0B

ompressing the informatien to be stored in a full-text database is only part

of the solution to the information explosion. The techniques described in

Chapter 2 may save a great deal of disk space, making it possible to store far
more than might otherwise be handled, but compression does nothing to address
the issue of how the information should be orgamzed so that queries can be resolved
efficiently and relevant portions of the data extracted quickly. For that, an index is
DECESSAry.

Most people are familiar with the use of an index in a book—there is one at the
end of this book, for example, and if you logk up the word #sdex in it, it should
refer you to this page. Using an index, it is possible to find information without
resorting to a page-by-page search, and, provided that the index itself'can be under-
stood, it is possible to locate relevant pages in a book even if the book is written in
anpther langnage. Indeed, if you wanted to obtain information from a book written
in a foreign language, having an index would save an enormous amount of effort,
since a translator could then be employed to “decode™ just the pages actually re-
quired rather than the entire book. Although this scenario may sound far-fetched,
it is in fact exactly the situation we are advocating io this book since the com-
pressed documents that are stored in an information retrieval system might as well
be stored in a foreign language, and some translation cost must certainly be paid to
access them.

A book without an index can give rise to great frustration, Most people, at some
time or another, have looked through a book for something they are sure is there
but they simiply cannot find. Tracking down the telephone number of a govern-
ment départment in a telephone directory is one such task that immediately s;:rmgs
to mind—you are never :;mte sure whether to look for “Taxation

“Department of Taxation,” or “Federal Office of Revenue,” and so on, (In sz
Zegland, the correct answer is “Inland Revenue Department”; in Australia, it is the

103



104

CHAPTER THREE: INDEXING

“Australian Taxation Office”; in Canada, it is “Revenue Canada” or “Revenu Canada™;
and in the United States, it is universally known as the “IRS.”)

This difficulty of searching i the result of an inadequate index or ne index at all.
Of course, with a normal book {including this one) 1t is possible to skim-read every
page, with a reasonable chance of being able to zero in, by various contextual clues,
to the desired section. But with computers we are talking about gigabytes of data,
millions of pages rather than hundreds, and with little structure and no contextual
clues such as headings. Casual browsing of this much data by human means would
be very costly, and even exhaustive searching by mechanical means is expensive. If
no index is available, efforts to extract information are doomed to failure. For-this
reasomn, it is crucial to the success of an automated retrieval system that the stored
information be accurately and comprehensively indexed; otherwise we might as well
not have bothered accumulating the documents in the first place.

In this chapter we discuss a variety of indexing methods and show how the re-
sulting indexes can themselves be compressed. For the most part it is supposed that
a document collection or document database can be treated as a set of separate docu-
ments, each described by a set of representative terms, or simply terms, and that the
index must be capable of identifying all documents that contain ¢ombinations of
specified terms or are in some other way judged to be relevant to the set of query
terms, A document will thus be the unit of text that is returned in response to
queries.

For example, if the database consists of a collection of electronic office memo-
randa, and each memo is taken to be one document, then the representative terms
might be the recipient’s name, the sender’s name, the date, and the subject line of
the memo. It would then be possible to issne queries such as find memos from Jane
to John on the subject of taxation. If a more detailed index is required, the entire
text of the message might be regarded as its own set of representative terms, so that
any words contained in the message could be used as query terms. If the docu-
ments are images, the terms to be indexed might be a few words describing each
image, and a query might, for instance, ask that all images containing an elephant
be retrieved. Note that in this latter case it is supposed that someone has examined
the collection of images and decided in advance (by creating representative terms)
which ones show elephants. The tagk of taking an arbitrary image and deciding me-
chanically what objects are portrayed is a major research area in its own right and
is certainly not the subject of this book. Nevertheless, for certain restricted types of
image, such as faxes and other scanned text, it is sometimes possible to infer a set of
representative terms using OCR.

There will also be situations in which it is sensible to choose a document in the
database to be one paragraph, or even just one sentence, of a source document.
This would allow paragraphs that meet some requirement to be extracted, inde-
pendent of the text in which they are embedded. In the previous example of office
memos, it would be of dubious merit, but certainly possible, to define each field as
one document—one document storing the sender, another the recipient, another
the subject, and a fourth the actual message text. Similarly, it would be possible,
but probably confusing, to store as a document a group of 10 memos on disparate




CHAPTER THREE: INDEXING ] [lﬁ

topics. As in this example, it is normally easy to decide, for a given collection, what
the documents should be.

The database designer is also free to choose the granularity of the index—the
resohition to which term locations are recorded within each document. Having
decided for the office information system that a document will be a single memo,
the system implementer may still require that the index be capable of ascertaining
a more exact location within the document of each term, so documents in which
the words tax and gvoidance appear in the same sentence can be located using only
the index, without recourse to extensive checking of every document in which they
appear anywhere. '

In the limit, if the granularity of the index is taken to be one word, then the
index will record the exact location of every word in the ¢collection, and so (with
some considerable effort) the original text can be recovered from the index. In this
case it is unlikely that the index can be stored in less space than the least amount
that is possible for the main text using a normal text compression algorithm. If it
could, the index compression method could be used as a better text compression
algorithm, and, given the discussion in Chapter 2, that seems unlikely.

‘When the granularity of the index is coarser—to the sentence or document level—
the input text can no longer be reproduced from the index, and a more economical

tion becomes possible. Most of this chapter is devoted to index compres-
sipn, the problem of representing the index efficiently. Each entry in a document-
level index is a pointer to a particular document, and for a collection of a million
documents, such a pointer would take 20 bits uncompressed. However, it is possi-
ble to reduce this to about 6 bits for typical document:collections, a very worthwhile
saving indeed.

The database designer is also free to decide how the representative terms for tex-
tual documents should be created. One simple possibility is to take each of the
words that appears in the document and declare it verbatim ta be a term. This tends
to both enlarge the vocabulary of the collection—the number of distinct terms that
appear—and increase the number of decument identifiers that must be stored in
the index. Having an overlarge vocabulary not only affects the storage space re-
quirements of the system but can also make it harder to use since there are more
potential query terms that must be considered when formulating requests of the
system. For these reasons it is more usual for each word to be transformed in some
way before being included in the index.

The first of these transformations is known as case folding—the conversion of
all uppercase letters to their lowercase equivalents (or vice versa). For example, if
all uppercase letters are folded to lowercase, ACT, Act, and act are all indexed as
gct and are regarded as equivalent at query time, irrespective of which original ver-
sion appeared in the source document. This transformation is carried out so that
those querying the database need net guess the exact case that has been used and
can pose case-invariant queries. Certainly, we would not wish to distinguish be-
tween the two sentences Data compression ... and Compression of data . .. when
querying on data AND compression—both sentences (or rather, the documents con-
taining them) should be retrieved. Of course, as with most generalizations, there are



106

3.1

CHAPTER THREE: INDEXING

counterexamples, In Australia, “ACT” stands for Australian Capital Territory, which
is the seat of the federal government. This is quite different from the verb to act and
only tenuously related to the noun Act (of parliament). And, given the authorship
of this boal, unification of Bell and bell might also introduce problems.

A second, less obvious, transformation is for words to be reduced to their mor-
phological roots—that is, for all suffixes and other modifiers to be removed. For ex-
ample, compression, compressed, and compressor all have the word compress as their
common root. This process is known as stemming and is carried out so that queries
retrieve relevant documents even if the exact form of the word is different. If the rep-
resentative terms are created using stemming, and all query terms are also stemmed,
the query data AND compression would retrieve doeuments containing phrases such
as compressed data is and also documents containing the likes of to compress the
data. It is difficult to deny the usefulness of this transformation, but the user needs
to remember that it is taking place, as it can easily cause the retrieval of seemingly
extraneous material.

A final transformation that is sometimes applied is the omission of stop words—
words that are deemed to be sufficiently common or of such small information con-
tent that their use in a query would be unlikely to eliminate any documents since
they are likely to be present in almost every document. Hence, nothing will be lost
if they are simply excluded from the index. At the top of any stop word list for
English is usually the, closely followed by a, i, and so on. Other terms might also
be stopped in particular applications—in an online computer manual, appearances
of the terms options and usage might not be indexed, and a financial archive might
choose to stop words such as dollar and stock and perhaps even Dow and Jones. One
automatic method that is sometimes used to derive a set of stop words is to deter-
mine, for each term, the extent to which it can be described by a random process,
accepting as stop words those that appear in the collection as if they were randomly
distributed.

All these transformations, and the effect they have upon index size, are consid-
ered in this chapter. A further possible transformation that we do net consider is
that of thesaural substitution, where synonyms—jfast and rapid, for example—are
identified and indexed under a single representative term.

Sample document collections

To allow practical comparison of various algorithms and techniques, eXperiments
have been performed on some real-life document collections. This section describes
the four collections that have been used in preparing this book.! Seme statistics for

Three of the four collectinns were modified sightly (to correct errors in the data) between
1993, when the results of the first edition of this book were prepared, and 1998, when the
second edition was prepared. The stermming program used in 1998 is also different from that
used in 1993. This is why most of the epllection statistics listed in Table 3.1 are different from



Cellection

Bible GNUbib Comact TREC
Documents N 31,10 54,343 261,829 741,856
Mumber of terms F 884,994 2,570,906 22,805,920 333,338,738
Distinct terms n 8,965 46,488 36,660 535,346
Index pointers f 701,412 2,226,300 12,976,418 134,994 414
Total size (Mbytes| 4.33 14.05 131.86 2070.29

Genesis 1 1
In the begimning God created the heaven and the sarth.

Genesis 1 2

and the sarth was without farm, and wvoid; and darkness was
upon the face of the deep. And the Spilirit of God moved upon
the face of the waters.

Figure 3.1 Sample text from the Bible collection.

them are listed in Table 3.1. In Table 3.1, and throughout the remainder of thiz book,
IV is used to denote the number of documents in some collection; n is the number
of distinct terms—that is, stemmmed words—that appear; F is the total number of
terms in the collection; and f indicates the number of pointers that appear in a
document-level index. That is, f is the number of distinct “document, word” pairs
to. be stored—the size of the index.

Collection Bible is the King James version of the Bible, with each verse taken
to be a document, including the book name, chapter number, and verse number.
The first two documents in this collection, shown in Figure 3.1, are the well-known
verses from Genesis.

The second collection, GNUbib, is a set of about 65,000 citations to papers that
have appeared in the computing literature. These documents are again very short;
for example, all of document number 8,425 is shown in Figure 3.2.

Collection Comact stores the Commonwealth Acts of Australia, from the 1901
constitution under which Australia became a federation through legislation passed
in 1989. Each document in this collection corresponds to one physical page of
an original printed version and contains 50 to 100 words. Two typical pages are

those listed in the corresponding table in the first edition. The various compression results
in the remainder of this chapter are correct for the modified collections.



108

CHAPTER THREE: INDEXING

%A Tan H. Witten

%A Radford M. Heal

%A John G. Cleary

8T Arithmetic coding for data compressidn
%7 Communications of the ACM

&K cacm

&8V 30

BN &

D June 1987

%P 520--540

Figure 3.2 Sample text from GNUb.

Page 92011

EVIDENCE AMENDMENT ACT 1978 No. 14 of 1378---BECT. 3.
‘'derived’ ' means derived, by the use of a computer or
otherwise, by calculation, comparison, salection, serbing or
congolidation or by accounting, statistical or logical
progeduras;

Vidocument ' ' includes-—-

la) a book, plan, paper, parchment, film or other material
on which there is writing or printing, or on which there are
marks, symbols or perforaticns having a meaning fer persons
qualified to interpret them:;

Page 92012 .

EVIDENCE AMENDMEMNT ACT 1978 Wa. 14 of 1978---SECT. 3.

(b} a dige, tape, paper, film or other device from which
scunds or images are capable of being reproduced; and

(=) any other record of information:

'proceeding’ ' means a proceeding before the High Court or
any court (other than a court of a Territory) created by the
Parliament;

iigualified parson, ’" in relation to a statement made in the
course of, or for the purposes of, a businegg, means a
parson who——-—

Figure 33 Sample text from Comact.

shown in Figure 3.3, As in all these examples, some liberties have been taken with
formatting—Iline breaks have been altered and some white space has been removed.

The final collection that has been used is the first two disks of TREC, an acronym
for Text REtrieval Conference. This is a very large document collection distributed
to research groups worldwide for comparative information retrieval experiments.
The documents in the first two disks of TREC are taken from five sourees: the Asso-



3.2

3.2 INVERTED FILE INDEXING 1 [IH

ciated Press newswire; the U.S. Department of Energy; the U.S. Federal Register; the
Wall Street Journal; and a selection of computer magazines and journals published
by Ziff-Davis. In these five subcollections there is a total of more than 2 Gbytes of
text and nearly 750,000 documents. These documents are much longer than those
of the other three collections, averaging about 450 words. One document in the Fed-
eral Register subcollection is more than 2.5 Mbytes long. All the documents contain
embedded standard generalized markup language (SGML) commands; one docu-
ment (selected because it matched the query managing AND gigabytes) is shown in
part in Figure 3.4, In dealing with TREC, all the SGML tags were stripped out be-
fore any indexing took place, and the values reported in Table 3.1 exclude the SGML
markup.

It is also worth stating the definition of word that was used to obtain the statistics
in Table 3.1. A practical rule of thumb for identifying words for indexing is

A word is a maximal sequence of alphanumeric characters, but limited to at most
256 characters in total and 8t most four numeric characters.

The latter restriction is to avoid sequences of page numbers becoming leng runs of
distinct words. Without this restriction, the size of the vocabulary might be un-
necessarily inflated. For example, Comact contains 261,829 pages, beginning with
page 1. Using this definition, a string such as 92011 is parsed as two distinct words,
9201 and 1. Similarly, queries on 92011 are expanded to become 9201 AND 1, in-
troducing some small but acceptable likelihood of false matches—documents that
satisfy the query according to the index but in fact are not answers—on gueries in-
volving large numbers. For example, a document containing the text totalling 9201,
of which 1 would be retrieved as a false match. (A more robust but more expen-
sive strategy is to expand a query on 92011 into S201 AND 2011, supposing that a
similar rule had been used during the creation of the index.) Years, such as 1901,
at four digits, were preserved as words. Of course, this whole strategy would have
to be revised for a document such as the dictionary of real numbeérs mentioned in
Chapter 1 (page 11) (Borwein and Borwein 1990).

All the words thus parsed are then stemmed to produce index tertns, as described
in Section 3.7.

Inverted file indexing :

An index is a mechanism for locating a given term in a text, There are many ways
to achieve this. In applications invelving text, the sihgle most suitable structure is
an inverted file, sometimes known as a postings file and in normal English usage asa
conicordance. Other mechanisms—notably sighature files and bitrmaps—can also be
used and may be appropriate in certain restricted applications. The emphasis in this
section is on inverted file indexing; signature file and bitmap indexing are discussed



110

CHAPTER THREE: INDEXING

<O >

<DOCNO> ZF07-781-012 </DOCNO>

<=DOCID= 07 781 012, </DOCID=>

<JOURNAL> Government CompUuter News Oct 16 1989 v8 n2l p3%(2)
* Tull Text COPYRIGHT Ziff-Davis Pub. Co. 1989.

< f TOURNAL:>

<TITLE> Compressing data spurs growth of imaging. </TITLE>
<AUTHOR> Hosinski, Joan M. </AUTHOR>

<DESCRIPTORS> Topic: Data Compression, pata Communlcations,
Optiecal Disks, Imaging Technology. Feature: illustration

chart. Caption: Path taken by image file. (chart)
</DESCRIPTORS>
<TEXT>

Compressing Data Spurs Growth of imaging

Data compression has gpurred the growth of imaging
applications, many of which require usere to send large
amounts of data between two locations, an Electrenic Trend
Publications report said.

Data compression is an *‘esgential enabling techmology’*
and the ‘‘importance of the compression step is comparable
to the importance of the optical disk as a cost-affective
storage medium, ' the Saratoga, €Calif., company saild in the
report, Data Compression Impact on Document and Image
Processing Storage and Retrieval.

Document images need to be viewed at a resclutien of 100
to 300 dots per inch, and files duickly grow te the gigabyte
or terabyte range, the report sald. Data typically
compresses at a 10-to-1 ratio, but can go up to a 60--to-1
ratie.

vigyge of document imaging has been glew to unfeld, ¢ but
it ie gaining acceptability beyond desktop publishing, where
document imaging already has been used, regearchers said.
Howevey, document imaging can be complex and can be
migapplied, they said. Alse, vendors have changed standards
or used only subsets of the standards in their products.

The Defenge Department’s Computer-Aided Logistics sSupport
(CALS) program and use of image compression format standards
will help the govermnment aveoid problems with interchanging
data between systems, researchers said.

[Three paragraphs omitted]

< /TEET>
< /DoC>

Figure 3.4 Sample text from TREC.




3.2 INVERTED FILE INDEXING ] 1 1

Document Text

Pease porridge hot, pease porridge cold,
Pease porridge in the pot,

Mine days old.

Some like it hot, some like it cold,

Some like it in the pot,

Nine days old.

o o W) g =

in Section 3.5, and then Section 3.6 examines the factors that influence the choice
of indexing method. However, as an initial rule of thumb:

In most applications inverted files offer better parformance than signature files and
bitmaps, in terms of both size of index and speed of query handling.

Let us now define exactly what we mean by an inverted file index. An inverted
file contains, for each term in the lexicon, an inverted list that stores a list of pointers
to all occurrences of that term in the main text, where each pointet is, in effect,
the number of a document in which that term appears. The inverted list is also
sometimes known as a postings list and the pointers as postings. This is perhaps the
mpst natural indexing method, corresponding closely to the index of a book and to
thie traditional use of concordances as an adjunct to the study of classical tracts such
as the Bible and the Koran.

An inverted file index also requires a lexicon—a list of all terms that appear in
the database. (The word “vocabulary”™ is also used to denote this list. We prefer
“lexicon™ when talking about the data structure that holds the list and “vocabulary™
when referring to linguistic aspects of the text.) The lexicon supports a mapping
from terms to their corresponding inverted lists and in its simplest form is a list of
strings and disk addresses.

As an example of an inverted file index, consider the traditional children’s nursery
rhyme in Table 3.2, with each line taken to be a document for indexing purposes.
The inverted file generated for this text is shown in Table 3.3, where the terms have
been case-folded but with no stemming applied and no words stopped. Because
of the unusual nature of the example, each word appears in exactly two of the lines.
This would notnormally be the case, and in general, the inverted lists for a collection
are of widely differing lengths. )

A query involving a single term is answered by scanning its inverted list and re-
trieving every document that it cites. For conjunctive Boolean queries of the form
terr AND term AND ... AND tersm, the intersection of the terms’ inverted lists is
formed. For disjunction, where the operator is OR, the unipn is taken; for negation



1112

CHAPTER THREE: INDEXING

-.l:' n _. i-r L g, . o e
i@e#%ﬁﬁmﬁ~ﬂﬁii '3'-.1-* 11-'h I

Number Term Documents
1 cold (2:1,4)
2 days (2:3,6)
3 hot (2:1,4)
4 in (2;2,8)
B it (Z4,5)
] like (2:4,5)
7 nine {2; 3, 6)
8 old (2;3,6)
;] pease {£1,2)

10 porridge (%1,2)
n pot {Z2,5)
12 some {Z,4,5)
13 the (22, 5)

using NOT, the complement is taken, The inverted ligts are usually stored in order of
increasing document number, so that these various merging operations can be per-
formed in a time that is linear in the size of the lists. As an example, to locate lines
containing some AND hot in the text of Table 3.2, the lists for the two words—{4, 5)
and (1, 4}, respectively—are merged (or, strictly speaking, intersected), yielding the
lines that they have in commagn, in this case the list (4). This line is then fetched,
using whatever mechanism is being used to store the main text, and finally displayed.
The granularity of an index is the accuracy to which it identifies the location of a
term. A coarse-grained index might identify only a block of text, where each block
stores several documents; an index of moderate grain will store locations in terms of
document numbers; while a fine-grained one will return a sentefice or word num-
ber, perhaps even a byte number. Coarse indexes require less storage, but during
retrieval, more of the plain téxt must be scanned to find terms. Also, with a coarse
index, multiterm queries are more likely to give rise to false matches, where each
of the desired terms appears somewhere in the block, but not all within the same
document. At the other extreme, word-level indexing enables queries involving ad-
jacency and proximity—for example, text compression as a phrase rather than as two
individual words text AND compression—to be answered quickly because the desired
relationship can be checked before the text is retrieved. However, adding precise lo-
cational information expands the index by at leasta factor of two or three compared
with a document-level index since not only are there more pointers in the index (as
explained below), but each one requires more bits of storage because it indicates a
more precise location. Unless a significarit fraction of the queries are expected to
be proximity-based, the usual granularity is to individual documents. Proximity-



3.2 INVERTED FILE IMDEXING I 1 3

:": o """I--"i.
| g I'h.. |L.|1F

el AN

Number Tarm (Document; Words)

1 cold (2: (1; 8}, (4; 8))

2 days (2; (3; 2}, (6: 2))

3 hot (2 (1;3), (4; 4))

4 in (2;(2; 3}, (5; &)y

5 it (2 (4;3,7),(5:3)

6 like {2 (4; 2, B), (5: 2]}

T ning (2;(3; 1), (8; 1))

8 old (2; (3;3), (6: 3))

9 pease (2;(1;1,4), (Z1))
10 porridge {2:(1;2,5), (2;: 2))
1 pot (2;(2; 5), (5; 6))
12 S0me (2; {4 1,5), (5;1H
13 the (2;(2; 4), {5; 5))

and phrase-based queries can then be handled by the slightly slower method of a
postretrieval scan.

Table 3.4 shows the text of Table 3.2 indexed by word number within document
number, where the notation (&; Yy, Ya, - - - ) indicates that the given word appears in
document x as word number ¥, y3,.... To find lines containing hot and cold less
than two words apart, the two lists are again merged, but this time pairs of entries
(one from each list) are only accepted when the same document number appears
and the word number components differ by less than two. In this example there
are no such entries, so nothing is read from the main text. The coarser inverted
file of Table 3.3 gives two false matches, which require certain lines of the text to be
checked and discarded.

Notice that the index has grown bigger. There are two reasons for this. First,
there is more information to be stored for each pointer—a word number as well as'a
decument number-—and, given the discussion in Chapter 2, it is not surprising that
more precise locational information requires a longer description. Second, séveral
words appear more than once in a line. In the index of Table 3.3, duplicate appear-
ances are represented with a single pointer, but in the word-level index of Table 3.4,
both appearances require an entry. A word-levél index must, of necessity, store one
value for each word in the text (the value F in Table 3.1), while a document-level
index benefits from multiple appearances of the same word within the document
and stores fewer pointers (listed as f in Table 3.1).

More generally, an inverted file stores a hierarchigal set of addresses—in an ex-
treme case, a word number within a sentence number within a paragraph num-
ber within a chapter number within a volume number within a document number,

=



114

3.3

CHAPTER THREE: INDEXING

Each term location could be considered to be a vector (d, v, ¢, ; s, w) in coordinate
form, However, within each coordinate the list of addresses can always be stored in
the form illustrated in Table 3.4, and all the representations described in this chapter
generalize readily to the multidimensional situation.

For this reason, throughout the following discussion it will be assumed that the
index is a simple document-level one. In fact, given that a document can be defined
to be a very small unit, such as a sentence or verse (as it is for the Bible database), in
some ways word-level indexing is just an extreme case in which each word is defined
as a document.

Uncompressed inverted files can consume considerable space and might occupy
50 to 100 percent of the space of the text itself. For example, in typical English
prose the ayerage word contains about five characters, and each word is normally
followed by one or two bytes of white space or punctuation characters. Stored as 32-
bit document numbers, and supposing that there is no duplication of words within
documents, there might thus be four bytes of inverted list pointer information for
every six bytes of text. If a two-byte “word number within a document” field is
added to each pointer, the index consumes six bytes for roughly each six bytes of
text.

For a text of IV documents and an index containing f pointers, the thtal space
required with a naive representation is f - [log V| bits, provided that pointers are
stored in a minimal number of bits.? Using 20-bit pointers to store the TREC docu-
ment numbers gives a 324 Mbyte inverted file. This is already a form of compression
compared to the more convenient 32-bit numbers usually used when programming,
but even so, the index occupies a sizable fraction of the space taken to store the text.
For the same collection, a word-level inverted file using 29-bit pointers requires
approximately 1,200 Mbytes.

The use of a stop list (or rather, the omission of a set of stop words from the
index) yields significant savings in an uncompressed inverted file since commeon
terms usually account for a sizable fraction of total word occurrences. However, as
will be demonstrated in the next section, there are more elegant ways to obtain the
same space savings and still retain all terms as index words. Our favored approach
is that all terms should be indexed—even if, to make query processing faster, they
are simply ignored when present in queries.

Inverted file compression :

The size of an inverted file can be reduced considerably by compressing it. This
section describes models and coding methods to achieve this.

The key to compression is the observation that each inverted list.can, without any
loss of generality, be stored as an ascending sequence of integers. For example, sup-

The notation [z] indicates the smallest integer greater than or to =; hence, [3.3] = 4.
Similarly, |z| denotes the greatest integer less than or equal to o |3.3] =3.



3.3 [NVERTED FILE COMPRESSION 1 1 E

pose that some term appears in eight documents of a collection—those. numbered
3, 5,20, 21, 23, 76, 77, 78. This term is'described in the inverted file by a List:

(83,5, 20,21, 23,76,77, 78),

the address of which is contained in the lexicon. More generally, the list for a term ¢
stores the number of documents f; in which the term appears and then a list of f,
document numbers:

{fﬁdlj dﬁ: . !"'-i.ﬁ}:

where d; < dgyy. Because the list of document numbers within each inverted list
is in ascending order, and all processing is sequential from the beginning of the list,
the list can be stored as an initial position followed by a list of d-gaps, the differences
dp+1 — dg. That is, the list for the term above could just as easily be stored as

(8;3,2,15,1,2,53,1,1).

No information has been lost, since the original document numbers can always be
obtained by caleulating cumulative sums of the d-gaps.

The two forms are equivalent, but it is not obvious that any saving has been
achieved. The largest d-gap in the second representation is still potentially the same
as the largest document number in the first, and so if there are IV documents in
the collection and a flat binary encoding is used to represent the gap sizes, both
methods require [log V] bits per stored pointer. Nevertheless, considering each
inverted list as a list of d-gaps, the sum of which is bounded by &V, allows improved
representation, and it is possible to code inverted lists using on average substantially
fewer than [log V| bits per pointer.

Many specific models have been proposed for describing the probability distri-
bution of d-gap sizes. The ones we will look at are listed in Table 3.5, along with
references to papers where they are described. They are grouped into two broad
classes: global methods, in which every inverted list is compressed using the same
common model, and local methods, where the compression model for each term’s
list is adjusted according to some stored parameter, usually the frequency of the
term. Local models tend to outperform global dnes in terms of compression and are
no less efficient in terms of the processing time required during decoding, though
they tend to be somewhat more complex to implement. Global models themselves
divide into parameterized and nonparameterized, the latter being fixed codes and the
former involving some parameter that can bé tailored to the actual distribution of
gap sizes. Local methods are always parameterized—otherwise there would be no
point in using-them.

Global models are generally outperformed by local ones, and the following rule
holds:

For the majority of practical purposes, the most sujtable index compression tech-
nigue is the lgcal Bernoulli method, implemented using a technique called Golomb
coding.




116

CHAPTER THREE: INDEXING

L S

i = IR 'F‘ i RN RN - T
hi g - Hlgs =
.. I'iIH (oL A it A -ﬂ-I._iq_ull.uln |.I. IL‘-'T—\J"'! ,..— i - b & et b s

Method Reference
Global methods
Nonparamsterized
Unary
Binary
oy Elias (1975); Bentley and Yao (1376)
& Elias [1975); Bentley and Yao (1976}
Parameterized
Bernoulli Golomb (1966); Gallager and Van Voorhis (1975)
Observed frequency -
Local methods
Bernoulli Wittan, Bell, and Nevill (1932);
Bookstein, Klein, and Raita (1992}
Skewed Bernoulli Teuhola (1978); Moffat and Zaobel (1992}
Hyperbolic Schuegraf (1976)
Obsarved frequency
Batched frequency Moffat and Zobel (1992)
Interpolative Moffat and Stuiver (1996}

In the subsections that follow, we work our way through these coding methods. If
you are in a hurry, you can skip to the sections on global Bernoulli models (page 119)
and local Bernoulli models (page 121), but the material on the other schemes pro-
vides a fagcinating account of the development of different coding methods. These
apply not just to index compression: they can be used for different purposes and in
other applications.

Nonparameterized models
The simplest global codes are fixed representations of the positive integers. For ex-
ample, as has already been considered, if there are V documents in the collection, a
flat binary encoding might be used, requiring [log N'| bits for each pointer.
Shannon's relationship between ideal code length 5 and symbol probability
Pr(z], namely, I; = — log Pr[z], allows the probability distribution implied by any
particular encoding method to be determined. The implicit probability model as-
sociated with a flat binary encoding is that each d-gap size in each inverted list will
be utiformly random in 1. .. IV, which is not a very accurate reflection of reality.
Thinking of a code in terms of the implied probability distribution is a good
way to assess intuitively whether it is likely to do well, and when considered in this
light, it seems unlikely that all gap sizes are equally probable. For example, common



3.3 INVERTED FPILE COMPRESSION I 1 }'

‘_1_'_..",_[.;.-3;-._;. Tt h_”:”-- ..-I SF

._|.:-'_._"".-I _.l‘---I v‘:'l st

Gap x Coding Method
Unary ¥ § Golomb

b=3 b==6

1 0 0 0 0o 000

2 10 100 igo 0 010 001

3 110 101 i0p1 011 0100

4 1110 11000 10100 100 0101

3] 11110 11001 10101 1010 0110

(i 1113110 11010 10110 io011l D111

7 1111110 1i011 10111 1100 1000

8 11111110 1110000 11000000 11010 1001

a 11133111310 1110001 11000001 11011 210100

10 111111131110 1116010 11000010 11160 10101

words are likely to have small gaps between appearances—otherwise, they could
not end up occurring frequently. Similarly, infrequent words are likely to have gaps
that are very large, although if documents are stored in chronological or some other
logical sequence, it may well be that appearances of rare terms tend to cluster and
be nonuniform throughout the collection. Thus, variable-length representations
should be considered in which small values are considered more Likely, and coded
maore gconomically, than large ones,

One such code is the unary code. In this code an integer x > liscodedasz — 1
one bits followed by a zero bit, so that the code for integer 3 is 110. The second
column of Table 3.6 shows some unary codes. Although unary coding is certainly
biased in favor of short gaps, the bias is usually far too extreme. An inverted list
coded in unary will require dy, bits, since the code for a gap of = requires « bits,
and in eadzmmtcdhstthesumnf‘thtgnp sizes 1s the document number dy, of
the last appearance of the gorresponding word. In total, an inverted file mdad in
unary might thus consume as many as IV - n bits, and this quantity will generally be
extremely large.

Leooking at probabilities, it is apparent that the unary code is equivalent to as-
gigtiing a probability of Pr{z] = 27 to gaps of length =, and this'is far too small.
However, unary coding does have its uses, and Chapters 4 and 5 describe some
situations in which it is the method of choige.

There are many codes whose implied probability distributions lie somewhere be-
tween the uniform distribution assumed by -a binary code and the binary expo-
nential decay implied by the unary code. One is the -y code, which represents the
nurnber @ as a unary code for 1 + |logz]| followed by a code of |logz| bits that
represents the value of & — 222 ip binary. The unary part specifies how many bits




118

CHAPTER THREE: INDEXING

are required to code =, and then the binary part actually codes « in that many bits.
For example, consider & = 9. Then |logz| = 3, and so 4 = 1 + 3 i coded in unary
(code 1110) followed by 1 = 9 — 8 as a three-bit binary number (code 001), which
combine to give a codeword of 1110001.

Other examples of -y codes are shown in the third column of Table 3.6. Although
they are of differing lengths, the codewords can be unambigueunsly decoded. All the
decoder has to do is first extract a unary code ¢,, and then treat the next ¢, — 1 bits
as a binary code to get a second value cy. The value z to be returned is then easily
calculated as 2%~ + . For the code 1110001, ¢, = 4, and ¢ = 1 is the value of
the next three bits, and so the value & = 9 = 2* + 1 is returned, Although it can be
outperformed by some of the methods described below, the <y code is nevertheless
much better for coding inverted file gaps than either a binary encoding or a unary
encoding, and it is just as easy to encode and decode. It represents a gap x in I; ~
1 + 2log x bits, so the implied probability of a gap of = is .

Pr[z] = 27t oy g~ (42logs) L
Dl
This gives an inverse square relationship between gap size and probability.

A more general way of looking at the -y code is to break it into two compaonents:

a unary code representing a value k + 1 relative to some vector V' = (v;) such that

k kel
Ztu <z < Em,
i=1

followed by a binary code of [log vy | bits representing the residual value

k
r=x— E v — 1.
i=1

In this framework, the =y code uses the vector
V,=1(1,2,4,8,16,...),

and z = 9 is coded with & = 3 and r = 1. Similarly, the unary ¢ode is relative
(somewhat recursively) to the vector

Vo =(1,1,1,1,1,...).

Later in this section we will refer back to this general view of coding with respect to
vectors.

A further development is the & code, in which the prefix indicating the number
of binary suffix bits is represented by the « code rather than the unary code. Taking
the same example of & = 9, the unary prefix of 1110 coding 4 is replaced by 11000,
the -y code for 4. That is, the § code for z = 9 is 11000001.

~In general, the § code for an arbitrary integer & requires

l, = 1+2 |log(1 + |logz])] + [logz] = 1 +2 |loglog2z] + |log |




3.3 INVERTED FILE COMPRESSION ] ] g

bits. Inverting this, the distribution implied is approximated by
1
2z(log )2’
Table 3.6 gives examples of § codes for various values &. Although for the small
values of & shown the § codes are longer than ~y codes, in the limit, as & becomes

large, the situation is reversed. For a valueof x such as 1,000,000, the § code is
superior, requiring 28 bits compared with the 39 bits of ~y.

Prlz] = 2—{11-2 loglog z+logx) _

Global Bernoulli model
One obvious way to parameterize the mode]l and perhaps obtain better compression
is to make use of the actual density of pointers in the inverted file. Suppose that
the total number of pointers to be stored (the quantity f in Table 3.1) is known.
Dividing this by the number of index terms, and then by the number of documents,
gives a probability of f /(N - n) that any randomly selected document contains any
randomly chosen term. The pointer occurrences can then be modeled as a Bernoulli
process with this probability, by assuming that the f pointers of the inverted file are
randomily selected from the n - N possible word-document pairs in the collection.
For example, using the information contained in Table 3.1, the prnbabil[ty that any
selected word of Bible appears in any randomly chosen verse is caleulated

w:rm,tuszm,l,m %'8,965) = 0.0025, assuming that words are scattered completely
unifrmly across verses,

Maling this assumption, the chance of a gap of size = is the probability of having
x — 1 nonoceurrences of that particular word, each of probability (1 — p), fol-
lowed by one occurrence of probability p, which is Pr[z] = (1 — p/* 'p. This is
called the gepmetric distribution and is equivalent te modeling each possible term-
decumient pair as appearing independently with probability p. If arithmetic coding
s to be used, the required cumulative prababilifies can be calculated by summing
this distribution:

E—1
low_bound = E{l —plp=1—(1—p!

i=1
high-bound=» (1—py~'p=1—(1—p)*
i=1

‘When decoding, the cumulative probability formula 1 — {1 — p)® must be inverted
to determine x and inverted exactly in order for the décoder to proceed correctly.
The inverse function = = 1 + | (log(1 — v)}/(log(1 — p}) |, where v is the current
fractional value of the arithmetic coding target, yields the decoded value z.

Thié probabilities generated by the geometric distiibution can also be represented
bya surprisingly-effective Huffiman-style code, and this turns out to be a more uséful
alternative to arithmetic cading. The following method was first described in 1966
by Selamen Golomb of the University of Southern California and is referred to as
the Golomb code (Golomb 1266). For some parameter b,-any number > 0 is coded




