5 3 in a random BST for the set K 5 {1, 2, 4}.
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Let T be the subtree whose root is x. Let L and R denote the left and right
subtrees of T, respectively, and K,x and K.x denote the corresponding sets of
keys. To delete the node where x is located (the root of T) we build a new BST
T9 5 join(L, R) containing the keys in the set K,x ø K.x and replace T by T9.
By hypothesis, the join operation does only work when none of the keys in its
first argument is larger than any of the keys in its second argument.

Our definition of the result of joining two trees when one of them is empty is
trivial: join(h, h) 5 h, join(L, h) 5 L, and join(h, R) 5 R. Notice, however,
that Hibbard’s deletion algorithm does not follow all these equations.

Now, assume that L and R are trees of size m . 0 and n . 0, respectively. A
common way to perform the join of two nonempty trees, L and R, is to look for
the maximum key in L, say z, delete it from L and let z be the common root of
L9 and R, where L9 denotes the tree that results after the deletion of z from L.
Alternatively, we might take the minimum item in R and put it as the root of
join(L, R), using an analogous procedure. Deleting the maximum (minimum)
item in a BST is easy, since it cannot have a nonempty right (left) subtree.

Our definition of join, however, selects either the root of L or the root of R to
become the root of the resulting tree and then proceeds recursively. Let Ll and
Lr denote the left and right subtrees of L and similarly, let Rl and Rr denote the
subtrees of R. Further, let a and b denote the roots of the trees L and R. As we
already said, join chooses between a and b to become the root of T9 5 join(L,
R). If a is selected, then its left subtree is Ll and its right subtree is the result of
joining Lr with R. If b were selected then we would keep Rr as the right subtree
of T9 and obtain the left subtree by joining L with Rl. The probability that we
choose either a or b to be the root of T9 is m/(m 1 n) for a and n/(m 1 n) for
b.

Just as the insertion algorithm of the previous section preserves randomness,
the same happens with the deletion algorithm described above (Theorem 3.2).
The preservation of randomness of our deletion algorithm stems from the
corresponding property of join: the join of two random BSTs yields a random
BST. As we shall see soon, this follows from the choice of the probabilities for
the selection of roots during the joining process.

LEMMA 3.1. Let L and R be two independent random BSTs, such that the keys
in L are strictly smaller than the keys in R. Let KL and KR denote the sets of keys in
L and R, respectively. Then T 5 join(L, R) is a random BST that contains the set
of keys K 5 KL ø KR.

PROOF. The lemma is proved by induction on the sizes m and n of L and R.
If m 5 0 or n 5 0, the lemma trivially holds, since join(L, R) returns the
nonempty tree in the pair, if there is any, and h if both are empty. Consider now
the case where both m . 0 and n . 0. Let a 5 L 3 key and b 5 R 3 key. If
we select a to become the root of T, then we will recursively join Lr 5 L 3 right
and R. By the inductive hypothesis, the result is a random BST. Therefore, we
have that: (1) the left subtree of T is L 3 left and hence it is a random BST
(because so was L); (2) the right subtree of T is join(Lr, R), which is also
random; (3) both subtrees are independent; and (4) the probability that any key
x in L becomes the root of T is 1/(m 1 n), since this probability is just the
probability that x was the root of L times the probability that it is selected as the

296 C. MARTÍNEZ AND S. ROURA



root of T: 1/m 3 m/(m 1 n) 5 1/(m 1 n). The same reasoning shows that the
lemma is also true if b were selected to become the root of T. e

THEOREM 3.2. If T is a random BST that contains the set of keys K, then
delete( x, T) produces a random BST containing the set of keys K \{ x}.

PROOF. If x is not in T, then delete does not modify T and the theorem
trivially holds.

Let us suppose now that x is in T. The theorem is proved by induction on the
size n of T. If n 5 1, then delete( x, T) produces the empty tree, and the
theorem holds. Let us assume that n . 1 and the theorem is true for all sizes ,
n. If x was not the root of T, then we delete x from the left or right subtree of T
and, by induction, this subtree will be a random BST. If x was the root of T, T9
5 delete( x, T) is the result of joining the left and right subtrees of T, which by
last lemma will be a random BST. Therefore, both the left and right subtrees of
T9 are independent random BSTs. It is left to prove that every y [ K not equal
to x has the same probability, 1/(n 2 1), of being the root of T9. This can be
easily proved.

P@ y is the root of T9# 5 P@ y is the root of T9 ux was the root of T#

3 P@ x was the root of T#

1 P@ y is the root of T9 ux was not the root of T#

3 P@ x was not the root of T#

5 P@ join brings y to the root of T9# 3 1/n

1 P@ y was the root of T ux was not the root of T#

3 ~n 2 1!/n

5
1

n 2 1
3

1

n
1

1

n 2 1
3

n 2 1

n
5

1

n 2 1
. e
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Figure 2 shows the effects of the deletion of x 5 3 from a random BST when
K 5 {1, 2, 3, 4}. The labels, arrows, etc. follow the same conventions as in
Figure 1. Again, we can use this figure to give an example of the result of another
operation, in this case join. Notice that the arrows that start in trees with root 3
show the result of joining two random BSTs, one with the set of keys KL 5 {1,
2} and the other with the set of keys KR 5 {4}. The outcome is certainly a
random BST with the set of keys {1, 2, 4}.

On the other hand, comparing Figures 1 and 2 produces this nice observation:
For any fixed BST T, let P[T] be the probability of T according to the random
BST model. Let T1 and T2 be any given BSTs with n and n 1 1 keys,
respectively, and let x be any key not in T1. Then

P@T1# 3 P@Inserting x in T1 produces T2# 5

P@T2# 3 P@Deleting x from T2 produces T1# .

Combining Theorem 2.3 and Theorem 3.2, we get this important corollary.

COROLLARY 3.3. The result of any arbitrary sequence of insertions and dele-
tions, starting from an initially empty tree, is always a random BST. Furthermore, if
the insertions are random (not arbitrary), then the result is still a random BST even
if the standard insertion algorithm or Stephenson’s insertion at root algorithm is used
instead of the randomized insertion algorithm for RBSTs.

FIG. 2. Deletion of x 5 3 from a random BST for the set K 5 {1, 2, 3, 4}.
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4. Performance Analysis

The analysis of the performance of the basic algorithms is immediate, since both
insertions and deletions guarantee the randomness of their results. Therefore,
the large collection of results about random BSTs found in the literature may be
used here. We will use three well-known results2 about random BSTs of size n:
the expected depth of the ith internal node, the expected depth of the ith
external node (leaf), and the total expected length of the right and left spines of
the subtree whose root is the ith node. We will denote the corresponding random
variables $n

(i), +n
(i), and 6n

(i). Recall that the right spine of a tree is the path
from the root of the right son to the smallest element in that subtree. Analo-
gously, the left spine is the path from the root of the left son to its largest
element (see Figure 3). The expected values mentioned above are:

E@$n
(i)# 5 Hi 1 Hn112i 2 2, i 5 1, . . . , n;

E@+n
(i)# 5 Hi21 1 Hn112i, i 5 1, . . . , n 1 1;

E@6n
(i)# 5 E@+n

(i) 1 +n
(i11) 2 2~$n

(i) 1 1!# 5 2 2
1

i
2

1

n 1 1 2 i
,

i 5 1, . . . , n;

where Hn 5 ¥ i#j#n 1/j 5 ln n 1 g 1 2(1/n) denotes the nth harmonic
number, and g 5 0.577 . . . is Euler’s constant.

To begin with, let Sn
(i) and Un

(i) be the number of comparisons in a successful
search for the ith key and the number of comparisons in an unsuccessful search
for a key in the ith interval of a tree of size n, respectively. It is clear that

2 See, for example, Knuth [1973], Mahmoud [1992], Sedgewick and Flajolet [1996], and Vitter and
Flajolet [1990].

FIG. 3. Left and right spines of the ith internal node.
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Sn
(i) 5 $n

(i) 1 1, i 5 1, . . . , n.

Un
(i) 5 +n

(i), i 5 1, . . . , n 1 1.

Let us consider now the cost of an insertion in the ith interval (1 # i # n 1
1) of a tree of size n. If this cost is measured as the number of visited nodes,
then its expected value is E[+n

(i)] 1 1, since the visited nodes are the same as
those visited in an unsuccessful search that ends at the ith external node, plus the
new node. However, the insertion of a new item has two clearly differentiated
phases and the cost of the stages differ in each of these two phases. Before the
insertion at root, we generate a random number in each stage, compare it to
another integer, and (except in the last step) compare the new key with the key
at the current node. Notice that a top-down (nonrecursive) implementation of
the insertion algorithm would not update the pointer to the current node, as
Algorithm 1 does. In each stage of the insertion at root, a comparison between
keys and updating of pointers take place, but no random number is generated.

Hence, for a more precise estimate of the cost of an insertion, we will divide
this cost into two contributions: the cost of the descent until the new item
reaches its final position, Rn

(i), plus the cost of restructuring the tree beneath,
that is, the cost of the insertion at the root, In

(i). We measure these quantities as
the number of steps or visited nodes in each. Consider the tree after the
insertion. The number of nodes in the path from the root of the tree to the new
item is Rn

(i). The nodes visited while performing the insertion at root are those in
the left and the right spines of the subtree whose root is the ith node. Since the
tree produced by the insertion is random, we have

Rn
(i) 5 $n11

(i) 1 1, In
(i) 5 6n11

(i) , i 5 1, . . . , n 1 1.

As expected, E[Rn
(i) 1 In

(i)] 5 E[+n
(i)] 1 1. A more precise estimation of the

expected cost of an insertion in the ith interval is then

aE@Rn
(i)# 1 bE@In

(i)# 5 a~Hi 1 Hn122i 2 1! 1 bS 2 2
1

i
2

1

n 1 2 2 iD ,

where a and b are constants that reflect the different costs of the stages in each
of the two phases of the insertion algorithm. Notice that the expected cost of the
insertion at root phase is 2(1), since less than two rotation-like operations take
place (on average).

The cost of the deletion, measured as the number of visited keys, of the ith key
of a tree of size n is also easy to analyze. We can divide it into two contributions,
as in the case of insertions: the cost of finding the key to be deleted, Fn

(i), plus
the cost of the join phase, Jn

(i). Since the input tree is random, we have

Fn
(i) 5 $n

(i) 1 1, Jn
(i) 5 6n

(i), i 5 1, . . . , n .

Notice that the number of visited nodes while deleting a key is the same as while
inserting it, because we visit the same nodes. The expected number of local
updates per deletion is also less than two. A more precise estimation of the
expected cost of the deletion of the ith element is
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a9~Hi 1 Hn112i 2 1! 1 b9S 2 2
1

i
2

1

n 1 1 2 iD ,

where a9 and b9 are constants that reflect the different costs of the stages in each
of the two phases of the deletion algorithm. Altogether, the expected cost of any
search (whether successful or not) and the expected cost of any update operation
is always U(log n).

The algorithms in the next section can also be analyzed in a straightforward
manner. It suffices to relate their performance to the probabilistic behavior of
well-known quantities like the depth of internal or external nodes in random
BSTs, like we have done here.

5. Other Operations

5.1. DUPLICATE KEYS. In Section 2, we have assumed that whenever we
insert a new item in a RBST its key is not present in the tree. An obvious way to
make sure that this is always the case is to perform a search of the key, and then
insert it only if it were not present. But there is an important waste of time if this
is naı̈vely implemented. There are several approaches to cope with the problem
efficiently.

The bottom-up approach performs the search of the key first, until it either
finds the sought item or reaches an external node. If the key is already present
the algorithm does nothing else. If the search was unsuccessful, the external node
is replaced with a new internal node containing the item. Then, zero or more
single rotations are made, until the new item gets into its final position; the
rotations are done as long as the random choices taken with the appropriate
probabilities indicate so. This is just like running the insertion at root algorithm
backwards: we have to stop rotations at the same point where we would have
decided to perform an insertion at root. We leave the details of this kind of
implementations as an exercise.

There is an equivalent recursive approach that uses a variant of split that does
nothing (does not split) if it finds the key in the tree to be split. The sequence of
recursive calls signal back such event and the insertion is not performed at the
point where the random choice indicated so.

Yet there is another solution, using the top-down approach, which is more
efficient than the other solutions considered before. We do the insertion almost
in the usual way, with two variations:

(1) The insertion at root has to be modified to remove any duplicate of the key
that we may find below (and we will surely find it when splitting the tree).
This is easy to achieve with a slight modification of the procedure split;

(2) If we find the duplicate while performing the first stage of the insertion (i.e.,
when we are finding a place for the inserted key), we have to decide whether
the key remains at the position where it has been found, or we push it down.

The reason for the second variation is that, if we never pushed down a key which
is repeatedly inserted, then this key would promote to the root and have more
chances than other keys to become the root or nearby (see Subsection 5.3). The
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modified insertion algorithm is exactly like Algorithm 1 given in Section 2, except
that it now includes

if (x 55 T 3 key)

return push_down(T);

after the comparison r 55 n has failed.
In order to push down an item, we basically insert it again, starting from its

current position. The procedure push_down(T) (see Algorithm 5) pushes down
the root of the tree T; in each step, we decide either to finish the process, or to
push down the root to the left or to the right, mimicking single rotations. The
procedure push_down(T) satisfies the next theorem.

THEOREM 5.1.1. Let T be a BST such that its root is some known key x, and its
left and right subtrees are independent random BSTs. Then push_down(T) pro-
duces a completely random BST (without information on the root of the tree).

We shall not prove it here, but the result above allows us to generalize
Theorem 2.3 to cope with the insertion of repeated keys.

THEOREM 5.1.2. If T is a random BST that contains the set of keys K and x is
any key (that may or may not belong to K), then insert( x, T) produces a random
BST containing the set of keys K ø { x}.

Although, for the sake of clarity, we have given here a recursive implementa-
tion of the insertion and push_down procedures, it is straightforward to obtain
efficient iterative implementations of both procedures, with only additional
constant auxiliary space (no stack) and without using pointer reversal.
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5.2. SET OPERATIONS. We consider here three set operations: union, intersec-
tion, and difference.

Given two trees A and B, union( A, B) returns a BST that contains the keys in
A and B, deleting the duplicate keys. If both trees are empty, the result is also
the empty tree. Otherwise, a root is selected from the roots of the two given
trees, say, we select a 5 A 3 key. Then, the tree whose root was not selected is
split with respect to the selected root. Following the example, we split B with
respect to a, yielding B, and B.. Finally, we recursively perform the union of
the left subtree of A with B, and the union of the right subtree of A with B..
The resulting unions are then attached to the common root a. If we select b 5 B
3 key to be the root of the resulting tree, then we check if b was already in A.
If this is the case, then b was duplicate and we push it down. Doing so we
compensate for the fact that b has had twice the chances of being the root of the
final tree as any nonduplicate key.

This algorithm uses a slight variant of the procedure split, which behaves like
the procedure described in Section 2, but also removes any duplicate of x, the
given key, and returns 0 if such a duplicate has not been found, and 1 otherwise.

The correctness of the algorithm is clear. A bit more involved proof shows that
union( A, B) is a random BST if both A and B are random BSTs. The expected
cost of the union is U(m 1 n), where m 5 A 3 size and n 5 B 3 size.

The intersection and set difference of two given trees A and B are computed in
a similar vein. Algorithms 7 and 8 always produce a RBST, if the given trees are
RBSTs. Notice that they do not need to use randomness. As in the case of the
union of two given RBSTs, their expected performance is U(m 1 n). Both
intersection and difference use a procedure free_tree(T), which returns all the
nodes in the tree T to the free storage.
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As a final remark, notice that for all our set algorithms we have assumed that
their parameters had to be not only combined to produce the output, but
destroyed. It is easy to write slightly different versions that preserve their inputs.

5.3. SELF-ADJUSTING STRATEGIES. In Subsection 5.1, we have mentioned that
to cope with the problem of duplicate keys, we either make sure that the input
tree is not modified at all if the new key is already present, or we add a
mechanism to “push down” duplicate keys. The reason is that, if we did not have
such a mechanism, a key that as repeatedly inserted would promote to the root.
Such a key would be closer to the root with probability larger than the one
corresponding to the random BST model, since that key would always be inserted
at the same level that it already was or closer to the root.

This observation immediately suggests the following self-adjusting strategy:
each time a key is searched for, the key is inserted again in the tree, but now it
will not be pushed down if found during the search phase; we just stop the
insertion. As a consequence, frequently accessed keys will get closer and closer to
the root (because they are never inserted at a level below the level they were
before the access), and the average cost per access will decrease.

We can rephrase the behavior of this self-adjusting strategy as follows: we go
down the path from the root to the accessed item; at each node of this path we
decide, with probability 1/n, whether we replace that node with the accessed
item and rebuild the subtree rooted at the current node, or we continue one level
below, unless we have reached the element we were searching for. Here, n
denotes the size of the subtree rooted at the current node. When we decide to
replace some node by the sought element, the subtree is rebuilt and we should
take care to remove the duplicate key.

Since it is not now our goal to maintain random BSTs, the probability of
replacement can be totally arbitrary, not necessarily equal to 1/n. We can use
any function 0 , a(n) # 1 as the probability of replacement. If a(n) is close to
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1, then the self-adjusting strategy reacts quickly to the pattern of accesses. The
limit case a(n) 5 1 is the well known move-to-root strategy [Allen and Munro
1978], because we always replace the root with the most recently accessed item
and rebuild the tree in such a way that the result is the same as if we had moved
the accessed item up to the root using single rotations. If a(n) is close to 0,
convergence occurs at a slower rate, but it is more difficult to fool the heuristic
with transient patterns. Obviously, the self-adjusting strategy that we have
originally introduced is the one where a(n) 5 1/n.

Notice that the different self-adjusting strategies that we consider here are just
characterized by their corresponding function a; no matter what a(n) is we have
the following result, that will be proved in Section 7.

THEOREM 5.3.1. Let X 5 { x1, . . . , xN} and let T be a BST that contains the
items in X. Furthermore, consider a sequence of independent accesses to the items in
X such that xi is accessed with probability pi. If we use any of the self-adjusting
strategies described above to modify T at each access, the asymptotic probability
distribution is the same for all strategies and independent of a(n), namely, it is the
one for the move-to-root strategy.

We know thus that after a large number of accesses have been made and the
tree reorganized according to any of the heuristics described above, the proba-
bility that xi is an ancestor of xj is, for i , j, pi/( pi 1 . . . 1 pj). Moreover, the
average cost of a successful search is

C# N 5 1 1 2 O
1#i,j#N

pipj

pi 1 · · · 1 pj

.

In the paper of Aragon and Seidel [1989], they describe another self-adjusting
strategy for randomized treaps: each time an item is accessed, a new random
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priority is computed for that item; if the new priority is larger than its previous
priority, the older priority is replaced by the newer and the item is rotated
upwards until heap order in the tree is restablished. This strategy does not
correspond to any of the strategies in the family that we have discussed before,
but it also satisfies Theorem 5.3.1. The analysis of the strategy suggested by
Aragon and Seidel becomes simpler once we notice that its asymptotic distribu-
tion is the same as that of move-to-root.

The main difference between the self-adjusting strategies that we have dis-
cussed here is that they have different rates of convergence to the asymptotic
distribution. Allen and Munro [1978] show that, for move-to-root, the difference
between the average cost in the asymptotic distribution and the average cost
after t accesses is less than 1 if t $ (N log N)/e and the initial tree is random. If
a(n) , 1, it is clear that the rate of convergence should be slower than that for
move-to-root. We have been able to prove that if a(n) is constant, then the
result of Allen and Munro holds for t $ (N log N)/(a z e). We conjecture that
this is also true for any a(n), but we have not been able to prove it. On the other
hand, Aragon and Seidel did not address the question of the rate of convergence
for their strategy and it seems also quite difficult to compute it.

In a more practical setting, the strategy of Aragon and Seidel has a serious
drawback, since frequently accessed items get priorities close to 1. Then the
length of the priorities tends to infinity as the number of accesses grows. The
situation gets even worse if the pi’s, the probabilities of access, changes from
time to time, since their algorithms react very slowly after a great number of
accesses have been made.

6. Implementation Issues

6.1. NUMBER OF RANDOM BITS. Let us now consider the complexity of our
algorithms from the point of view of the number of needed random bits per
operation.

For insertions, a random number must be generated for each node visited
before the placement of the new item at the root of some subtree is made. If the
currently visited node y is the root of a subtree of size m, we would generate a
random number between 0 and m; if this random number is m, then we insert at
root the new element; otherwise, the insertion continues either on the left or
right subtree of y. If random numbers are generated from high-order to
low-order bits and compared with prefixes of the binary representation of m,
then the expected number of generated random bits per node is U(1)–most of
the times the comparison fails and the insertion continues at the appropriate
subtree. Recall that the expected number of nodes visited before we insert at
root the new item is U(log n). The total expected number of random bits per
insertion is thus U(log n). Further refinements could reduce the expected total
number of random bits to U(1). Nevertheless, the reduction is achieved at the
cost of performing rather complicated arithmetic operations for each visited
node during the insertion.

In the case of deletions, the expected length of left and right spines of the node
to be deleted is constant, so the expected number of random bits is also constant.
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A practical implementation, though, will use the straightforward approach.
Typical random number generators produce one random word (say of 32 or 64
bits) quite efficiently and that is enough for most ordinary applications.

6.2. NON-RECURSIVE TOP-DOWN IMPLEMENTATION OF THE OPERATIONS. We
have given recursive implementations of the insertion and deletion algorithms, as
well as for other related procedures. It is not very difficult to obtain efficient
nonrecursive implementations of all considered operations, with two interesting
features: they only use a constant amount of auxiliary space and they work in
pure top-down fashion. Thus, these nonrecursive implementations do not use
stacks or pointer reversal, and never traverse a search path backwards. We also
introduce an apparently new technique to manage subtree sizes without modify-
ing the top-down nature of our algorithms (see next subsection for more details).
As an example, Algorithm 10 in Appendix A shows a nonrecursive implementa-
tion of the deletion algorithm, including the code to manage subtree sizes.

6.3. MANAGEMENT OF SUBTREE SIZES AND SPACE COMPLEXITY. Up to now,
we have not considered the problem of managing the sizes of subtrees. In
principle, each node of the tree has to store information from which we can
compute the size of the subtree rooted at that particular node. If the size of each
subtree is stored at its root, then we face the problem of updating this
information for all nodes in the path followed during insertion and deletion
operations. The problem gets more complicated if one has to cope with
insertions that may not increase the size of the tree (when the element was
already in the tree) and deletions that may not decrease the size (when the
element to be deleted was not in the tree).

A good solution to this problem is to store at each node the size of its left son
or its right son, rather than the size of the subtree rooted at that node. An
additional orientation bit indicates whether the size is that of the left or the right
subtree. If the total size of the tree is known and we follow any path from the
root downwards, it is easy to see that, for each node in this path, we can trivially
compute the sizes of its two subtrees, given the size of one of them and its total
size. This trick notably simplifies the management of the size information: for
instance, while doing an insertion or deletion, we change the size and orientation
bit of the node from left to right if the operation continues in the left subtree and
the orientation bit was ‘left’; we change from right to left in the symmetric case.
When the insertion or deletion finishes, only the global counter of the size of the
tree has to be changed if necessary (see Algorithm 10 in Appendix A). Similar
rules can be used for the implementation of splits and joins.

We emphasize again that the information about subtree sizes – required by all
our algorithms – can be advantageously used for operations based on ranks, like
searching or deleting the ith item. In fact, since we store either the size of the left
or the right subtree of each node, rank operations are easier and more efficient.
By contrast, if the size of the subtree were stored at the node, one level of
indirection (examining the left subtree root’s size, for instance) would be
necessary to decide if the rank operation had to continue either to the left or to
the right.

Last but not least, storing the sizes of subtrees is not too demanding. The
expected total number of bits that are necessary to store the sizes is U(n) (this
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result is the solution of the corresponding easy divide-and-conquer recurrence).
This is well below the U(n log n) number of bits needed for pointers and keys.

7. Formal Framework and Algebraic Proofs

7.1. RANDOMIZED ALGORITHMS. Although the behavior of deterministic algo-
rithms can be neatly described by means of algebraic equations, this approach
has never been used for the study of randomized algorithms in previous works.
We now present an algebraic-like notation that allows a concise and rigorous
description and further reasoning about randomized algorithms, following the
ideas introduced in Martı́nez and Messeguer [1990].

The main idea is to consider any randomized algorithm F as a function from
the set of inputs A to the set of probability functions (or PFs, for short) over the
set of outputs B. We say that f is a probability function over B if and only if f: B
3 [0, 1] and ¥y[B f( y) 5 1, as usual.

Let f1, . . . , fn be PFs over B and let a1, . . . , an [ [0, 1] be such that ¥1#i#n

a i 5 1. Consider the following process:

(1) Choose some PF from the set { f i} i51, . . . , n in such a way that each f i has a
probability a i of being selected.

(2) Choose one element from B according to the probabilities defined by the
selected f i, namely, choose y [ B with probability f i( y).

Let h be the PF over B related to the process above: for any y [ B, h( y) is the
probability that we select the element y as the outcome of the whole process.
Clearly, h is the linear combination of the f i’s with coefficients a i’s:

h 5 a1 z f1 1 · · · 1 an z fn 5 O
1#i#n

a i z f i. (2)

The linear combination of PFs modelizes the common situation where a random-
ized algorithm h makes a random choice and depending on it performs some
particular task f i with probability a i.

Let f be a PF over B such that f(b) 5 1 for some b [ B (i.e., f( y) 5 0 for all
y Þ b). Then, we will write f 5 b. Thus, we are considering each element in B as
a PF over B itself:

b~ y! 5 H 1, if y 5 b,
0, otherwise.

(3)

This convention is useful, since it will allow us to uniformly deal with both
randomized and deterministic algorithms.

Let f be any PF over B 5 { yi} i, and let pi denote f( yi). Then, the convention
above allows us to write f 5 ¥ i pi z yi, since for any yj [ B, we have that f( yj)
5 [¥ i pi z yi]( yj) 5 ¥ i pi z yi( yj) 5 pj. Taking into account that pi 5 f( yi), we
get the following equality, that may look amazing at first:

f 5 O
y[B

f~ y! z y. (4)
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Let F be a randomized algorithm from the input set A to the output set B. Fix
some input x [ A. We denote by F( x) the PF over B such that, for any y [ B,
[F( x)]( y) is the probability that the algorithm F outputs y when given input x.
Let { y1, . . . , ym} be the set of possible outputs of F, when x is the input given
to F, and let pi be the probability that yi is the actual output. Then, using the
notation previously introduced, we may write

F~ x! 5 p1 z y1 1 · · · 1 pm z ym. (5)

Notice that, if for some a [ A the result of F(a) is always a fixed element b [
B, then the expression above reduces to F(a) 5 b.

Finally, we characterize the behavior of the sequential composition of random-
ized algorithms. Let g be a PF over A, and let F be a function from A to B. By
F( g), we will denote the PF over B such that [F( g)]( y) is the probability that y
is the output of algorithm F when the input is selected according to g. It turns
out that F( g) is easily computed from g and the PFs F( x) for each element x in
A.

F~ g! 5 FS O
x[A

g~ x! z xD 5 O
x[A

g~ x! z F~ x! . (6)

Recall that a single element a from A may be considered as a PF over A, and
then the definition above is consistent with the case g 5 a, that is, when the
input of F is fixed, since ¥x[A a( x) z F( x) 5 F(a).

We shall also use Iverson’s bracket convention for predicates, that is, vPb is 1 if
the predicate P is true, and 0, otherwise. This convention allows expressing the
definitions by cases as linear combinations.

7.2. BINARY SEARCH TREES AND PERMUTATIONS. We now introduce some
definitions and notation concerning the main types of objects we are coping with:
keys, permutations and trees.

Given a finite set of keys K, we shall denote @(K) the set of all BSTs that
contain all the keys in K. For simplicity, we will assume that K , N. The empty
tree is denoted by h. We will sometimes omit drawing empty subtrees, to make
the figures simpler. A tree T with root x, left subtree L and right subtree R is
depicted

T 5

Vx

/ \
L R

.

Similarly, we denote 3(K) the set of all permutations (sequences without
repetition) of the keys in K. We shall use the terms sequence and permutation
with the same meaning for the rest of this paper. The empty sequence is denoted
by l and U uV denotes the concatenation of the sequences U and V (provided that
U and V do not have common elements).

The following equations relate sequences in 3(K) and BSTs in @(K). Given a
sequence S, bst(S) is the BST resulting after the standard insertion of the keys
in S from left to right into an initially empty tree.
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bst~l! 5 h, bst~ x uS! 5

Vx
} {

bst~sep,~ x, S!! bst~sep.~ x, S!!

, (7)

where the algebraic function sep,( x, S) returns the subsequence of elements in
S smaller than x, and sep.( x, S) returns the subsequence of elements in S
larger than x. Both functions respect the order in which the keys appear in S.

Let Random_Perm be a function such that, given a set K with n $ 0 keys,
returns a randomly chosen permutation of the keys in K. It can be compactly
written as follows:

Random Perm~K! 5 O
P[3(K)

1

n!
z P. (8)

Random BSTs can be defined in the following succint way, which turns out to
be equivalent to the assumption that a RBST of size n is built by performing n
random insertions in an initially empty tree:

RBST~K! 5 bst~Random_Perm~K!! 5 O
x[K

1

n
.

Vx

} {
RBST~K,x! RBST(K.x)

. (9)

The last expression in the equation above is clearly equivalent to the one we gave
in Section 2, provided we define its value to be h if n 5 0.

For instance,

RBST~$1, 5, 7%! 5 bst~Random_Perm~$1, 5, 7%!!

5 bstS1

6
z 157 1

1

6
z 175 1

1

6
z 517 1

1

6
z 571 1

1

6
z 715 1

1

6
z 751D

We introduce now three useful algebraic functions over sequences: rm, shuffle
and equiv. The first function removes a key x from a sequence S [ 3(K), if
present, without changing the relative order of the other keys. For instance,
rm(3, 2315) 5 215, rm(4, 2315) 5 2315.

The function shuffle produces a random shuffling of two given sequences with
no common elements. Let K1 and K2 be two disjoint sets with m and n keys,
respectively. Let U 5 u1u . . . u um [ 3(K1) and V 5 v1 u . . . u vn [ 3(K2). We
define 6(U, V) as the set of all the permutations of the keys in K1 ø K2 that
could be obtained by shuffling U and V, without changing the relative order of
the keys of U and V. Hence, 6(U, V) is the set of all Y 5 y1 u . . . u ym1n [
3(K1 ø K2) such that if yi 5 uj and y9i 5 u9j, then i , i9 if and only if j , j9

5
1

6
z V5 1

1

6
z V7 1

1

3
z V1 V7 1

1

6
z V1 1

1

6
z V5 .

{

V7

V1
{

}

V5

}
V5
{ }

V7

{

V5

V1
{ }V7

V1
}
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(and the equivalent condition for the keys of V). For instance, 6(21, ba) 5
{21ba, 2b1a, 2ba1, b21a, b2a1, ba21}. The number of elements in 6(U, V)
is clearly equal to ( m

m1n). Therefore, we can rigorously define shuffle as a
function that, given U and V, returns a randomly choosen element from 6(U,
V). For instance, shuffle(21, ba) 5 1/6 z 21ba 1 1/6 z 2b1a 1 1/6 z 2ba1 1
1/6 z b21a 1 1/6 z b2a1 1 1/6 z ba21. The algebraic equations for shuffle are

shuffle~l , l! 5 l, shuffle~l, v uV! 5 v uV, shuffle~u uU, l! 5 u uU,

shuffle~u uU, v uV! 5
m

m 1 n
z u ushuffle~U, v uV! 1

n

m 1 n
z v ushuffle~u uU, V! ,

(10)

where m and n are the sizes of u uU and of v uV, respectively. It is not difficult to
prove by induction that this definition of the function shuffle is correct.

Let K be a set of keys and x a key not in K. We can use shuffle to define the
function Random_Perm in the following inductive way, equivalent to definition (8):

Random Perm(À)5l,

Random Perm~K ø $ x%! 5 shuffle~ x, Random Perm~K!! . (11)

We define equiv as a function such that given input a sequence S [ 3(K), it
returns a randomly chosen element from the set of sequences that produce the
same BST as S, that is,

%~S! 5 $E [ 3~K! ubst~E! 5 bst~S!% .

For example, %(3124) 5 {3124, 3142, 3412} and equiv(3124) 5 1/3 z 3124 1 1/3 z
3142 1 1/3 z 3412, since bst(3124) 5 bst(3142) 5 bst(3412) and no other
permutation of the keys {1, 2, 3, 4} produces the same tree. Using the function
shuffle, the equational definition of equiv is almost trivial:

equiv~l! 5 l, (12)

equiv~ x uS! 5 x ushuffle~equiv~sep,~ x, S!! , equiv~sep.~ x, S!!! .

7.3. THE ALGORITHMS. In this subsection, we give equational definitions for
the basic algorithms in our study: insert, insert_at_root, delete, join, etc.

Using our notation, the algebraic equations describing the behavior of insert are

insert~ x, h! 5

Vx

/ \
h h

,

insert1 x,
Vy

/ \
L R

2 5
1

n 1 1
z insert_at_root 1 x,

Vy

/ \
L R

2 (13)

1
n

n 1 1
z 1 [[x , y]] z

Vy

} {
insert~ x, L! R

1 [[x . y]] z

Vy

} {
L insert~ x, R!

2 ,
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assuming that we never insert a key that was already in the tree.
The function insert_at_root can be defined as follows:

insert_at_root~ x, T! 5

Vx
} {

split,~ x, T! split.~ x, T!

, (14)

where split, and split. are functions that, given a tree T and a key x ¸ T, return
a BST with the keys in T less than x and a BST with the keys in T greater than x,
respectively. The algebraic equations for the function split, are

split,~ x, h! 5 h,

split, 1x,
Vy

/ \
L R

2 5 [[x , y]] z split,~x, L! 1 [[x . y]] z

Vy
} {

L split,~x, R!

. (15)

The function split. satisfies symmetric equations. We define

split~ x, T! 5 @split,~ x, T! , split.~ x, T!# .

Let us now shift our attention to the deletion algorithm. Its algebraic form is

delete~ x, h! 5 h,

delete 1x,
Vy

/ \
L R

25 [[x , y]] z

Vy
} {

delete~x, L! R
1 [[x, y]] z

Vy
} {

L delete~x, R!

(16)

1 [[x 5 y]] z join ~L, R! .

The probabilistic behavior of join can in turn be described as follows, when at
least one of its arguments is an empty tree:

join(h, h)5h, join~L, h! 5 L, join~h, R! 5 R .

On the other hand, when both arguments are non-empty trees, with sizes m 5 L
3 size . 0 and n 5 R 3 size . 0, respectively, we have

join~L, R! 5
m

m 1 n
z

Va
} {

Ll join~Lr, R!

1
n

m 1 n
z

Vb

} {
join~L, Rl ! Rr

, (17)

where a 5 L 3 key, Ll 5 L 3 left, Lr 5 L 3 right and b 5 R 3 key, Rl 5
R 3 left, Rr 5 R 3 right.

7.4. THE PROOFS. We consider here several of the results that we have
already seen in previous sections as well as some intermediate lemmas that are
interesting on their own. We will not provide proofs for all them, for the sake of
brevity. Only the proof of Lemma 7.4.3 and Theorem 7.4.4 will be rather
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detailed; in other cases, the proofs will be sketchy or just missing. However, the
ones given here should suffice to exemplify the basic manuvers that the algebraic
notation allows and typical reasoning using it.

The following lemma describes the result of split when applied to a fixed BST.

LEMMA 7.4.1. Let S be any permutation of keys and let x be any key not in S.
Then

split~ x, bst~S!! 5 @bst~sep,~ x, S!! , bst~sep.~ x, S!!# .

From this lemma, we can describe the behavior of split when applied to a
random BST. Our next theorem is nothing but Lemma 2.2, now in the formal
setting of this section.

THEOREM 7.4.2. Let K be any set of keys and let x be any key not in K. Let K,x

and K.x denote the set with the keys in K less than x and the set with the keys in K
greater than x, respectively. Then

split~ x, RBST~K!! 5 @RBST~K,x! , RBST~K.x!# .

Lemma 7.4.1 relates split with sep, the analogous function over sequences.
Our next objective is to relate insert with shuffle and equiv, the functions that we
have defined before. The idea is that the insertion of a new item in a tree T has
the same effect as taking at random any of the sequences that would produce T,
placing x anywhere in the chosen sequence (an insertion-like operation in a
sequence) and then rebuilding the tree. This is formally stated in the next lemma.

LEMMA 7.4.3. Let S be any permutation of keys and let x be any key not in S.
Then

insert~ x, bst~S!! 5 bst~shuffle~ x, equiv~S!!! .

For instance, using Eqs. (7), (13), (14), and (15), we get

On the other hand, by the definitions of shuffle and equiv (Eqs. (10) and
(12)),

bst~shuffle~3, equiv~241!!! 5 bstS shuffleS 3,
1

2
z 241 1

1

2
z 214D D

5 bstS 1

2
z shuffle~3, 241! 1

1

2
z shuffle~3, 214!D

5 bstS 1

8
z 3241 1

1

8
z 2341 1

1

8
z 2431 1

1

8
z 2413

1
1

8
z 3214 1

1

8
z 2314 1

1

8
z 2134 1

1

8
z 2143D ,

insert~3, bst~241!! 5
1

4
z V2 V4 1

3

8
z V1 V3 1

3

8
z V1 V4 .

V3
} {

}

V1

V2
} {

{

V4

V2
} {

}

V3
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which gives the same result as insert(3, bst(241)), since the sequences in {3241,
3214} produce the first tree, those in {2341, 2314, 2134} produce the second
tree, and the ones in {2431, 2413, 2143} produce the third.

PROOF. We prove the lemma by induction on n, the length of S. If n 5 0,

insert~ x, bst~l!! 5 insert~ x, h! 5

Vx

/ \
h h

,

but on the other hand, equiv(l) 5 l and shuffle( x, l) 5 x, so the lemma is true.
Assume now that n . 0, S 5 y uP and x is not present in S. Moreover, let us

assume that x , y (the case x . y is very similar).
First of all, notice that, if y uQ is any permutation of n keys and x is any key not

in y uQ, then

shuffle@ x, y uQ# 5
1

n 1 1
z x uy uQ 1

n

n 1 1
z y ushuffle@ x, Q# .

Therefore,

shuffle@ x, equiv~ y uP!#

$by definition of equiv%

5 shuffle@ x, y ushuffle@equiv~sep,~ y, P!! , equiv~sep.~ y, P!!##

$by the observation above%

5
1

n 1 1
z x uy ushuffle@equiv~sep,~ y, P!! , equiv~sep.~ y, P!!#

1
n

n 1 1
z y ushuffle@ x, shuffle@equiv~sep,~ y, P!! ,

equiv~sep.~ y, P!!]].

Now we can use the definition of equiv back in the first line. Furthermore, the
shuffle operation is associative – we do not prove it, but it is easy to do it and
rather intuitive. Therefore,

shuffle@ x, equiv~ y uP!# 5
1

n 1 1
z x uequiv~ y uP!

1
n

n 1 1
z y ushuffle@shuffle@ x, equiv~sep,~ y, P!!# ,

equiv~sep.~ y, P!!].

Distributing through bst, we get
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bst~shuffle@x, equiv~yuP!#! 5
1

n 1 1
z bst~xuequiv~yuP!!

1
n

n 1 1
z bst~yushuffle@shuffle@x, equiv~sep,~y, P!!#,

equiv~sep.~y, P!!]). (18)

Now we can use the facts that bst( x uQ) 5 insert_at_root( x, bst(Q)) (this
follows from Lemma 7.4.1) and bst(equiv(Q)) 5 bst(Q) to manipulate the
expression in the first line of (18), as follows:

bst~ x uequiv~ y uP!! 5 insert at root~ x, bst~equiv~ y uP!!!

5 insert at root~ x, bst~ y uP!!

5 insert at root~ x, bst~S!! .

Let A 5 shuffle[shuffle[ x, equiv(sep,( y, P))], equiv(sep.( y, P))]. The
definition of bst allows us to write the expression in the second line of (18) as

bst~ y uA! 5

Vy

} {
bst~sep,~ y, A!! bst~sep.~ y, A!!

.

Notice that shuffle[ x, equiv(sep,( y, P))] does only contain keys smaller than y.
Therefore,

sep,~ y, A! 5 shuffle@ x, equiv~sep,~ y, P!!# ,

sep.~ y, A! 5 equiv~sep.~ y, P!! .

Recall that shuffle does not modify the relative order of the keys in its
parameters. Then,

bst~ y uA! 5

Vy
} {

bst~shuffle@ x, equiv~sep,~ y, P!!#! bst~equiv~seq.~ y, P!!!

.

Applying the inductive hypothesis in the left subtree, and the property
bst(equiv(Q)) 5 bst(Q) in the right one, we have

bst~ y uA! 5

Vy
} {

insert~ x, bst~sep,~ y, P!!! bst~sep.~ y, P!!

.

Finally, using the definition of bst and insert, we prove the statement of the
lemma:

bst~shuffle~ x, equiv~S!!! 5 insert~ x, bst~S!! . e
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The last lemma is relevant since it paves the way for the proof of one of the
main results of this work, namely, Theorem 2.3. We rephrase it again, using the
notation introduced so far.

THEOREM 7.4.4. Let K be any set of keys and let x be any key not in K. Then

insert~ x, RBST~K!! 5 RBST~K ø $ x%! .

PROOF. Notice that taking S [ 3(K) at random and then chosing any
permutation equivalent to S, is the same as taking S [ 3(K) at random. Then,

insert~ x, RBST~K!!

$by definition of RBST% 5 insert~ x, bst~Random Perm~K!!!

$by Lemma 7.4.3% 5 bst~shuffle~x, equiv~Random Perm~K!!!!

$by the observation above% 5 bst~shuffle~ x, Random Perm~K!!!

$by definition of Random Perm% 5 bst~Random Perm~K ø $ x%!!

$by definition of RBST% 5 RBST~K ø $ x%! . e

The following results describe the behavior of join when applied to a fixed BST
and when applied to a random BST, respectively. Notice that Theorem 7.4.6 is
only a reformulation of Lemma 3.1 in Section 3.

LEMMA 7.4.5. Let U and V be two permutation of keys such that the keys in U
are smaller than the keys in V. Then

join~bst~U! , bst~V!! 5 bst~shuffle~equiv~U! , equiv~V!!! .

THEOREM 7.4.6. Let K, and K. be two sets of keys such that the keys in K, are
all smaller than the keys in K.. Then

join~RBST~K,! , RBST~K.!! 5 RBST~K, ø K.! .

It only remains to describe the behavior of delete, related with rm and equiv.

LEMMA 7.4.7. Let S be any permutation of keys and let x be any key. Then

delete~ x, bst~S!! 5 bst~rm~ x, equiv~S!!! .

Theorem 3.1 follows as an immediate consequence from the results above. We
state it again, for the sake of completeness.

THEOREM 7.4.8. Let K be any set of keys and let x be any key. Then

delete~ x, RBST~K!! 5 RBST~K\$ x%! .

Notice that the theorem holds even if x ¸ K, since in this case K\{ x} 5 K.
It is also possible to prove that any deletion algorithm such that

(1) it only modifies the subtree beneath the key x to be deleted;
(2) its behavior does not depend on the location of x within the BST;
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(3) its outcome is the result of rotating the key x left or right until it reaches a
leaf; and

(4) it preserves randomness

has to be equivalent to the one presented in this paper from the point of view of
its probabilistic behavior. In other words, any deletion algorithm that fulfills the
conditions 1– 4 above must satisfy Eqs. (16) and (17). The algorithm may use
different mechanisms to make the random choices, but its probabilistic behavior
must be the same as that of our algorithm. We claim thus that the deletion
algorithm that we present in this paper is, in a very strong sense, the deletion
algorithm for random BSTs.

The notation presented in this section has allowed us to state most of the
results in this work in a very concise and rigorous manner. Our purpose has been
to show that the notation is not difficult to understand. Its meaning is rather
intuitive, while at the same time it does not sacrifice rigor; and it is not arduous
to carry computations using it. As we have already seen, proofs become a mere
issue of rewriting and applying induction where appropriate.

7.5. SELF-ADJUSTING STRATEGIES. Last but not least, we apply the tools of
this section to give a proof of Theorem 5.3.1. The procedure self_adj performs a
successful search of x in T and returns the tree after reorganization (presumably,
it also returns the information associated to x, but we will not care about this
associated information when describing the behavior of self_adj). Let n denote
the number of elements in the tree. Let y 5 T 3 key, L 5 T 3 left and R 5
T 3 right. The equation for self_adj is

self_adj~ x, T! 5 a~n! z insert_at_root~ x, T!

1 ~1 2 a~n!! z 3 [[x , y]]
Vy

} {
self_adj~ x, L! R

1 [[x . y]]
Vy

} {
L self_adj~ x, R!

1 [[x 5 y]]T4 .

To modelize the sequence of successful accesses, let K be the set of keys, and
for each key x in K, let p( x) . 0 denote the probability of access to x. Of course,
we have

O
x[K

p~ x! 5 1.

An independent successful access to an item in K, according to p, is given by

a~K! 5 O
x[K

p~ x! z x.

Let p denote the asymptotic distribution that some self-adjusting strategy
induces after an infinite number of successful accesses have been made. First, we
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should prove that any of these self-adjusting strategies produces a stationary
probability distribution. Consider the (finite) Markov chain that describes the
transition probabilities of this process (see Feller [1968], for instance). On the
one hand, we know that all the states intercommunicate, that is, given two trees
T1 and T2 built over the set K, the probability of ever reaching T2 starting from
T1 is strictly greater than zero. On the other hand, there are no transitions with
probability 1 (except when the tree contains only one element). Therefore, we
have an irreducible, persistent, aperiodic Markov chain, irrespective of a(n).
This implies the existence of such a unique stationary probability distribution.

The characteristic feature of any asymptotic distribution p is that it is the
unique fixed point for its corresponding self_adj operation, when accesses are
made according to a(K)

self adj~a~K! , p! 5 p.

Clearly, p is a PF over the set @(K), and eventually depends on our choice of
a(n), p [ p(a(n)).

Theorem 5.3.1 states that p is the same for all possible a(n). Since it is true
for a(n) 5 1, we have that p is the asymptotic distribution for the move-to-root
strategy. Once we have shown that p is the same for all a(n), the other claims in
Subsection 5.3 follow directly from the results of Allen and Munro concerning
move-to-root [Allen and Munro 1978].

Before we restate Theorem 5.3.1, we need some additional definitions.
Given a probability distribution p over the set of keys K, and a nonempty

subset A # K, let

P~ A! 5 O
y[A

p~ y!

p~ A!
z

Vy

} {
P~ A,y! P~ A.y!

,

where p( A) 5 ¥y[A p( y), A,y 5 { z [ A uz , y} and A.y 5 { z [ A uz . y}.
Notice that the definition of P( A) is independent of a(n). Furthermore, p 5
P(K) is the asymptotic distribution for move-to-root, since y is the root of the
tree with probability p( y), and the same applies recursively, after proper
normalization, for the left and right subtrees. By definition, P(À) 5 h.

Moreover, for any nonempty A # K, let

a~ A! 5 O
x[A

p~ x!

p~ A!
z x.

Thus, a( A) defines the event “choose an element from A according to p
(renormalized)”.

THEOREM 7.5.1. For any a(n) such that 0 , a(n) # 1, and for any nonempty
subset of keys A # K,

self adj~a~ A! , P~ A!! 5 P~ A! .
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PROOF. We prove this result by induction on the size of A. If A contains only
one key, then the claim of the theorem is trivially true. If A contains more than
one element, we have

self_adj~a~ A! , P~ A!! 5 a~n! z insert_at_root~a~ A! , P~ A!!

1 ~1 2 a~n!! z O
y[A

p~ y!

p~ A!
z

3 p~ A,y!

p~ A!
z

Vy

} {
self_adj~a~ A,y! , P~ A,y!! P~ A.y!

1
p~ A.y!

p~ A!
z

Vy

} {
P~ A,y! self_adj~a~ A.y! , P~ A.y!!

1
p~ y!

p~ A!
z

Vy

} {
P~ A,y! P~ A.y!

4 .

Notice that, when y is the smallest element in A, the term a( A,y) is not defined,
since we cannot choose an element from the empty set. However, the factor
p( A,y) is zero. For the sake of completness, it is enough to assume that 0 z
“undefined” 5 0. The same comment applies when y is the largest element in A.

Consider the equality above. On the one hand, we have that insert_at_
root(a( A), P( A)) 5 P( A) (this is just the result of Allen and Munro). On the
other, we can use the induction hypothesis to deduce that self-adj(a( A,y),
P( A,y)) 5 P( A,y) and self_adj(a( A.y), P( A.y)) 5 P( A.y). Therefore,

self_adj~a~ A! , P~ A!! 5 a~n! z P~ A!

1 ~1 2 a~n!! z O
y[A

p~ y!

p~ A!
z

Vy

} {
P~ A,y! P~ A.y!

5 P~ A! e

8. Conclusions

We have presented randomized algorithms to insert and delete items into and
from binary search trees that guarantee that, given as input a random binary
search tree, its output is also a random binary search tree. Particularly important
is the deletion algorithm, since it is the only one known that preserves the
random BST model. Furthermore, and as far as we know, this is the first time
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that the randomness-preserving property of the deletion algorithm has been
established.

Searches, insertions, and deletions by key; splits and joins; searches and
deletions by rank and computations of rank can all be performed in U(log n)
expected time, independently of the input distribution, where n is the size of the
involved trees. All these operations should be fast in practice (if generating
random numbers is not very expensive), since they visit the same nodes as their
standard deterministic counterparts, and they can be implemented in a top-down
fashion. We have shown that these results can be achieved using only structural
information, the subtree sizes. As a consequence, an efficient implementation of
rank operations follows at no additional cost.

Also, set operations (unions, intersections, and differences) yielding random
BSTs if their input is a pair of random BSTs, can also be implemented in U(n)
expected time using similar ideas.

Another question that we have considered in this paper is that of self-
adjusting strategies. We have been able to prove that there exists a general
family of self-adjusting strategies that behave identically in the asymptotic
state. The family includes the well-known move-to-root heuristic. However,
the different strategies in this family must exhibit different rates of conver-
gence to the asymptotic distribution; we still lack a quantitative analysis of
this question and thus leave open this problem. Another open problem
(probably very difficult) concerns the robustness against malicious adversar-
ies. Since all the self-adjusting strategies that we have considered are
randomized, the only exception being move-to-root, it may be well that one or
more of these strategies were competitive against an oblivious adversary.

Other further lines of research that we are pursuing include the application of
the techniques in this paper to other kind of search trees, like m-ary trees,
quadtrees, etc.

The randomized treaps of Aragon and Seidel satisfy all the theorems and
lemmas of Sections 2 and 3. In particular, their algorithms always produce
random binary search trees. However, little use of this fact was made by the
authors when they analyzed their algorithms. Their recently published work on
randomized treaps [Seidel and Aragon 1996] also mentions that the random
priorities for randomized treaps can be simulated using the sizes of subtrees,
pointing out thus the main idea of the present work, but the idea is not further
developed there. From our point of view, randomizing through the sizes of
subtrees is more advantageous than through random priorities, since the mecha-
nism that allows the randomization process is useful information in the former
case, while it is not in the latter.

Appendix A. Nonrecursive Implementation of the Deletion Algorithm

This appendix contains the nonrecursive implementation of the deletion algo-
rithm delete( x, T) as well as the implementation of the auxiliary procedure
join( A, B). This implementation also considers the management of subtree sizes
(see Section 6).

The representation of trees has been slightly changed with respect to the one
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considered along the main text. A tree T is now represented by a pointer to a
record with two fields: T 3 size is the total number of internal nodes in T, and
T 3 root is a pointer to the root node. Each internal node stores a key, pointers
to the left and right subtrees, the size of one of its subtrees, and an orientation
bit that may be either LEFT or RIGHT, thus indicating which is the subtree
whose size is maintained by the node.

Both delete and join make use of a function flip_orientation, which is
convenient for bookkeeping.
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