ewt Compression

| prehiensible increase in storage and transmission capacities, more and more

effort has been put into using compression to increase the-amount of data

‘that can be handled. No matter how much storage space or transmission bandwidth

is available, someone always finds something to fill it with. It:seems that Parkinson’s
law applies to space as well as time.

The problem of representing information efficiently is nothing new. People have
always been interested in means for storing and communicating information, and
methods for compressing textto improve this process predate computers. For ex-
ample, the Braille code for the blind can include “contractions,” which represent
common words with two or three characters, and Morse code also “compresses”
data by using shorter representations for common characters.

Text compression on a computer invelves chafiging the répresentation of a file so
that it takes less space to store or less time to transmit, yet the originial file can be
reconstructed exactly from the compressed representation. Text compression tech-
niques are distinguished from the more gerieral data compression methods because
the original file can always be reconstructed exactly. For some types of data other  +
than text, such as sound or images, small changes, or noise, in the reconstructed
data can be tolerated because it is a digital approximation to an.analog waveform
anyway. However, with text it must be possible to reproducethe original file exactly.

Many compression methods have been invented and reinvented over the years.
These range from numerous ad hoc techniques to more principled methods that can
give very good compression. One of the earliest and best-known methods of text
compression for computer storage and telecoinmunikcations is Huffman coding.'

A paradox-of modern computer technology is that despite an‘almost incom-

1 David Huffman, then a student at M.LT., devised his celebrated coding methed in response
to a challenge from his professor, and as a result managed to.avoid having to take the final
exam for the course!

971
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This uses the same principle as Morse code: common symbols—conventionally,
characters—are coded in just a few bits, while rare ones have longer codewords.
First published in the early 1950s, Huffman-coding was regarded as one of-the best
methods of compression for several decades, until two breakthroughs in the late
1970s—Ziv-Lempel compression and arithmetic coding-—rmade higher compres-
sion rates possible. Both these ideas achieve their power through the use of adaptive
compression—a kind of dynamic coding where the input is compressed relative to
a model that is constructed from the text that has just been coded. By basing the
model on what has been seen so far, adaptive compression methods combine two
key virtues: they are able to encode in-a single pass through the input file, and they
are able to'compress a wide variety of inputs effectively rather than being fine-tuned
for one particular type of data such as English text.

Ziv-Lempel methods are adaptive compression techniques that give good com-
pression yet are generally very fast and do not require large amounts of memory.
The idea behind them was developed by two Israeli researchers, Jacob Ziv and Abra-
ham Lempel, in the late 1970s. Arithmetic coding is really an enabling technology
that makes a whole class of adaptive compression schemes feasible, rather than a
compression method in its own right. Early implementations -of character-level
Huffman coding were typically able to compress English text to about five bits per
character. Ziv-Lempel methods reduced this to féwer than four bits per character—
about half the original size. Methods based on arithmetic coding further improved
the compression to just over two bits per character. The price paid is slower com-
pression and decompression, and more memory required in the machines that do
the processing.

Some-of the best compression methods available are variants of a technique called
prediction by partial matching (PPM), which was developed in the early 1980s. PPM
relies on arithmetic ¢oding t6 obtain good compression performance. Sinice theén,
there has been little advance in the amount of compression that can be achieved,
other than some fine-tuning of the basic methods, and the development of a new
method called block sorting that gives similar performance to PPM. On the other
hand, many techniques have been discovered that improve the speed or memory
requirements of compression methods. Most of these achieve a significant reduction
in computing requirements in exchange for a slight loss of compression.

Present compression techniques give compression of about two bits per character
for general English text, depending on what you mean by “general English text.”
Evidence suggests that compression better than one bit per character is not likely to
be achieved, and in order to approach this bound, compression methods will have
to draw both on the semantic content of the text and external world knowledge.
This is discussed further in Section 2.8, _

Improvements are still being made in processor and memory utilization dur-
ing compression, although both of these resources are becoming cheaper and more
plentiful. Generally speaking, the amount of compression achieved by the PPM
method increases as more memory becomes available. It is not competitive with
Ziv-Lempel methods until 100 Kbytes or more are available, and it does not ap-
proach its best performance until 500 Kbytes to 1 Mbyte is allocated. Because of
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this requirement, when PPM was first proposed in the early 1980s: it was a labora-
tory curiesity, requiring a large minicomputer to test it. Now, most PCs have suffi-
cient comiputing power to execute it quite effectively. Furthermore, processor speed
is currently-improving at a faster rate than disk speeds and capacities. Since com-
pression decreases the demand on:storage'devices:at the expense of processing, it is
becoming more economical to:store data in a compressed form than uncompressed.

Most text compression methods can be placed in one of two classes: symbol-
wise methods and dictionary methods. Symbolwise methods work by estimating
the probabilities of symbols (often characters), coding one symbol at a time, using
shorter codewords for the most likely symbolsin the'same way that Morse code does.
Dictionary methods achieve compression by:replacing words and other fragments
of ‘text with: an index to an entry in a “dictionary.” The Braille code is a dictionary
method since special codes are used to.represent whole words.

Symbolwise methods are usually based on either Huffman coding.or arithmetic
coding, and they differ mainly in how they estimate probabilities for symbols. The
more accurately these estimates are made, the greater the compression that can be
dchijeved. To obtain good compression, the probability estimate is usually based
on the context in which a symbol occurs. The business of estimating probabilities is
called modeling, and good modeling is crucial to obtaining good compression. Con-
verting the:probabilities into a bitstream for transmission is:called coding. Coding is
well understood and can be performed very effectively using either Huffman coding
orarithmetic coding. Modeling is more of an art, and there does not appear to be
any sinigle “best” method.

Dictionary methods generally use quite simple representations to code references
to entries in the dictionary. They obtain compression by representing several sym-
bols as-one output codeword. This contrasts with.symbolwise methods, which rely
on generating good probability estimates for a symbol, since the length of the out-
put codeword is what determines compression performance; for this reason, sym-
bolwise methods are sometimes referred to as statistical methods, since they rely on
estimating accurate statistics. The most significant dictionary methoeds are based
on Ziv-Lempel coding, which uses the idea of replacing strings. of characters with a
reference to a previous occurrence of the string. This approach is adaptive, and it is
effective because most characters can be coded as part of a string that has occurred
earlier in the text. Compression is achieved if the reference, or pointer, is stored
in fewer bits than the string it replaces. There are many variations onr Ziv-Lempel
coding, with different pointer representations and different rules governing which
sttinigs ¢an be referenced.

The key distinction between symbolwise and dictionary methods is that sym-
bolwise methods generally base the coding of a symbol on the context in which it
occurs, wheéreas dictionary methods group symbols together, creating a kind of im-
plicit context. Hybrid schemes are possible, in which a group of symbols is coded
together and the coding is based on the context in which the group occurs. This
does not necessarily provide better compression than symbolwise methods, but it
can improve the speed of compression.
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The following sections describe in more detail the main compression techniques
introduced above. We look at the modeling and coding components separately.
First the general idea of modeling is introduced, and then a particularly powerful
class of models, adaptive models, is discussed. Before locking at how models are
used in practice, we describe the two principal methods of coding used to repre-
sent symbols based on the probability distributions generated by models. Bach of
these descriptions begins with an overview of what the method is and how it works,
and each is followed by a much more detailed description of how the coding can be
implemented efficiently. These details are included becausg, although they lead to
extremely effective implementations, they are not obvious-and are hard to come by
in the literature; they should be skipped on a first reading. The two main classes of
models, symbolwise and dictionary, are then examined. There is a section that deals
with the problem of providing random-access to compressed text, which i§ impor-
tant for full-text retrieval systems. Finally; the practical performance of various text
compression methods is discussed.

Models

Compiessiont methods obtain high compression by forming good models of the data
that is to be coded. The function of a model is to predict-symbols, which amounts
to providing a probability distribution for the next symbol that is to be coded. For
example, during the encoding of a text, the “prediction” for the next symbol might
include a probability of 2 percent for the letter 4, based on its relative frequency
in-a sample of text. The set of all possible symbols is called the alphabet, and the
probability distribution provides an estimated probability for each symbol in the
alphabet.

The model provides this probability distribution to the encoder, which uses it
to encode the symbol that actually occurs. The decoder uses an identical model
together with the output of the encoder to find out what the encoded symbol was.
Figure 2.1 illustrates the whole process..

The number of bits in which a symbol, s, should be coded is called the infor-
mation coritent of the symbol. The information content, I(s), is directly related to
the symbel’s predicted probability, Pr[s], by the function I(s) = —logPr[s] bits.2
For example, to transmit a symbol representing the fact that the outcome of a fair
‘coin toss was “heads,” the best an-encoder can do is to use —log(1/2) = 1 bit. The
average amount of information per symbol over the whole alphabetis known as the
entropy of the probability distribution, denoted by :H. It i$.given by

H =Y Prls]-I(s)= ) —Pr[s] - logPr[s].

5

2 Alllogarithms in this book are to base two unless indicated otherwise.
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Figure21 Usinga model to compress text.

Provided that the symbols appear independently and with the assumed probabili-
ties, H is a lower bound on compression, measured in bits per symbol, that can be
achieved by any coding method. This is the celebrated source coding theorem of
Claude Shannon, a Bell Labs scientist who single-handedly developed the field of
information theory, and provides a bound that we can strive to attain but can never
beat (Shannon 1948).

Huffman coding often achieves compression performance close to the entropy,
but can, in some cases, be very inefficient. One such sjtuation is when very good
predictions are being made, in which case prebabilities close to one are generated.
This is exactly when entropy is minimized and “compressibility” is maximized and
is what we hope to achieve when designing data compression systems; hence it is
unfortunate that Huffman coding is inefficient in this situation. By way of contrast,
the more recent method of arithmetic coding-comes arbitrarily close to the entropy
even when probabilities are close to one and the-entropy of the probability distri-
bution is close to zero. These two methods are discussed in Sections 2.3 and 2.4.
What is impertant for the mode] is to provide a probability distribution that makes
the probability of the symbol that actually occurs:as high as possible. The above
relationship means that a low probability results in a high entropy and vice versa.
In the extreme case when Pr[s] = 1, only one symbol s is possible; and I(s) = 0
indicates that zero bits are needed to transmit it. This follows intuitively: if a symbol
is.certain to occur; then it conveys no information and need not be transmitted. To
paraphrase a well-worn truism, I(death) = 0 and I (taxes) = 0.

Conversely, I becomes arbitrarily large as Pr[s] approaches:zero, and a symbol
with zero probability cannot be coded. In practice, all symbols must be given a
nonzero probability because a zero-probability symbol could not be ¢oded if, by
unlucky chance, it did occur. Moreover, it is not possible:for the encoder to peek at
the next symbol and artificially boost its probability just for this step; the encoder
and decoder must use the same probability distribution, and the decoder clearly
cannot look ahead at symbols that have not yet been decoded. Hence the model
must take inte account all the informatien.available to the decoder and then gamble
on what the next symbol will be. The best compression is obtained when the model
is backing the symbols that actually occur.
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a -
2
1 1
®3 % > 100
2 100

Figure 22 A simple finite-state model.

At the beginning of this section the probability of a u was estimated as 2 percent.
This corresponds to an information content of 5.6 bits; that is, if it does happen to
be the next symbol, u should be transmitted in 5.6 bits. Nothing has been said yet
about how the probabilities should be estimated. It turns out that predictions can
usually be improved by taking account of the previous symbol. If a ¢ has just been
encountered, the probability of 4 may jump to 95 percent, based on how often ¢
is followed by u in a sample of text. This gives a much lower information content
foru of 0.074 bits. Of course, other symbeols must have lower probabilities and
therefore longer ¢odewords to compensate, and if the prediction is incorrect (as in
Iraq or Qantas), the price paid is extra bits in the output. But averaged over many
appearances of the context g, the number ofbits required to decode each appearance
of u can be expected to decrease.

Models that take a few immediately preceding symbols into account to make a
prediction are called finite-context models of order m, where m is the number of
previous symbols used to make the prediction. Such models are effective in a vari-
ety of compression applications, and the best text compression methods known are
based on this appreach.

Other approaches to modeling are possible, and although potentially more pow-
erful, they have not proved as popular as finite-context models. One-approach is
to use a finite-state model, in which each state of a finite-state machine stores a dif-
ferent probability distribution for the next symbol. Figure 2.2 shows such a model.
This particular model is for strings in which the symbol a is expected to eccur in
pairs. Encoding starts in state 1, where a and b are predicted with equal probability,
1/2. Using the formula above, we find that each should be coded in one bit (not
surprisingly). If a bis received, the encoder stays in §tate 1 and uses the same proba-
bility distribution for the next'symbol. However, if an g is received, it moves to state
2, where the probability of a b is now only 1/100 and requires 6.6 bits to be encoded,
as opposed to 0.014 bits to encode an a. This model captures behavior that cannot
be represented accurately by a finite-context model because a state model is able to
keep track of whether an odd or even number of as have occurréd consecutively.
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It is important that the decoder works with an identical probability distribution
in order to decode symbols correctly. This is achieved by ensuring that it has an
identical model to the encoder’s and that it starts in the same state as the encoder.
The encoder transmits the symbol and then follows a transition; the decoder recov-
ers the symbol and can then follow the same transition, so it is now in the same state
as the encoder and will use the same probability distribution for the next symbol.
Error-free transmission is assumed, for if any errors were to occur, the encoder and
decoder would lose synchronization, with potentially catastrophic results.

If the text being compressed is in a-formal language such as C or Java, a grammar
can be used to model the language. Thetext is represented by sending the sequence
of productions, or rules, that would generate:the text from the grammar. By esti-
mating the probability of a particular production occurring, more frequently used
productions can be coded in fewer bits, thus achieving good compression. It is hard
to obtain a formal grammar for texts written in natural languages, so to.date, gram-
mar models have been applied only to artificial languages such as programming
languages.

Adaptive models

There are many ways to estimate the probabilities in 2 model. We could conceivably
guess suitable probabilities when setting up a compression system and use the same
distribution for all input texts. However; it is easier, and more accurate, to estimate
the probabilities from a sample of the kind of text that is being encoded.

The method that always uses the same model regardless of what text is being
coded is called static modeling. Clearly, this:runs the risk of receiving an input that
is .quite different from the one for which the model was set up—for example, a
model for the English language will probably not perform well with a file of num-
bers and vice versa. One example of such-a mismatch occurs when numeric data
is transmitted using Morse code. Because the digits are all relatively rare in normal
text, they are assigned long codewords, and so transmission times increase if docu-
menis such as financial statements are sent. Another example is shown in Figure 2.3,
which is'the opening sentence of a rather contorted book—Gadsby by E. V. Wright,
published in 1939. You may care to try‘to work out what is unusual about the text
before reading on. In fact, the reason that thie text reads strarigely is that it does not
contain a single occurrence of what is usually the most common letter in normal
English text—e. A static mode] designed for normal English text -would perform
poorly inthis case.

One solution is to generate a model specifically for each file that is to be com-
pressed. An initial pass is made through the file to estimate symbol probabilities,
and these are transmitted to the decoder before transmitting the-encoded symbols.
This approach is called semi-static modeling. (Semi-stati¢c modeling has also been
réferred to-as semi-adaptive modeling, but we prefer the term: “semi-static” because
the implementation of these models has niore in common with static models than
adaptive ones.) Semi-static modeling has the advantage that the model is invariably
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If Youth, throughout all history, had had a champion to stand

up for it; to show a doubting world that a child can think;

and, possibly, do it practically; you wouldn’t constantly run
across folks today who claim that ‘‘a child don't kmow anything.’’

Figure 23 The first sentence of an unusual book.

"I never heerd a skilful old married feller of twenty
years' standing pipe ‘‘my wife’’ in a more used note
than ‘a did," said Jacocb Smallbury. "It migh

Figure 24 Sample text.

better suited to the input than a static one, but the penalty paid is having to transmit
the model first, as well as the preliminary pass over the data to accumulate symbol
probabilities. In some situations, such as interactive data communications, it may
be impractical to make two passes over the data, and for complex models the cost of
pretransmitting the model might be a considerable overhead.

Adaptive modeling is an elegant solution to these problems. An adaptive model
begins with a bland probability distribution and gradually alters it as more symbols
are encountered. As an example, consider an adaptive model that uses the previ-
ously encoded part of a string as a sample to estimate probabilities. We will use
a model that operates character by character, with no context used to predict the
next symbol—in other words, each character of the input is treated as an indepen-
dent symbol. Technically, this is called a zero-order (equivalently, order-0) model: in
full, an adaptive, zero-order, character-level model. Now consider the text of Fig-
ure 2.4, excerpted from Thomas Hardy’s book Far from the Madding Crowd. It is
from the final scene in the book, in which a group is jesting with a néwlywed cou-
ple. The archaic language in this excerpt is another reminder of the desirability of
using adaptive codes.

The zero-order probability that the next character after the excerpt is ¢ is esti-
mated to be 49,983 / 768,078 = 6.5 percént, since in the previous text, 49,983 of
the 768,078 characters were ts. Using the same system, an € has probability 9.4
percent, and an z has probability 0.11 percent. The model provides this-estimated
probability distribution to an encoder such as an arithmetic coder (see Section 2.4).
In fact, the next character is a ¢, which an arithmetic coder represents in about
—1og 0.065 = 3.94 bits. The decoder is able to generate the'same model since it has
just decoded all the characters up to (but not including) the £. It makes the same
probability estimates as the encoder and so is able to decode the ¢ correctly when it
is received. In practice, the encoder and decoder do not extractthe statistics from
the prior text each time they are needed, but instéad keéep a ranning tally of the
character counts.
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Some details of the adaptive:system need to be.considered. First, the system must
avoid the situation in which a character is predicted with a:probability of zero. In
the example:above; the character Z has never occurred in the text up to this point
and would be predicted with zero probability. Such events cannot be coded, yet
they might occur; this is referred to as the zero-frequency problem (Witten and Bell
1991). The text It mighZ is very unlikely, but'it can occur. If nowhere else, it has just
occurred in this book.

There are several ways to solve the zero-frequency problem. One is to allow one
extra count, which is divided evenly among anysymbols that havenot been observed
in the input. In the Hardy example, the total count would be increased by one
to 768,079. A total of 82 different characters have been seen so far, so 46 of the
128 ASCII characters have not occurred by thispoint. Each of these gets 1/46 of
the spare proportion of 1/768,079. Thus, a Z character is given a probability of
1/(46 x 768,079) = 1/35,331,634, corresponding to 25.07 bits in the output.

Another possibility is to artificially inflate the count of every character in the
alphabet by one, thereby ensuring that none has a zero frequency. This is equivalent
to starting the model assuming that we have already processed a stretch of text in
which each possible character appeared exactly once. In the above example, allowing
for the Asc1I alphabet of 128 characters, 128 would be added to the total number of
characters seen so far, giving Z a relative frequency of 1/768,206 = 0.00013 percent,
corresponding to 19.6 bits in the output.

Several other solutions to the zero-frequency problem are possible, although in
general none offers a particularly significant compression performance advantage
over the others. The problem is mostacute near the beginning of a text where there
are few, if any, samples on which to base estimates; so at face value the choice of
method is more critical for small texts than for large ones. The method is also
important for models that use very many different contexts because many of the
contexts will be used only a few-times.

The example above used a zero-order model, in which each character’s probabil-
ity was estimated without regard to context. For a higher-order model, such as a
first-otder model, the probability is estimated by how often that character has oc-
curred in the current context. For example, thie excerpt used above to illustrate a
zero-order model was coding the letter ¢ in the context of the phrase It migh, but
in reality made no use at all of the characters comprising that phrase. On the other
hand, a first-order model would use the final / as a context with which to condition
the probability estimates. The letter  has occurred 37,525 times in the prior text,
and 1,133 of these times it was followed by a ¢. Ignoring for a moment the zero-
frequency problem, the probability of a ¢ occurring after an h can be estimated to be
1,133/37,525 = 3.02 percent, which-would have it coded in 5.05 bits. This is actually
worse than the zero-order estimate because the letter ¢ is rare in this context—an h
is much more likely to be followed by an €, and so here is an example where use of
more information caused inferior compression. On the other hand, a second-order
model does substantially better. It uses the relative frequency that the context gh is
followed by-a t, which is 1,129 times out of 1,754, or'64.4 percent, and results in the
t being coded in just 0.636 bits.
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So far we have suggested how the probabilities in a model can be adapted, but
it is also possible—and effective—to adapt-a model’s structure. In a finite-context
model, the structure determines which contexts are used; in a finite-state model, the
structure is the set of states and transitions available. Adaptation usually involves
adding more detail to an area of the model that is heavily used. For example, if the
first-order context h is being used frequently, it might be worthwhile to add more
specific contexts, such as the second-order contexts ¢k and sh. So long:as the encoder
and decoder use the same rules for adding contexts, and the decision to add contexts
is based on the previously encoded text only, they will remain synchronized.

Adaptive modeling is a powerful tool for compression and is the basis of many
successful methods. It is robust, reliable, and flexible. The principal disadvantage is
that it is not suitable for random access to files—a text:can be decoded only from the
beginning; since the model used for coding a particular part of the text is determined
from all the preceding text. Hence, adaptive modeling is ideal for general-purpose
compression utilities but is not necessarily appropriate for full-text retrieval. This
point will be taken up again in Section 2.7.

Huffman coding

Coding is the task of determining the output representation of a symbol, based on a
probability distribution supplied by a model. The general idea is that a coder should
output short codewords for likely symbols and long codewords for rare ones. There
are theoretical limits on how short the average length of a codeword can be for a
given probability distribution, and much effort has been put into finding coders
that achieve this limit. Another important consideration is the speed of the coder—
a reasonable amount of computation is required to generate near-optimal codes. If
speed is important, we might use a coder that sacrifices compression performance to
reduce the amount of effort required. For example; if there are 256 possible symbols
to be coded, we might use a coder that represents the 15 most probable symbols in
4 bits and the remainder in 12 bits. The extreme of this sort of approximation is just
to c¢ode all symbols in 8 bits. It gives no ¢compression but is very fast. In fact, many
dictionary-based methods use a simple coder like this, with the implicit assumption
that the symbols (which in this kind of model are actually groups of characters) are
equally likely.

In contrast to dictionary methods, symbolwise schemes depend heavily on a good
coder to achieve compression, and most research on coders has been performed
with symbolwise methods in mind. This section and the next describe the two main
methods of coding: Huffinan coding and arithmetic coding. Huffman coding tends
to be faster than arithmetic coding, but arithmetic coding is capable of yielding
compression that is close to optimal given the probability distribution supplied by
the model. For each of these two types of coder, we first look at the principle by
which they achieve compression and then give details of how they are implemented
in practice. We begin with Huffman coding (Huffman 1952).
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Symbel Codeword Probability

a 0000 0.05
b 0001 0.05
c 001 0.1
d o1 0.2
e 10 0.3
f 110 0.2
g 111 0.1
0 1
0 1

L30b08:

Figure 25 A Huffman code tree.

Table 2.1 shows codewords for the seven-symbol alphabet a, b, ¢, d, e, f, and g.
A phrase is coded by replacing each of its symbols with the codeword given by the
table. For example, the phrase eefggfed is coded as 10101101111111101001.
Decoding is performed from left to right. The input to the decoder begins with
10.... , and the only codeword that begins with this is the-one for e, which is there-
fore taken as the first symbol. Decoding then proceeds with the remainder of the
string, 1011011 ... .

Figure 2.5 shows a tree that can be used for decoding. The tree is traversed by
starting at the root and following the branch corresponding to the next bit in the
coded text. The path from the root to each symbol (at a leaf) corresponds to the
codewords in Table 2.1. This type-oficode is-called-a prefix code—or more accurately,
a prefix-free code—because no-codeword isthe prefix of another symbol’s codeword.
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If that were not the case, the decoding tree would have symbols at internal nodes,
which leads t6 ambiguity in-decoding.

The code in Table 2.1 was produced by the technique of Huffman coding, which
generates codewords for a set of symbols, given some probability distribution for
the symbols. The codewords generated yield the best compression possible for a
prefix-free code for the given probability distribution.

Huffman’s algorithm works by constructing the decoding tree from the bottom
up. For the example symbol set, with the:probabilities shown in Table 2.1, it starts by
creating for each symbol a leaf node containinig the symbol and its probability (Fig-
ure 2.6a). Then the two nodes with the smallest probabilities become siblings under
a parent node, which is given a probability equal to the sum of its two children’s
probabilities (Figure 2.6b).

The combining operation is repeated, choosing the two nodes with the smallest
probabilities and ignoring nodes that are already children. For example, at the next
step the new node formed by combining a and b is joined with the node for ¢ to
make a new node with probability p = 0.2. The process continues until there is
only one node without a parent, which becomes the root of the decoding tree (Fig-
ure 2.6¢). The two branches from every nonleaf node are then labeled 0 and 1 (the
order is not important) to form the tree.

Figure 2.7 shows the general algorithm for constructing a Huffman code. The
algorithm is expressed in terms of a set T" that recursively contains other sets, with
each subset corresponding to a node in the tree. When the algorithm terminates, 7"
contains one set, which itself contains two sets—the descriptions of the two:subtrees
of the root. A more detailed description of how Huffman coding is implemented
appears later in this section.

Huffman coding is generally fast for both encoding and decoding, provided that
the probability distribution is static. There are also algorithms for adaptive Huff-
man coding, where localized adjustments are made to the tree to maintain the cor-
rect structure as the probabilities change (Gallager 1978; Cormack and Horspool
1984; Knuth 1985; Vitter 1989). However, the better adaptive symbolwise models
usually use many different probability distributions at the same time, with the ap-
propriate distribution being chosen depending on the context of the symbol being
¢oded. Huffman coding requires that multiple trees be maintained in this situatjon,
whiich ¢an become démanding on memory. The alternative is for-each tree to be re-
generated whenever it is required, but this is:slow. Hence, for adaptive compression,
arithmetic coding (described in the next section) is-usually preferable, as its speed is
comparable to that of adaptive Huffman coding, yet it requires less memory and is
able to achieve better compression—particularly when high-probability events are
being coded.

Nevertheless, Huffman coding turns out to be very useful for some applications.
For example, when coupled with a word-based (rather than charactér-based) model,
it gives good compression, and its speed and ease of random access make it more
attractive than arithmetic coding. Furthermore, there is a slightly different repre-
sentation of a Huffman code that decodes very efficiently despite the extremely large
models that might arise with a word-based model. This representation is called the
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Figure 26 Constructing the Huffman tree: (a) leaf nodes; (b) combining nodes; (c) the
finished Huffman tree.
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To calculate a Huffman code,
1. SetT' < aset of n singleton sets, each containing one of the n symbols and
its probability.
2. Repeatn — 1 times
(a) Setm;and m, < the two subsets of least probability in T'.
(b) Replace m, and m; with a set {m,, m,} whose probability is the sum
of that of m, and m,.

3. T now contains only one item, which corresponds to the root of a Huffman
tree; the length of the codeword for each symbol is given by the number of
times it was joined with another set.

Figure 27 Assigning a Huffman code.

canonical Huffman code (Hirschberg and Lelewer 1990). It uses the same codeword
lengths as a Huffman code, but imposes a particular choice on the codeword bits.

Table 2.2 shows part of a canonical Huffman code for the Hardy book, where the
alphabet has been chosen to be the words that appear in the book. The frequency
of each word has been counted, and, as in the conventional Huffman method, the
codewords have been chosen to minimize the size of the compressed file for this
model. In the terminology introduced on page 28, this is a static zero-order word-
level model. The codewords are shown in decreasing order of length, and therefore
in increasing order of word frequency—except that within each block of codes of
the same length, words are ordered alphabetically rather than by frequency. The list
begins with the thousands of words (and numbers) that appear only once. Words
that occur only once in a text are called hapax legomena, a term that we will meet
again on several occasions. Many of the words, such as yopur and youmg, occar
only once because they are typographical errors. The numbers 100, 101, ... come
from page numbers that are recorded in the file. (They start at 100 rather than a
smaller number because words of the same codeword length are sorted in lexical—
not numerical—order, so that 90, 91, . . . appear later in the sequence.)

The table shows the codewords sorted from longest to shortest. An important
feature of a canonical code like this is that when the codewords are sorted in lexical
order—that is, when they are in the sequence they would be in if they were entries
in a dictionary—they are also in order from the longest to the shortest codeword.
On the other hand the code of Table 2.1 does not exhibit this property: although the
codewords are ordered lexicographically, this-does not result in them being sorted
by length.

The key to using canonical codes efficiently is to notice that a word’s encoding
can be determined quickly from the length of its codeword, how far through the list
it is, and the codeword for the first word of that length. For example, the word said
is the 10th seven-bit codeword. Given this information and that the first seven-bit
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Symbol Codewaord

Length Bits
100 17 00000000000000000
101 17 00000000000000001
102 17 000000000000000610
103 17 00000006000000011
yopur 17 00001101010100100
youmg 17 00001101010100101
youthful 17 00001101010100110
zeed 17 00001101016100111
zephyr 17 00001101010101000
zigzag 17 00001101010101001
11th 16 0000110101010101
120 16 0000110101010110
were 8 10100110
which 8 10100111
as 7 1010100
at 7 1010101
for 7 1010110
had 7 1010111
he 7 1011000
her 7 1011001
his 7 1011010
it 7 1011011
s 7 1011100
said 7 1011101
she 7 1011110
that 7 1011111
with 7 1100000
you 7 1100001
| 6 110001
in 6 110010
was 6 110011
a 5 11010
and 5 11011
of 5 11100
to 5 11101
the 4 1111
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codeword is 1010100, we can obtain the codeword for said by incrementing 1010100
nine times, or, more efficiently, adding nine to-its bimary representation.

Canonical codes come into their own for decoding because it is not necessary to
store a decode tree. All that is required is a list of the symbols ordered according to
the lexical order of the codewords, plus an array storing the first codeword of each
distinct length. For example, with the code in Table 2.2, if the upcoming bits to be
decoded are 1100000101 ... , then the decoder will quickly determine that the next
codeword must come after the first seven-bit word, as (1010100), and before the
first six-bit word, I (110001). Therefore, the next seven bits are read (1100000), and
the difference of this binary value from the first seven-bit value is calculated. In this
example, the difference is 12, which means that the word is 12 positions after the
word as in the list, so it must be with.

Compared with using a decoding tree, canonical coding is very direct. An explicit
decode tree of the kind illustrated in Figure 2.5 requires a lot of space:and is accessed
randomly. With the canonical representation, only the first codeword of each length
is accessed, plus one access to a lookup table to determine what the word is. Storing
the first codeword of each length takes negligible space—the example in Table 2.2
has just 14 different lengths, ranging from 4 to:17. The list of symbols in lexical order
of their codewords replaces the randemly accessed Huffman tree and is consulted
only once for each symbol decoded.

Canonical Huffman codes

‘We now take a more detailed look at the implementation of a Huffman encoder and
decoder pair. These details are quite intricate and can be skipped on the first reading,
which is why this section is marked “optional” with a gray bar in the margin.

A canonical code is carefully structured to allow extremely fast decoding, with a
memory requirement of only a few bytes per alphabet symbol. The codeis called
“canonical” (standardized) because much of the nondeterminism of normal Huff-
man codes is avoided. For example, in normal construction of the Huffman tree,
some convention such as using a 0 bit to indicate a left branch and a 1 bit to in-
dicate a right is assumed, and different choices lead to different, but equally valid,
codeword assignments.

It is easiest to show this effect with an example. Consider the information shown
in Table 2.3. The second column shows the observed symbol frequencies for the
symbols in column 1. Three possible prefix-free codes for these symbols are shown
in the columns headed Code 1, Code 2, and Code 3. Of course, in word-based codes
there would be thousands of symbols instead of the six shown here, with frequencies
ranging from 1 for hapax legomena to many thousands for common words (like
the)—just as in Table 2.2.

The derivation of the first two codes in Table 2.3 is exactly as described in Fig-
ure 2.6. At each step, the two smallest items are extracted and coalesced, with one
of the items having all its codewords prefixed by a 0 bit and the symibeols represented
by the other item being prefixed by a 1 bit. To obtain Code 1, for example, the side-
ways tree in Figure 2.8 was used, in which the convention is adopted that the upper
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Symbol  Count Code1 Code2 Code3

a 10 000 111 000
b 1 001 110 001
c 12 100 011 010
d 13 101 010 o1l
e 22 01 10 10
f 23 11 0o 11

Count Codeword
0 : : 10 000
L 11 001
0 0 12 100
25 1

13 101

1 1
22 01

23 11

Figure 28 Constructing a Huffman code; “upper” edge is assigned a 0 bit.

branches are consistently assigned the 0 bit and the lower branches the 1 bit.

There is no particular requirement for this labeling convention, and Code 2 of
Table 2.3 is formed by adopting the opposite rule, that upper edges are assigned 1
bits. In fact, this choice can be made at each of the internal nodes of the tree. A
Huffman tree for an alphabet of n symbols has » — 1 internal nodes—for example,
the tree of Figure 2.8 has five—and so there are 271 equivalent, equally optimal,
Huffman codes. Table 2.3 lists Code 1 and Code 2; to be-exhaustive, it:should really
list Codes 1 through 32.

Code 3 in Table 2.3 is a little different. It is not just another relabeling of the
edges in the Huffman tree. Although it is certainly an optimal prefix-free code for
the symbols listed—it must be, because all of the codewords are the same length
as they are in Codes 1 and 2—there is in fact no edge relabeling that will derive it.
Strictly speaking, Code 3 is not a Huffman code at all because Huffman’s algorithm
is incapable of generating it, since it will always produce a tree with the:shape of the
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one in Figure 2.8. Rather than be pedantic; let us sidestep. the issue of exactly what
Huffman intended and define a Huffman code to be “any prefix-free assignment of
codewords where the length of each code is equal to the depth of that symbél in a
Huffman tree” That is, Huffman’s algorithm should be used to calculate the length
of each codeword, and then some bit pattern of this length can be assigned as the
code.

Consider again Code 3 in Table 2.3. All the three-bit codewords form a neat
sequence and the two-bit codewords likewise. Interpreted as integers, the three-bit
codes are 0, 1, 2, and 3, and the two-bit codes are 2 and 3. More important, the
first two bits of the three-bit codewords:are all 00 or 01, that is, integer 0 or 1. This
pattern makes decoding very easy. First, two bits from the input'stream are read and
interpreted as an integer. If their value is 2 or 3, a codeword has been identified,
and the corresponding symbol can be output. If their value is 0 or 1, a third bit is
appended, and the three bits are again interpreted as an integer and used to index a
table to identify the correct symbol.

On such a small example this may not seem much of an: improvement over the
storage of a detailed code tree with left and right pointers and so on. However, an
explicit decode tree raises two problems. First, it can consurne a great deal of space.
A Huffman tree for n symbols requires n leaf nodes and n — 1 internal nodes. Each
leaf stores a pointer to a symbol and the information that it is in fact a leaf, and each
internal node must store two pointers. In total, this structure requires around 4n
words, and for an alphabet of one million symbols, 16 Mbytes of memory might be
consumed—not even including the strings that are the actual symbols.

The second problem is that traversing a tree from root to leaf involves a lot of
pointer chasing through memory, and the nodes accessed show little locality of
reference. Fach bit of compressed data that is decoded will require a new page
of memory to be referenced, causing either page faults or—at best—numerous.cache
misses.

On theother hand, use of the canonical code means that decoding can be accom-
plished in a little over n words of memory;and with one random access per symbol
rather than one random access per bit. This means that decompression is faster and
requires substantially less memory than if an explicit code tree were used.

Let us now describe the use‘of a canonical code in detail. First, Huffman’s algo-
rithm is used to calculate, for each symbol 4 in the alphabet, the desired length I; of
the corresponding codeword. Exactly how this computation should be performed
is'described in the following subsection, “Computing Huffman code lengths.” Next,
the fumber of codewords of each possible length from 1 to maxlength is.counted by
passing over the set [; and counting the frequency of each value. Thisallows the set
of possible codes to be partitioned into groups, where each code within the group
has the same length and the codewords form consecutive integers. For example,
suppose thete are to be four codewords of five bits, one of three bits, and thtee of
two bits. At the completion of the partitioning step the five-bit codes will be 60000
througl to 00011, the three-bit code will be 001, and the two-bit codes will be 01,
10, and 11. Finally, once the starting codeword for each length has been decided,
it is straightforward to process the symbols one by one, simply assigning the next
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To.assign a canonical Huffman code to a set of symbeols, supposing that symbol 7 is
to be assigned a code of ; bits, that no codéword is Tonger than maxlength,
and that there are n distinét symbols,

1. For!l < 1 to maxlength do
Set numl[l] + 0.
Fori + ltondo
Set numl[l;] « numl{l;] + 1.
Number of codes of length [ is stored in numi[l].
2. Set firstcode[maxlength] < 0.
For [ + maxlength — 1 downto 1 do
Set firstcode[l] < (firstcode[l + 1] + numl[l + 1]) /2.
Integer for first code of length [ is stored in firstcode[l].
3. Forl < 1to maxlength do
Set nextcode[l] + firstcode[l].
4. Fori < lton do
(a) Set codeword[i] < nextcode[l;].
(b) Set symbol[l;, nextcode[l;] — firstcode[l;]1] + 1.
(c) Set nextcode[l;] < nextcode[l;] + 1.
The rightmost /; bits of the integer codeword[¢] are the code for symbol 2.

Figure 29 Assigning a canonical Huffman code.

codeword of that length. This process is described in detail by the algorithm of Fig-
ure 2.9, in which nextcode[l] is an integer storing the next codeword of length [ that
should be assigned. The array symbol is used during the decoding process, described
below.

An example of the application of this algorithm is shown for a small collection
of symbols in Table 2.4. The last two rows show the values calculated for the arrays
numl, the number of codewords of each possible length, and firstcode, the integer
value corresponding to the first codeword of each length. These values are used
to assign the integer codes shown in the third column. The fourth column shows
the corresponding bit patterns when the rightmost I; bits of codeword[:] ate taken.
These:are the prefix-free codes that are generated.

The right-hand part of Table 2.4 shows the integer values that result when the
first [ bits of each codeword are extracted and considered as an-integer, for 1 <[ <
5 = maxlength. Note that all the two-bit prefixes for codewords longer than two bits
are less than firstcode[2], all the three-bit prefixes for codewords longer than three
bits are less than firstcode[3], and all thefour-bit prefixes for codewords longer than
four bits are less than firstcode[4]. Indeed, all the five-bit prefixes for codewords
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Symbol Code length codewordli] Bit pattern 1-hit prefix
i I; 1 2 3 4 5
1 2 1 01 0 1
2 5 0 00000 0 1} 0 0 0
3 5 1 00001 0 0 0 0 1
4 3 1 001 0 0 1
5 2 2 10 1 2
6 5 2 00010 0 0 0 1 2
7 5 3 00011 0 0 0 1 3
8 2 3 11 1 3
numllfl] 0 3 1 0 4
firstcodell] 2 1 1 2 0

To decode a symbol represented in a canonical Huffman code,
1. Setw <— nextinputbit().
Seti «+ 1.
2. While v < firstcode[l] do
(a) Setw ¢ 2% v + nextinputbit().
() Setl+1+1.
Integer v is now a legitimate code of { bits.
3. Return symbol[l,v — firstcode[l]].
This is the index of the decoded symbol.

Figure 210 Decoding using a canonical Huffman code.

longer than five bits are less than firstcode[5] too. (There are none of these in the
example because no codewords:are longer than five bits.)

This observation is the heart of the decoding process, and it is the reason why
canonical codes are of such interest. Figure2.10 shows how the decoding algorithm
makes use of these relationships. The function nextinputbit() returns an integer 0
or 1, depending on the next input bit from the comptessed stream that is being
decoded. The array symbol is the mapping established by the code construction
process of Figure 2.9. The space required by this:array is discussed below.

For example, suppose the codewords of Table 2.4 are being used and that the bit-
stream 00110 . . . isto be decoded. Variable » in Figure 2.10 is initialized to 0, which
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as an integer is less than firsicode[1] = 2, so a second bit is appended to give v the
value 00. This in turn is less than firstcode[2], and a third bit is added. This gives
v the value 001 or integer 1, and now the test'guarding the while loop (step 2) fails,
since firstcode[3] = 1. Now a code has been parsed, and symbol|3, 0] is output—the
correct symbol number 4. At the next decoding step v is initialized to 1, and the
process repeats to form the code 10, which is identified as being symbol[2, 1], or
symbol 5.

How much memory space is required during decoding? Surprisingly, the only
large structure is the array symbol. The three other arrays—only one of which is
required for decoding—require one word of memory for each possible code length,
1...maxlength. For most implementations, a convenient value is maxlength = 32,
so that integers can be used to store the codewords. (The restrictions imposed by
this decision are discussed in Section 9.1, as is‘a mechanism for guaranteeing that
no codeword exceeds such a limit.) Thus, only 3 X 32 = 96 words are required
by the three small arrays together, irrespective of the size of the alphabet. Fig-
ures 2.9 and 2.10 use the array symbol asthough it were two-dimensional. However,
it can be implemented as a single one-dimensional array, in which the {th compo-
nent is exactly numl[l] words long. The amount of space requiréd for this array
is 377%™ yumi[l] = n, which is the number of symbols. Thus, the mapping
stored in symbol can be achieved in n words. In total, about n + 100 words of stor-
age are required during decoding in addition to the space required to-describe the n
symbols. Note that it is not even necessary to store the length of symbol 7 since it is
implicit in the sequential arrangement of codewords.

The implementation described in Figure 2.10 is also fast. One array lookup, one
addition, and one integer comparison occur for each input bit, and the array lookup
is to consecutive elements in a small array of just 32 words. If the processor is using
memory caching, there will be no cache misses during the execution of this loop,
and the logic is almost identical to that required to decode binary numbers of arbi-
trary length. Indeed, if the minimum codeword length is greater than one, there is
no need to commence the linear search (step 2 of Figure 2.10) at one—it can instead
be started at the minimum codeword length, with variable v assigned that number
of input bits in a single operation. In this way bihary decoding can be seen to be just
a special case of canonical decoding.

Once a length and offset pair have been decoded, the array symbol is consulted,
and a symbol number located. This might cause a cache miss. However, it takes
place at most once per output symbol, and since the array symbol is organized with
the frequent symbols (those with short codes) close together, it will on average oc-
cur even less often than that. Furthermore, in a word-level model each “symbol”
represents several characters, so the time per character of output is relatively small.

Computing Huffman code lengths

An important area that has not been addressed so far in our discussion is determin-
ing the lengths for a Huffman code, which is required for canonical Huffman cod-
ing. In this section we will look at what this problem invelves and then
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describe the heap data structure, which is a useful data structire for Huffman cod-
ing. Next, we will describe a memory-efficient three-phase algorithm that uses a
heap to determine the code lengths. Finally, two improvements are examined that
can improve the speed of the algorithm and take advantage of the distribution of
symbol frequencies found in practice.

The efficiency of computing Hufffnan code lengths affects only the cost of en-
coding, so it is not usually crucial, but elegant and efficient solutions are available
and can make a big difference if the alphabet is large. The tree algorithm described
earlier could be used to determine the lengths, and.it has, over the years, proved to
be an area rich in programming assignments for computer science students. How-
ever, for canonical coding there is no need to calculate the actual codewords, but
just the code lengths. Also, in a word-based model, the alphabet is likely to contain
thousands or even millions of symbols, and memory space for an explicit tree data
structure might be a problem.

For these two reasons it is interesting to consider other techniques for calculating
the code lengths of an optimal prefix-free coding. The algorithm presented in this
section assumes that a file of 7 integers is supplied, where the ith integer is the
number of times symbol 4 has appeared in the text. That is, if ¢; is the ith value in
the file, a code is to be built in which the probability of symboléis c;/ (31, ¢;). The
output of the calculation is a second file, also of length n, in which the ith integer is
the length in bits /; of the code to be assigned to symbol 4.

Since all the frequencies must be read into memory before any calculation can
be performed, and it seems similarly impossible to write any of the lengths until
all have been generated, a minimum requirement of 2n nodes with three four-byte
fields (that is, 24n bytes) appears inevitable to store an explicit tree. On an alphabet
of one million symbols, this corresponds to 24 Mbytes of memory. The process
described in this section is substantially more economical and requires just 2n four-
byte words (that is, 8n bytes), or 8 Mbytes for a model of one million symbols. The
process is also efficient in terms of time.

The efficiency of the process comes from using a heap data structure, which
can repeatedly find the smallest frequency very quickly with practically no mem-
ory overhead for storing the data structure. A heap is an implicit binary tree, with
values stored at all leaves and internal nodes, and an ordering rule that requires val-
ues to be nonincreasing-along each path from a leaf to the root. Figure 2.11a shows,
in tree form, an example heap of 10 items. The immediate consequence of the or-
dering is that the smallest value is stored at the root of the tree. Although visualized
as a binary tree, a heap is actually stored in an array, as shown in Figure 2.11b. The
mapping of a heap to storage in memory is particularly elegant: the root is stored
in Jocation 1 of an array; the left child of the node stored in location ¢ is stored in
location 2i; and the right child of location % is stored in location 27 + 1. These rules
mean that the parent of the node in position 7 occupies location |i/2].

A heap is very good for repeatedly finding and removing the smallest item. The
trick at each stage is to remove the smallest item, replace it with another, and rein-
state the heap order, all without spending too much effort. Suppose in the exam-
ple that the smallest item, 2, is removed from location 1, and the last item in the
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(a)
b) 2 8 10 8 17 23 12 21 11 20
b
1 2 3 4 5 6 7 8 9 10

Figure 211 Heap data structure for finding the smallest value: (a) tree with heap ordering
property; (b) implicit storage of tree in array.

array—item 20 in location 10—replaces it, as shown in Figure 2.12a for the heap of
Figure 2.11a. To rebuild the ordering at the top level of the tree, item 8—the smaller
of the two children of the root—must be swapped with 20. This localizes the order
violation to the left subtree, and the process is repeated until heap order is restored.
Figure 2.12b shows the reestablished heap after that itemn has been sifted back down
the tree. The worst that can happen is that the item just promoted from the bottom
leaflevel returns all the way back to the bottom.
. Usinga heap, the smallest of 7 items can be found with one of these sifting oper-
\4tions. Since the depth of thetree is [log 7], and just two-comparisons are required
.at each level as an jtem is sifted down the tree, the total cost of finding the next
ismallest item is no more than 2[logn]| comparisons. Alterations to the weight as-
isociated with any item are handled in exactly the same way, and an item weight can
e reassigned at a cost of at most 2 [logn| comparisons.
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Figure 212 Finding the next smallest: (a) after 20 is swapped.into the root; (b) after 20 is
sifted down the tree.
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Not included so far is the cost of constructing the initial heap from an unsorted
list of » items. The algorithm for doing so makes use of the same sift operation,
applying it to the root of every subtree in the heap from right to left and bottom to
top. This stage requires approximately 2n comparisons.

The heap is used to calculate Huffman code lengths in the algorithm described
in Figure 2.13. It uses an array of 27 entries to calculate the lengths for an alphabet
of m-symbols. Figure 2.14 illustrates how the array is used. Initially (Figure 2.14a),
the frequencies of the symbols occupy the last n entries in the-array. The first half
:of the array stores a heap that is used to efficiently locate the symbol with the lowest
frequency for the node-combining step of Huffman’s algorithm. As entries are re-
moved from the heap, the space vacated is reused to store pointers that correspond
to branches in the Huffman tree (Figure 2.14b). The frequency counts are also over-
written to store these pointers. At the end of processing; the heap contains only
one item, and the rest of the array stores the shape of a Huffman tree. This is the
arrangement shown in Figure 2.14c.

The details of the three main stages are as follows. In the first, the file of fre-
quencies is read into locations i + 1. ..2n of an array A of 2n words. Each of the
first n words in locations 1. ..7n of A is set to point at the corresponding frequency
in location 7 + 1...2n. Next, the bottom half of A is turned into a heap using
the method described above. The values used to drive the ordering in the heap
are the frequencies pointed at by the items compared, not the items themselves.
That is, the heap construction process must ensure that A[A[7]] < A[A[2%]] and
A[A[4]] < A[A[2i+ 1]] foralliin 1 < 4 < n/2. Once the heap is constructed,
A[1] is the index in the range » + 1 < A[1] < 2n of the smallest frequency in the
second half of the array.

Now the second phase begins. As described earlier, the symbols, or aggregates
of symbols, are considered in pairs, in each case taking the two smallest remain-
ing items. In Figure 2.13, each of the items yet to be considered is represented in
A[1..h] by a pointer to its value, with the smallest always at the root of the heap.
Thus, to find the two smallest, the root is taken from the heap, the leaf at A[hA]
is moved into the root to fill the gap, h is decreased by one to indicate that posi-
tion A[R] is no longer included in the heap, and the heap is sifted. This brings
the second smallest to the root of the heap. It is combined with the previously
noted smallest, the weight of the combination is recorded at the empty location
A[h + 1], and A[1] is set to point at this new aggregate value. To record the com-
bination that took place, the two individual frequency counts for-the two smallest
items, m1 and m2—neither of which is required anymore—are changed into tree
pointers that indicate the logical parent of these two nodes. This is the statement
A[ml1] < A[m2] < h + 1. Finally, the heap is sifted again to reestablish the
‘invariant that the root of the heap indi¢ates the smallest frequency count.

Figure 2.15 shows an example of this process at several stages. In Figure 2.15a, the
last item in the heap is A[h], and A[m1] and A[m2] are the two smallest entries
in the heap, with values 4 and 5, respectively. Figure 2.15b shows the heap after the
smallest item has been removed and the heap has been sifted. Now m2 is at the root
of the heap, h has been decremented, and location h + 1 is empty. Next, the two
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To calculate codeword lengths for a Huffman code,
1. /* Phase One */
Create an array A of 2n words.
2. Fori + ltondo
Read c¢;, the ¢th integer in the input file,
Set A[n +4] < c¢; and A[i] < n +¢.
A[n + £] is now the frequency of symbol 7.
Ali] points at A[n + ).
3, Seth + n.
Build a min-heap out of A[1...h].
A[1] stores m1 such that A[m1] = min{A[n +1...2n]}.
4. /* Phase Two */
While h > 1 do
(a) Setml <« A[1], A[1] + A[h),and h < h —1.
A[ml] is the current smallest.
(b) Sift the heap A[1...h] down from A[1],
Set m2 + A[l].
A[m2] is the second smallest.
(c) Set A[h +1] + A[m1]+ A[m2], A[1] < h+1,and
Alml] + Alm2] < h+ 1.
Alh + 1] now represents (m1 + m2).
(d) Siftthe heap A[1...h] down from A[1].
For 3 < ¢ < 2n, the value of A[7] represents the parent of ¢ in the Huffman
tree, the leaves are in A[n+1...2n].
5. /* Phase Three */
Forn+1 <1< 2ndo
(a) Setd ¢~ Oand 7 ¢ 4.
(b) Whiler > 2 do
Setd <+ d+1andr < Alr].
(c) Set A[i] < d.
6. Fort < lton do
Write A[n + 4] as I;, the length of the code for symbol 4.

Figure 213 Calculating Huffman code lengths.
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(a)

heap pointers leaves
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{b) heap pointers tree pointers and leaves

1 - h 2n

] !

tree pointers

(c)

h 2n

Figure 214 Use of an array to generate Huffman code lengths: (a) two sections, heap on left,
frequencies on right; (b) heap shrinking, and pointers replacing frequencies; (c) one item
remaining in heap.

smallest items are combined. Their total frequency is 9, which is:stored at location
h + 1. To get this new aggregate into the heap, A[1] is made to point at location
h + 1, and, to note the composition of the aggregate, both A[m1] and A[m2] also
point at h + 1—the arrangement shown in Figure 2.15¢. Finally, the heap is sifted,
and the next smallest item moves up to position A[1]. In Figure 2.15d, this is the
last item, with frequency 7. It-will be the fitst elefiiént in the next combination and
may, perhaps, be merged with the aggregate just formed.
At the completion of each such step, two items have been combined into one.
As a result, the heap contains one less item, and one item has been added to the
superstructure of internal tree nodes that records what combinations took place.
After n — 1 iterations, a single aggregate remains in the heap. The'frequency of this
| item is stored in A[2], and A[1] must ¢ontain 2 since there is just one item in the
theap. All the other 2n — 2 values in A contain parerit pointers. Tofind the depth
'im the tree of any particular leaf, we.can now simply start at that leaf and count how
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Figure 215 Building a Huffman code: (a) before smallest is removed from heap; (b) before
second smallest is removed from heap; (c) after smallest and second smallest have been
removed and combined; (d) after heap has been sifted.

many parent pointers must be followed to get to location 2, the root of the entire
code tree.

This is the third phase of the algorithm. Starting from each leaf in turn—recall
that the symbols of the alphabet are indicated by positions n + 1 . . . 2n—the parent
pointers are followed and the depth of that particular leaf stored in place of the
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5'. /* Revised Phase Three */
Set A[2] + 0.
Fori < 3to2ndo
Set A[i] + A[A[7]] + 1.

Figure 216 Improved counting of leaf depths.

parent pointer. For example, in Figure 2.15, the paths from both m1 and m2 will
pass through A + 1, and one bit is counted toward their code lengths for that part of
their path. Thereafter, both traversals follow the same path to the root.

‘When this process is finished, the array A[n + 1. ..2n] stores the desired Huff-
man code lengths. These can be written to disk or used to construct a code. If it
were more convenient, the values could be written as they are calculated in phase
three.

Now consider the running time of the algorithm in Figure 2.13. The first phase is
linear and takes n steps. Even when n = 1,000,000, this represents just a few seconds
of computation. In the second. phase, a heap of’at most n. iteinis is sifted about 2n
times. Each sift operation takes [logh| < [log#] iterations, and each jteration
takes a constant number of steps. In total, the second phase will take kn logn steps,
where k is a small constant. Typical workstations execute about one million steps
per second, and so with i = 1,000,000 the time taken by the second phase is at most
a few tens of seconds.

Analysis of the third phase is a little more problematic. It would appear that
one loop iteration is required for each bit of code length for each symbol, so we
should calculate how many bits there could be. In the fastest case; the distribution
of symbol frequencies will be uniform, and all codes will be approximately log n bits
long. The total counting time will thus be nlog n steps. Another way to analyze this
is simply to assume in the implementation that no:code will be longer than, say, 32
bits—this automatically provides an upper bound on the number of loop-iterations.

In the worst case, however, it is possible for a pathological distribution of fre-
quencies to drive the code for the 7th symbol to ¢ bits. This in turn means that
the cost of computing the code lengths is proportional to Y ., ¢ &~ n?/2, and this
dominates the time required during phases one and two. (In fact, if the th symbol
received a code 4 bits long in any nontrivial application, there would probably be
serious repercussions elsewhere in the system.) To avoid this blow-out in computa-
tion time during the third phase of the-algorithm, a further refinement is necessary.
Figure 2.16, which replaces step 5 of Figure 2.13, deseribes such an alternative. The
modified phase three is based on the observation that all the pointers in the array
produced by phase two point from right to left, so-a labeling process from left to
right will label each parent node before either of its children is encountered. Hence,
if the root in A[2] is labeled with a depth of 0; each following item can, in turn,
be labeled with depth 1 greater than the depth of its parent—A[A[7]] + 1 in Fig-
ure 2.16. The resulting algorithm takes some effort to understand but is very simple
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Figure 217 Traversing the tree: (a) before traversal; (b) after processing ¢ = 3; (c) after the
traversal is complete.

to code and executes extremely quickly. It takes time proportional to the number of
symbols in the alphabet and even for an alphabet of one million symbols requires
just a few seconds.

Figure 2.17 shows an example of the processing carried out by the revised depth-
counting mechanism. Figure 2.17a shows one possible state of the array A immedi-
ately prior to step 5. The total count of all symbols is recorded in A[2] and is 57. The
combination A = 1 and A[1] = 2 indicates that this is the only item still in the heap.
The other 10 locations indicate parent nodes for the six symbols represented in the
leaves in locations 7. ..12. Figure 2.17b shows the situation when ¢ = 3 has been
completed, and Figure 2.17c shows the arrangement when the loop: of Figure 2.16
has terminated. In Figure 2.17c, A[i + 6] for 1 < 4 < 6 records the number of bits
to be allocated to the Huffman code of symbol i.

There is a further way that the code calculation process can be improved. For
some alphabets, particularly very large ones such as the one shown in Table 2.2, it
is common—indeed, all but inevitable—for many symbols to have the same fre-
quency. In particular, hapax legomena typically account for as many as 50 percent
of the distinct words, and in this case half of the frequency-counts will be 1. If 50
percent of the symbols have a count of 1, then half the Huffman aggregation oper-
ations will involve joining two symbols with a: count of 1. The repetition of counts
can be exploited using an algorithm that represents the list of symbol frequencies
using run-length coding, where a sequence of identical counts are represented by
just two numbers, one giving the count and the other giving the number of repeti-
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tions (Moffat and Turpin 1998). The combining rule—which requires aggregating
the smallest two frequencies—becomes rather more complex, but a substantial re-
duction in time and space is possible, provided only that the list of input symbol
frequencies is already in sorted order. Run-length coding can also be applied to the
output (such as the lengths shown in Table 2.2), which also inevitably contains long
runs of identical code lengths. Analysis of the run-length method for calculating
Huffman codes shows that the time taken is proportional tor + 7 log(n/r) for an
alphabet of n symbols in which there are  distinct symbeol frequencies (Moffat and
Turpin 1998). Furthermore, the space required is proportional to the running time.
For typical large-alphabet values.n = 1,000,000 and r = 10,000, these bounds rep-
resent a considerable saving in resources, and the mechanism is very useful in situa-
tions when the n logn cost of sorting the:symbol frequencies can be either avoided
or amortized over more than one calculation.

Summary

Now, at last, we have seen how to generate and use Huffman codes efficiently for
alphabets containing thousands of symbols. This is an essential prerequisite for vir-
tually all large-scale information retrieval systems that use compression. Although
Huffman codes are standard fodder for undergraduate courses in computer science,
the methods described in the usual textbooks do not scale up effectively. Consid-
erable savings can be made in both the time and the main memory required for
decoding by using canonical Huffman codes instead of the standard decoding tree,
and decoding is one of the principal ongoing operations in compressed informa-
tion retrieval systems. Although encoding is done far less often—just once every
time the database is reconstructed—it is still nécessary to accomplish it within rea-
sonable resource constraints, and again substantial savings in both time and space
can be reaped by using the nonstandard, and by no means obvious, techniques that
we have described.

Arithmetic coding

Arithmetic coding is a technique that has made’it possible to obtain excellent com-
pression using sophisticated models. Its principal strength is that it can code arbi-
trarily close to the entropy. It has been shown that it is not possible to code better
than the entropy on average (Shannon 1948); so in this sense arithmetic coding is
optimal.

To compare arithmetic coding with Huffman coding, suppose symbols from a
binary-alphabet are to be coded, where the symbols have probabilities of 0.99 and
0:01. The information content of a symbol s with probability Pr[5] is — log Pr{s]

 bits, so the symbol with probability 99 percent can bé represented using arithmetic
ieoding in just under 0.015 bits. In contrast, a Huffman .coder must use at least

tie bit per symbol. The only way to prevent thisssituation with Huffman coding'is
to “block™ several symbols together at a time. A block is treated as the symbol to
be coded, so that the per-symbol inefficiency is now spread.over the whole block.
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Blocking is difficult to implement because there must be a block for every possible
combination of symbols, so the number of blocks increases exponentially with their
length; this effect is exacerbated if consecutive symbols come from different alpha-
bets, as is the case in the high-performance schemes that are described in the next
few sections.

The compression advantage of arithmetic coding is most apparent in situations
like the previous example, in which one symbol has a particularly high probabil-
ity. More generally, it has been shown that the inefficiency of Huffman coding is
bounded above by

2loge

Pr{s;] +log = Pr{s;] +0.086

bits per symbol, where s, is the most likely symbol (Gallager 1978). For the ex-
treme example described above, the inefficiency is thus 1.076 bits per symbol at
most (a2 bound that can trivially be reduced to one bit per symbol), which is many
times higher than the entropy of the distribution. On the other hand, for English
text compressed using a zero-order character-level model, the entropy is about five
bits per character, and the most common character is usually the space character,
with a probability of about 0.18. With such a model the inefficiency is less than
0.266/5 = 5.3 percent. In many compression applications Pr[s;] is even smaller,
and the inefficiency becomes almost negligible. Moreover, this is an upper bound,
and in practice the inefficiency is often significantly less than the bound might in-
dicate. On the other hand, when images are being compressed, it is common to
deal with two-symbol alphabets and highly skewed probabilities, and in these cases
arithmetic coding is essential unless the symbol alphabet is altered using a technique
like blocking,

Another advantage of arithmetic coding over Huffman coding is that arithmetic
coding calculates the representation on the fly, so less primary memory is required
for operation and adaptation is more readily accommodated. Canonical Huffman
codes are also fast, but they are suitable only if static or semi-static modeling is being
used. Arithmetic coding is particularly suitable as the coder for high-performance
adaptive models, where very high probabilities (confident predictions) are occur-
ring, where many different probability distributions are stored in the model, and
where each symbol is coded as the culmination of a sequence of lower-level
decisions.

One disadvantage of arithmetic coding is that it is slower than Huffman coding,
especially in static or semi-static applications. Also, the nature of the output means
that it is not easy to start decoding in the middle of a compressed stream. This
contrasts with Huffman coding, in which it is possible to index “starting points”
in a compressed text if the model is static. In full-text retrieval, both speed and
random access are important, so arithmetic coding is not likely to be appropriate.
Furthermore, for the types of models used to compress full-text systems, Huffman
coding gives compression that is practically as good as arithmetic coding. Thus, in
large collections of text and images, Huffman coding is likely to be used for the text
and arithmetic coding for the images.
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How arithmetic coding works

Arithmetic coding can be somewhat difficult to grasp. Though it is interesting, un-
derstanding it is not essential. Source code is readily available for efficient arithmetic
coders (see www.cs.mu.oz.au/mg/), which can be plugged into a compression system
to perform the coding part. Only the interface to the coder needs to be understood
in order to use it.

The output of an arithmetic coder, like that of any other coder, is a stream of bits.
However, it is easier to describe arithmetic coding if we prefix the stream of bits with
0. and think of the output as a fractional binary number between 0 and 1. In the
following example, the output stream is 1010001111, but it will be treated as the
binary fraction 0.1010001111. In fact, for the sake of readability, the number will be
shown as a decimal value (0.64) rather than as binary, and some possible efficiencies
will be overlooked initially.

As an example we will compress the string becb from the ternary alphabet {g,
b, c}. We will use an adaptive zero-order model and deal with the zero-frequency
problem by initializing all character counts to one.

When the first b is to be coded, all three symbols have an estimated probability
of 1/3. An arithmetic coder stores two numbers, low and high, which represent a
subinterval of the range 0 to 1. Initially, low = 0 and high = 1. The range between
low and high is divided according to the probability distribution about to be coded.
Figure 2.18a shows the initial interval, from 0 to 1, with a third of it allocated to
each symbol. The arithmetic coding; step simply involves narrowing the interval to
the one corresponding to the character to be coded. Thus, because the first symbol
is a b, the new values are low = 0.3333 and high = 0.6667 (working to four decimal
places). Before coding the second character, ¢, the probability distribution adapts
because of the b that has already been seen, so Pr[a] = 1/4,Pr[b] = 2/4, and
Prlc] = 1/4. The new interval is now divided up in these proportions, as shown
in Figure 2.18b, and coding of the ¢ involves changing the interval so that it is from
low = 0.5834 to high = 0.6667. Coding continues as shown in Figure 2.18c, and at
the'end the interval extends from low = 0.6390 to high = 0.6501.

At this point, the encoder transmits the code by sending any value in the range
from low to high. In the example, the value 0.64 would be suitable. The decoder
simulates what the encoder must have béen doing. It begins with low = 0 and
high = 1 and divides the interval as shown in Figure 2.18a. The transmitted number,
0.64; falls in the part of the range corresponding to the symbol b, so b must have been
thefirst input symbol. The decoder then calculates that the range should be changed
to low = 0.3333 and high = 0.6667, and, because the first symbol is now known to
be b, the new probability allocation where Pr{b] = 2/4 (shown in Figure 2.18b) can
be calculated. Decoding proceeds along these lines until the entire string has been
réconstructed.

A general algorithm for calculating the range during encoding is shown in Fig-
ure 2.19; and Figure 2.20 shows how a symbol is decoded and the range is updated
dfterward. Since arithmetic coding deals with ranges of probabilities, it is usual for
a model to-supply cumulative probabilities to the encoder and decoder; this makes
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Figure 218 Arithmetic coding example for the string becb: (a) first symbol; (b) second
symbol; (c) third and fourth symbols.

the first steps of each algorithm easy to implement. For static and semi-static cod-
ing, the cumulative probabilities can be stored in an-array. The encoder accesses the
array by symbol number, and the decoder accesses it by binary search or through
the use of a lookup table. Adaptive coding requires a more sophisticated structure
so that cumulative probabilities can be adjusted on the fly. More commonly, fre-
quency counts are kept for each symbol, and these are normalized to probabilities
as an integral part of the arithmetic coding process.

Informally, compression is achieved because high-probability events do not de-
crease the interval from low to high very much, while low-probability events result
in a much smaller next interval. A small final interval requires many digits (bits)
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To code symbol s, where it is assumed that symbols:are numbered from 1 to n, and
that symbol ¢ has probability Pr[3],

Set low_bound < >3} Prl4].

Set high_bound < >_;_, Prli].

Set range <— high — low.

Set high <— low + range X high_bound.

Setlow < low + range X low_bound.

U A

Figure 219 The arithmetic encoding step.

To decode:a symbol, assuming that the symbols are numbered from 1 to n, that
symbol ¢ has probability Pr[7], and that value is'the arithmetic code to be

processed,
1. Pind s such that
s—1
ZPr[z] < (value — low) [(high — low) < zPr[z]
=] 3=1

2. Perform the range-narrowing steps described in Figure 2.19, exactly as if
symbol s is being encoded.
3. Return symbol s.

Figure 220 The arithmetic'decoding step.

to specify a number that is guaranteed to be within the interval—for example, at
least six decimal digits are needed to specify a number that is between 0.378232
and 0.378238. In contrast, a large interval requires few digits—for exarnple, any
number beginning with 0.4 is between 0.378232 and 0.578238, so the decoder only
needs to know that the number begins with §.4. The number of digits necessary is
proportional to the negative logarithm of the size of the interval, just as the num-
ber of digits needed to represent numbers on the other side of the decimal point is
proportional to the positive logarithm ‘of the-number. The size of the final inter-
val is the product of the probabilities of the symbols coded, and so the logarithm
of this quantity is the same as the sum of the logs of the individual probabilities.
Therefore, a symbol s of probability Pr(s] contributes — log Pr[s] bits to the out-
put; which is equal to the symbol’s information content and results in a code that is
identical to the bound given by the entropy formula. This is-why arithmetic coding,
produces a near-optimal number of output bits and is, in effect, capable of coding
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high-probability symbols in just.a fraction of a bit. In practice, arithmetic coding is
not exactly optimal because of the use of limited precision arithmetic and because
a whole number of bits (or even bytes) must eventually be transmitted, but it is
extremely close.

As we have described arithmetic coding so far, nothing appears in the output
until all the encoding has been completed. In practice, it is possible to output bits
during encoding, which avoids having to work with higher and higher precision
numbers. The trick is to observe that when low and high are close in value, they
have a common prefix. For example, after the third character has been coded (Fig-
ure 2.18c), the range is low = 0.6334 and high = 0.6667. Both are prefixed with
0.6, so no matter what happens to the range from there on, the first symbol trans-
mitted must be a 6 (or would be, if the encoder were working in decimal). Thus,
an output symbol can be transmitted at this point and then removed from low and
high without any effect on the remaining calculations. In the example, the first dec-
imal digit (which is 6) can be:removed from low and high, changing them to 0.334
and 0.667, respectively. Working with these new values, the top of the a interval is
now calculated to be 0.390 instead of 0.6390. The same output is being constructed,
but the need for increasing precision has been avoided, and the output is generated
incrementally, rather than having to wait until the end of coding.

As mentioned earlier, the final output value is really transmitted as a binary frac-
tional number, and the 0. on the front is unnecessary because the decoder knows
that it will appear. The values low and high are stored in binary; in fact, with suit-
able scaling they can be stored as integers rather than as real numbers. Working with
finite precision causes compression to be a little worse than the entropy bound, but
16- or 32-bit precision usually degrades compression by an insignificant amount,
Witten, Neal, and Cleary (1987), in a seminal paper, describe a general-purpose
arithmetic coder based upon the use of integer arithmetic, and they also give anal-
ysis to bound the inefficiency arising from calculation errors. So although the ex-
ample used unlimited-precision floating-point decimal numbers, in practice arith-
metic coding can be implemented using fixed-precision integers, and the output is
a stream of bits. Each symbol coded requires just a few arithmetic operations in the
arithmetic coder. In the following section, we look more carefully at exactly how
many operations are necessary.

Implementing arithmetic coding

This section describes a practical implementation of arithmetic coding. As well as
examining how the interface between the model and coder works in practice, we will
look at the special cases where the alphabet is very small (perhaps just two symbols)
or very large (thousands or millions of symbols).

The interface between an arithmetic coder and a model is a little unusual be-
cause of the way that arithmetic coding works. To divide up the range, the coder
needs to know which part of it corresponds to the symbol to be coded. We now
describe three routines that are found in the mg source code: arithmetic_encode,
arithmetic_decode_target, and arithmetic.decode.
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The interface to the encoder is through the single routine arithmetic_encode. In-
stead of using probabilities, the coder is)passed integers related to the counts of sym-
bols. The procedure arithmetic_encode has three parameéters: low_count, high_count,
and total. The total parameter is the sum of all the counts for all possible symbols.
In the example in Figure 2.18, for the coding of the fourth symbol, the total would
be 6. The low_count parameter is the sum of the counts of all symbols prior (in
the alphabet ordering) to the one to be encoded, so that the cumulative probability
low_bound in Figure 2.19 is then easily ¢alculated as low_count/total. In the exam-
ple, the fourth character coded was b, and a is the only one that comes before it
in the alphabet, so low_count = 1 (the count for.a). The high.count parameter is
the top of the range corresponding to b— that is, low_count plus the count of b.
The example would have high_count = 3. Thus the b would be codéd by calling
arithmetic_encode(l, 3, 6). If the fourth character had been a or ¢, then it would
have been coded by calling arithmetic_encode(0, 1, 6) or arithmetic_encode(3, 6, 6),
respectively.

Two routines are required to interface to the arithmetic decoder. The first, func-
tion arithmetic_decode_target, has total as a parameter, obtained from the decoder
model. It returns a number corresponding te the encoded symbeol, in the range
from O to total — 1. The range is closed below and open at the top, so the values
“in the range” of 1 to 3 (for the example symbol b) are 1 and 2. If either of these
targets is received, then a b is decoded. Similarly; a has a range of 1, so it has only
one target value, which is 0; a target of 3, 4, or 5 indicates that a c is to be decoded.
The decoder must use the model to determine to:which symbol the target value be-
longs, and then the full range must be adjusted by a call to arithmetic_decode. The
parameters for arithmetic_decode should be identical to the ones that were given to
arithmetic_encode; in the example, the call would be arithmetic_decode(1, 3, 6). Use
of the identical parameters enables the decoder te narrow the range correctly.

There are two important issues surrounding implementation of arithmetic cod-
ing. One is how the cumulative counts can be maintained efficiently, since it would
usually be too slow to perform a summation every time one is needed. We return to
this in the following subsection, “Maintaining cumulative counts.”

The other issue, which we address immediately, is exactly how the arithmetic
should be performed to make the coder work as-fast as possible.

The key operations performed during arithmetic coding are the operations to
adjust the range as sketched in Figure 2.19. In practice, the curhulative probabilities
are represented using integers (low_count, high_count, and total), so, for example,
low_bound is actually low_count /total. This means thatstep 5 of Figure 2.19 is now

low < low + range X low._count/total.

To perform this calculation accurately, double-precision integer arithmetic is
neéded for the intermediate results of the multiplication/division component. It
turns out that by choosing the ordering of the calculations carefully, and allowing a
little loss of precision, it is possible to simultaneously avoid the use of high-precision
arithmetic and reduce the number of operations required. The exact details of the
trade-off will depend on the architecture of the machine; if high-precision integer
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To arithmetic_encode(low_count, high_count, total) using low-pre¢ision arithmetic
and assuming that the state variables low and range are to be modified to
reflect the new range,

1. Setr « range div total.
2. Setlow <— low + r X low_count.
3. If high_count < total then
Set range <— 1 X (high_count — low_count)
else
Set range <— range — r X low_count.
4. Renormalize low and range.

To arithmetic_decode_target(total), returning an integer in the range [0, total),
where D buffers the compressed bits being decoded and corresponds to
value — low in Figure 2.20,
1. Setr ¢ range div total.
2. Retarn min{total — 1, D divr}.

To arithmetic_decode(low_count, high_count, total) using low-precision arithmetic,
assuming that » has been set by arithmetic_decode_target and that the state
variables D and range are to be modified to reflect the new range,

1. Set D 4~ D — r X low_count.
2. If high_count < total then
Set range <— r X (high_count — low_count)
else
Set range 4<— range — v X low_count.

3. Renormalize range and load new bits into D to match the renormalization.

Figure 221 An efficient arithmetic coding implementation.

multiplications are fast, then it may not be so beneficial. The cost of using ap-
proximations will be a small loss in compression performance; but for the method
shown below, this generally amounts to a fraction of a percent in practice and is a
worthwhile optimization.

An effective algorithm that achieves this is.shown in Figure 2.21. A significant
diffeérence from the version described in Figures 2.19'and 2.20/is that instead of rep-
resenting the current range using its boundaries Jow and high, it is represented using
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the lower boundary low and range, the size of the current initerval. The speed effi-
ciency is gained by using the temporary variable 7, which can be stored to relatively
low precision. In fact, because 7 is typically a small integer, it can be more efficient
to perform the multiplicative operations in which it is involved using shifting and
adding, which results in a further speed gain on some architectures.

Notice that a special case is made when high_count is at the top of the range.
This serves two purposes. First, the:separate calculation ensures that the new high
point is the same as before; if it were rounded down because of the truncation when
7 is calculated, some compression inefficiency would be introduced unnecessarily.
Second, the calculation 7 X low_count has already been performed in the second
step and need not be repeated here, saving one multiplication. This can happen
relatively often if the most probable symbol is allocated the top part of the range.

The renormalization step involves transmitting bits from the left-hand side of
low, and shifting range left, until excessive leading 0 bits at the start of range have
been eliminated.

The decoder mirrors the state of the encoder, except that instead of storing low,
it stores the difference D between low and the value in the input. This saves some
operations in the decoder by simplifying the renormalization step—only D needs
to be renormalized instead of both low and the incoming value.

This appreximate method is from Moffat, Neal, and Witten (1998), who evaluate
a number of improvements to arithmetic coding. Source code for their methods
is available by ftp from fip://munnari.oz.au/pub/arith_coder/; the original 1987 im-
plementation of Witten, Neal, and Cleary is available at fip://ftp.cpsc.ucalgary.ca/
pub/projects/ar.cod/cacm-87.shar. Other enhancements improve the speed by using
shift/add operations instead of multiplications and divisions (Rissanen and Mohi-
uddin 1989; Chevion, Karnin, and Walach 1991; Feygin, Gulak, and Chow 1994;
Stuiver and Moffat 1998) or looking up approximate arithmetic calculations in a
precomputed table (Howard and Vitter 1993a). Approximating the calculations
leads to higher compression throughput but is at the cost of :degraded compression
effectiveness because less care is taken with the accuracy of the arithmetic.

One special case where approximate arithmietic coding has been used very effec-
tively is for binary input alphabets. In this case there is only one point between high
and Jow to be calculated, and the order of the two. symbols in the range can easily
be swapped so that the most probable one is at the top. The split point is there-
fore-guaranteed to be below halfway. If it is approximated with a power of two, the
multiplication can be replaced with a single shift operation, and because the split
point is less than 0.5 (and often a lot less than this), the loss of compression effi-
ciency can be bounded and is usually very small. This kind of approximation is
exploited by the IBM Q-coder, which is used for various applications.including the
JBIG and JPEG image compression standards described in Chapter 6.

Maintaining cumulative counts
For nonbinary alphabets, the speed of arithmetic coding is strongly affected by how
quickly the cumulative counts can be calculated, so it is important to use a data
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Figure 222 Array storing implicit tree-for cumulative count calculation.

structure that makes it easy to calculate the cumulative count for a symbol and easy
to search the cumulative counts for a target. If the probability distribution is very
skew, so that only a small subset of the possible symbols are being regularly used
(or if the alphabet contains in total only a few symbols), then a move-to-front list
is suitable. This uses a linear search, but the list being searched is reorganized by
moving an element to the head of the list when it is accessed. If only a few symbols
are being coded, they will quickly end up near the front of the list, and most accesses
will only require a short search. This is the case for a simple zero-order character-
level model, where for typical English text only about 10 elements in a move-to-
front list are probed on average for each symbol coded.

If the alphabet is used sparsely (which occurs in high-order contexts for coders
such as the PPM method, described in'Section 2.5), even a simple linked list may be
suitable since only a few counts will be kept for the few symbols that are observed
in each context. For binary alphabets-—one of the main applications of arithinetic
coding—the problem of calculating camulative‘counts is trivial.

For larger alphabets, such as the set of words in a document, the probability
distribution will be less skew and a better structure is needed. A particularly elegant
structure for this situation has been developed that uses an implicit tree, where each
node contains the cumulative sum of a specific range of counts (Fenwick 1994).
The tree can be traversed from the root to a symbol’s node in such a way that the
selection of ranges encountered on the path will exactly cover the entire range up to
the symbol for which a cumulative count is required. For an alphabet-of n symbols,
the maximum depth of the tree is log, 7, so the cumulative count.can be determined
in logarithmic time. Thetree is implicit and is actually stored without pointers in an
array. The fast Huffman implementation described earlier also uses an implicit tree
(a heap) but with different rules for the structure. Like the heap, the implicit tree
used for cumulative counts is very efficient; only n integers are stored to represent
7, counts, so there are no storage overheads.

Figure 2.22 shows the beginning of the array I that is used to store the implicit
tree. Each entry F'[%] in the array contains the sum of the counts for a contiguous
group of symbols‘including ¢;, the frequency-of symbol ¢; from these the required
cumulative sums can be readily-calculated.

To calculate the cumulative count for symbol %; we start at entry F[7] and work
backward toward F'[1], adding a selected subset of the array entries. For example,
for i = 11 the entries summed are F'[11]; F'[10], and F'[8]. The set of entries
to visit is easily determined from the binary representation of 4; the next entry to
visit is found by setting the rightmost one in the binary representation to a zero.
In the previous example, the index 11 is represented as 1011 in binary. Setting the
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"I never heerd a skilful old married feller of twenty
vears’ standing pipe ‘‘my wife’’ in a more used note
than 'a did," said Jacob Smallbury. "It might have been
a little more true to nater if’t had been spoke a little
chillie

Figure 2.23 Sample text.

rightmost bit to zero gives 1010 and then 1000, which in decimal are 10 and 8,
respectively.

To increment the count for symbol ¢, the appropriate entries beyond the one for
% must be incremented. For example, if symboel 3 is to have its count incremented,
then the array entries at F'[3], F'[4], and F'[8] must be incremented. This sequence
is also easily determined from the binary representation. of the numbers.

This implicit tree technique calculates cumulative sums in logarithmic time. An-
other mechanism exists that uses a tree in which the shape depends on the counts,
arid as a result the time taken is linear in number of input and output bits. that
would be used if the counts are used for an arithmetic coder (Moffat 1990b). Al-
though asymptotically optimal, in practical applications this structure is no faster
than the Fenwick tree described above, and it uses more memory.

Symbolwise models

Now we look at symbolwise models that can be combined with the coders described
in the two previous sections. Compression methods that work in a symbolwise
manner and make use of adaptively generated statistics give excellent compression—
in fact, they include the best-known methods—and so are well worth studying.
Four main approaches will be discussed in detail: PPM, which makes predictions
based on previous characters; block sorting, which transforms the text to bring sim-
ilar contexts together; DMC, which uses a finite-state machine for the model; and
word-based methods, which use words rather tlian letters as the atomic.symbols for
compression. Each of these methods generates predictions for the input symbols.
The predictions take the form of probability distributions that are provided to a
coder—usually either an arithmetic or Huffman coder.

Prediction by partial matching
Prediction by partial matching (PPM) uses finite-context models of characters
(Cleary and Witten 1984b). Rather than being restricted to one context length, it
-uses different sizes; depending on what contexts have been observed in the previ-
ously coded text—hencethe term “partial matching™ in the name.

Suppose Hardy’s book is being coded by PPM and the encoder is up to the
passage shown in Figure 2.23. The characters chillie have just been encoded, and
the character r is about to be coded. PPM ‘starts with a reasonably large context,
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typically three or four characters. For illustration, suppose a context of five charac-
ters (illie) is used to try to make a prediction. This string has never occurred before
in the prior text, so the encoder switches to a context of four characters (Ilie). The
decoder is able to do likewise, since it has:seen the:same priortext as the encoder and
also recognizes that the context has not o¢curred before. This smaller four-character
context has occurred previously. However, it has only appeared once, and it was fol-
lowed by the character s. This is a zero-frequency situation—the character r is to
be coded, but it has a count of zero. Rather than code it explicitly using one of the
zero-frequency methods described above, PPM sends a special “escape” symbol—
available in every context—that tells the decoder that the symbol cannot be coded
in the current context and that the next smaller context should be tried. Assigning
a probability to the escape symbol is really just another form of the zero-frequency
problem. One effective method is to allocate a count of one to the escape symbol.
This is sometimes referred to as escape method A, and the version of PPM that uses
it is referted to as PPMA. In the example, the escape symbol has a probability of 1/2
(and the character s has the remaining 1/2). The escape symbol is transmitted, and
both encoder and decoder shift down to a context of three symbols. One bit has
been transmitted so far and one arithmetic coding step completed.

The three-symbol context lie has occurred 201 times in the prior text, and 19 of
these were followed by an r. Allowing one couiit for the escape symbol, the r can
now be coded with a probability of 19/202, which requires 3.4 bits. In total, the r
requires two encoding steps and is represented in 4.4 bits.

If the r character had not occurred in the order-3 context, another escape would
have been used to get to the order-2, and then, if necessary, order-1 or order-0 con-
texts. If a symbol has never occurred in the prior text, even the order-0 model can-
not be used, and a further escape symbol is transmitted to revert to a simple model
in which all characters are coded with.equal probability. In this case, six arithmetic
encoding steps would be required. This may seem extreme, but actually it is very
rare—during the early parts of the text, while the model is still learning, it is un-
likely that fifth-order contexts will be repeated, and once the model is‘up to speed
it is unlikely that any of the low-order contexts will be required. As a result, com-
pression using the PPM method is only a little slower than using a straightforward
zero-order character-based model that uses exactly one arithmetic coding step per
symbol.

The probability estimates used above can be improved a little using a technique
called exclusions. In the example, although the three-symbol context lie had oc-

‘eurred 201 times, 22 of these occurrences were followed by the letter s, yet an s

will not be coded in that context since it was available to be coded in the four-
symbol context. Therefore s can be excludéd from the count. This means that
only 179 occurrences of the context will be used as a sample, and an r will have an
estimated probability of 19/180 instead of 19/202. Performing exclusion takes a
little extra time but gives a reasonable payback in terms of extra compression (and
an improvement is guaranteed since all nonexcluded characters have their proba-
bilities increased). There are several other variations that offer différent trade-offs
between speed and compression (Lelewer and Hirschberg 1991; Howard and Vitter
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1993a; Willems, Shtarkov, and Tjalkens 1995, 1996; Aberg, Shtarkev; and Smeets
1997; Bunton 1997b).

PPM is very effective. Figure 2.24 shows the number of bits used to code an
excerpt extracted from the end of the Hardy book, assuming that the prior part of
the book has already been processed to establish the contexts and frequency counts.
Thenumber of bits for each character includes any escape characters necessary to get
the decoder to the correct context; for the example in this figure, the coder attempts
to ¢ode each character first in a third-order context. Notice that many characters
are very predictable. For example, the letter d in the word old in the first line is
coded in just-0.19 bits; a d is very common in this context. The space character
after the d is coded in 0.86 bits; it is not quite so predictable because the letter e
is also considered likely since the prior-text contains words like older and beholder.
The unpredictable characters stand out. For example, longer representations are
generated for the last three characters of the word heerd in the first line, and the
closing parenthesis in the penultimate line takes 11.06 bits because, aithough that
context occurs very frequently in the text, this is only the second time that now is
followed by a parenthesis. Despite these exceptions, the majority of the symbols
are predicted with high probabilities and so are coded in two to three bits each.
Because PPM generates so many high probabilities; it is best to code its output with
an arithmetic coder.

The amount of compression achieved by PPM is affécted by the method used to
estimate escape probabilities. One of the better méthods; referred to as method C,
estimates the probability of an escape to be r/{n. + r), where nis the total number
of symbols seen previously in the current context and r is the number of them:that
were distinct (Moffat 1990a). A character with a count of ¢; in the context would
have -2 probability of ¢;/(n + 7). Using method C, the probability of an escape
character increases as the relative frequency of novel characters increases, but also
decreases as the total number of times the context has oceurred increases. Using
PPMC (PPM with escape method C) combiried with arithmetic coding, Hardy’s
book can be coded in an average of 2.5 bits per character; that is, it is compressed to
31 percent of its original size.

A number of improvements to the PPM méthod ecan shave a little more off the
size of compressed files. For example, the PPMD method (which is consistently
slightly better than PPMC) only gives half the:weight to novel events, so the proba-
bility of an escape character is »/(2n), and the probability of a symbol that has been
observed c; times in the current context is (2¢; — 1)/(2n) (Howard 1993). Another
way of ‘calculating escape probabilities is: méthod X, proposed by Witten and Bell
(1991). In'method X, the number of hapax legomena (symbols of frequency one) is
used as an estimate of the number of symbols-of frequency-zero. That is, if ¢; is the
number of symbols ¢ for which ¢; = 1, then the escape probability is calculated as
t1/(n + 1), and the probability of symbols with ¢; > 1 as ¢;/(n-+ t;). To avoid the
problems that arise- when ¢; = 0, and-ne symbols have appeared only once, further
approximations can be used: (£; + 1)/ + ¢; + 1) and ¢;/(n + 1 + 1), respectively.

As well as refinements to the escape calculation strategy, researchers have ex-
plored using arbitrarily large contexts instead of a fixed size for-the starting point
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"I never heerd a skilful old married feller of twenty.!
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years’ standing pipe '‘‘my wife’’ in a more used note.
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than ’‘a did, " said Jdcob Smallbury. "It might havé beend
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chillier, but that wasn’'t to be expected just now..
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That improvement will come wi’ time," said Jan,.d
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Then Oak laughed, and Bathsheba smiled (for she.d
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0 never laughed readily now), and theéir friends turned to.l

Figure 224 Information content of PPM coding of individual characters (bits per
character).
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(Cleary, Teahan, and Witten 1995). This general technique is referred to as PPM*,
and one implementation, PPMZ, can compress Far from the Madding Crowd to
about 2.2 bits per character. This places PPM-based methodsamong the best known
for achieving good compression.

Some generalized PPM systems:-have been developed for experimenting with dif-
ferent forms of the basic algorithm. One is known as the Swiss Army Knife Data
Compression (SAKDC) method (Williams 1991a). As its name suggests, SAKDC is
actually many variations rolled into one, with some 25 parameters to control how
the model is used. The parameters include the maximum context, how memory
is managed, how probabilities are estimated, and how new contexts are added to
the model. It includes several other techniques as special cases. Like its namesake,
the large number of parameters makes it unsuitable for regular use, but it has been
valuable in exploring the bounds of how much compression can bé achieved with
PPM-style models.

In her 1997 doctoral dissertation, Suzanne Bunton described a similar heavily
parameterized program. Indeed, her “executable taxonomy” also includes the DMC
model (described on page 69) as a variant, as well as many other possibilities.

Block-sorting compression

Block-sorting compression is an intriguing approach that was first published in 1994
(Burrows and Wheeler 1994). Itis unusual because it works by transforming the
text into a form that is more amenable to compression. The transformed text is
compressed and transmitted to the decompressor, which reverses the compression
and then applies the inverse transform. This is analogous to the discrete cosine
transform, used for compressing images, or-the Fourier transform, which converts
signials from the time domain to the frequency domain. One disadvantage of block
sorting is that the input must be broken up into blocks that are processed one at a
time, rather than the process being continuously adaptive-as characters arrive.

The transformation used for block-sorting compression is:sometimes called the
Burrows-Wheeler transform, after its inventors. It permutes the characters in a téxt
so that those occurring in similar contexts end up near each other. The permuted
text is the same size as the original, but it is easily compressed using simple tech-
niques because only a limited selection of characters tends to occur in similar con-
texts. The-decompressor must rearrange it back to its original order. It is remarkable
that this reverse permutation can be done with little computational effort (in fact, it
is remarkable that it can be done:at-alll).

The transformation is performed by sorting edch character in the text, using its
context as the sort key. Figure 2.25 shows some. of the sorted characters for the
Hardy book, preceded by their:contexts. Notice that the contexts are compared for
sorting by working from right to left. The comparisons:go-back as far as necessary to
order any two contexts; if the beginning of the file is reached in a comparison, then
it wraps around to the end of the file, although, as Figure 2.25 shows, most of the
time only a few characters are needed to distinguish contexts. The transformed text
is simply the characters in the order of their sorted contexts, so the permuted text
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nly thrown into greater relie
n. Nevertheless, he.was relie
eba, feeling a nameless relie
rise, experienced great relie
thsheba was momentarily relie
P 398>Jforeheads, quitedrelie
t such times is a greatdrelie
e droning of.Jblue-bottle flie
and the reasonable probabilie
tions, pinks, picotees, lilie
her head and feet,Jthe lilie
eads, alldabout their familie
e as common among thedfamilie
d been spoke a little.é¢hillie
no absurd sides to the follie
lways be your.friend,' replie
s I've got no chance,' replie
J'0 no -- not at all,' replie
'tis my only doctor,' replie

QOG0 R 000 0n0nn Hh< < G

Figure 225 Sorted contexts for the Burrows-Wheeler transform.

for the Hardy book will contain the sequence fvffvvfssssssrsdddd from the right-hand
column of Figure 2.25.

The two main issues that arise at this point is how the permuted text should be
coded and how the original text can be reconstructed from the permuted one. We
will deal with the coding first.

Notice that characters occur in clusters in the permuted text. For example, in
the context relie in Figure 2.25, only the letters f and v occur. This pattern is con-
veniently coded using a move-to-front coder, which maintains a list of characters,
moving them to the front of the list-each time they are coded. Characters near the
front of the list are assigned shorter codes. In the example, f and v will be in the first
two characters of the list for a while, and then will be displaced by s and, later, d.

But how can the original source text be reconstructed from-a permutation like
Sfuffvvfssssssrsdddd? The permuted text gives us the last column of characters from
Figure 2.25. One important observation is that the second to last column (contain-
ing only the symbol e in Figure 2.25) can be constructed by sorting the permuted
text, so the decoder has accéss to both of these columns.

The shorter text mississippi will be used as an example to describe the reverse
transformation. Figure 2.26 shows the encoding of thistext. In Figure 2.26a, each
character is shown with its context, whére wraparound is used to get a full con-
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1 | ississippi m 1 | sissippimi s 1| s 1] 1 s
2 | ssissippim i 2 | ississippi m 2 | m* 2| i m
3 | sissippimi s 3 | sippimissi s 3| s 3| 4 s
4 | issippimis s 4 | pimississi o] 4 | p 4| i he)
5 | ssippimiss i 5 | ssissippim i 5| i 5| m i
6 | sippimissi s 6 | imississip hs) 6| p 61D D
7 | ippimissis s 7 | mississipp i 7| i 7l P i
8 | ppimississ i 8 | issippimis s 8 | s 8 | s s
9 | pimigsissi D 9 | ippimissis s 9| s 9 | s s
10 | imississip v 10 | ssippimiss i 10 [ 1 10| s i
11 | mississipp i 11 | ppimississ i um | i 1n|s i

(a) (b) {d)

Figure 226 Burrows-Wheeler transform of the string mississippi: (a) rotations of the'string;
(b) sorted by contexts; (c) permuted string (transmitted), with * indicating the starting
character; (d) sorted string (last character of context) and permuted string.

—
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text. In Figure 2.26b, the contexts have been sorted into order, and the permuted
string is transmitted (Figure 2.26¢). The number of the context corresponding to
the first character, which is 2 in this case, must also be transmitted; this is indicated
by an asterisk in Figure 2.26¢c. The last character of the contexts is reconstructed in
Figure 2.26d by sorting the permuted string.

' Reversing the transformation relies on the key observation that the order in which
the corresponding characters appear in the two columns are the:same. For example,
the letter s appears four times in each column. Loéoking at Figure 2.26b, in each
column, the first appearance corresponds to the first s in mississippi (lines 1 and 8),
the second appearance corresponds to the third s in the word (lines 3 and 9), the
third appearance cotresponds to the second (lines 8 and 10), and the fourth to the
fourth (lines 9 and 11). This relationship can be used as follows to reconstruct the
original string.

Using the information in Figure 2.26d, the decoder starts with the indicated first
row (line 2), which gives the first character, m. Looking down the left-hand col-
umn, the context ending with m only occurs once (line 5), so this gives the next
character, 4. The context 4 has occurred four times. However, the one that was just
decoded is the first ¢ in the second column, so we should use the first ¢ in the first
column as the next context (line 1), giving the next character, s. This is the first s in
the permuted string, so the next context is the first s (line:8), which is followed by
another s. This latest s is the third one, so the next context is the third s (line 10),
which is followed by 4. The rest of the text is decoded by going through contexts 3,
9,11, 4, 6, 7, and 2, at which point the whole text has been decoded.
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To encode using the Burrows-Wheeler transform, and produce a permuted version

3.

of the input that is amenable to symbol-ranking coding,

. Sort the IV input characters using the preceding characters as the sort key,

creating a permuted array P[1...N].

Output the position in P that contains the first character from the
compressed file.

Output the permuted array P.

To decode using the Burrows-Wheeler transform,

N O U

. Set p < the position of the first input character (from the-encoder).

. Set P[1...N] <« the permuted symbols (from the encodex).

. Set K[s] + the number of times symbol s occurs in P.

. Set the array M [s] to be the position of the first occurrence of s in the array

that would be obtained by sorting P:
(a) Set M ([first symbol in lexical order] + 1.

(b) For each symbol s (in lexical order)
Set M[s] « M[s— 1]+ K[s—1].

. For each input symbol position 7 from 1 to V

(a) Sets + P[i].
(b) Set L[z] - M[s].
(c) Set M[s] +— M[s]+1,
Array L now stores the links with which to traverse the permuted string.
Traverse the link array to reconstruct the original string:
(a) Seti < p (initial position).
(b) Repeat IV times (until ¢ = p a second time)
OQutput P[7],
Set s «— L[].

Figure 227 Encoding and decoding using the Burrows-Wheeler transform.

In practice the block sorting can be implemented quite efficiently. For example,
there is no need to create all the substrings as shown in Figure 2.26a since they can be
represented by an array of pointers to the input text. The inverse transform can be
performed efficiently by making a single pass through the strings in Figure 2.26d,
storing links to the next context, which avoids searching through the contexts for
each character.

Algorithms for encoding and decoding using the Burrows-Wheeler transform are
shown in Figure 2.27. Encoding simply involves permuting the input symbols using
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each symbol’s prior context as a sort key. The entire prior context is not usually
needed for sorting; most of the time only a few previous characters will be required
to determine the lexical order of the ¢ontext. The sorted characters are coded using
a coder that exploits the locality of reference in the permuted string.

The decoder recovers the permuted string into the array P. Although the ex-
ample above showed a sorted version of P used to determine the permuted order
(the first column of Figure 2.26d), it is not necessary for this sorted array to be con-
structed explicitly. Instead, two arrays (KX and M) store it implicitly. Each different
symbol in the sorted array will occur in one contiguous group. The array KX stores
how long each group is for each symbol, and from this M is constructed, which
stores the position of the start of each group. These are easily constructed from P.

The decoding is facilitated by a link array, L, which stores the order in which
characters should be taken from P. The link array is constructed from one pass
through P using M to keep track of which occurrence of a symbol is being used.
Finally, P is traversed using the order given by L, to produce the original uncom-
pressed file.

The method used to code the permuted string is crucial to the compression per-
formance of the system. The permuted string has quite different characteristics than
normal text, and a specialized coding method is called for. A context-based coder is
not appropriate because almost all of the contextual information has been removed
by the permutation. As mentioned earlier, one suitable method is to use:a move-to-
front coder, which assigns a higher probability to characters that have occurred re-
cently in the input. For text files, the position numbers in the move-to-front list usu-
ally follow an inverse square frequency distribution, which the coder must exploit.
A variety of codes have been proposed for this, including zeéro-order arithmetic or
Huffman coding or even fixed codes that approximate a typical distribution.

Figure 2.25 indicates that the sorted contexts correspond quite closely to the PPM
method. For example, the context chillie appears adjacent to the context foilie, which
was the longest matching PPM context (order-4) and predicts an s after llie. This
came up in coding the same character in the example of PPM coding (page 62).
In fact, block sorting is very closely related to the PPM* method, which is a vari-
ant of PPM that allows arbitrary-length contexts. Not surprisingly, in practice the
compression performance of block serting is similar to'that of PPM-based methods.

Dynamic Markov compression
Dynamic Markov compression (DMC) is a modeling technique based on a finite-
state model (Cormack and Horspool 1987). Such a model is often called a Markov
model after the Russian mathematician A. A. Markov (1856—1922). DMC is capable
of achieving compression comparable to that of PPM, making it one of the better
compression methods currently known. Itis also quite easy to implement 2 working
version-of DMC, although it tends to be slow unless some effort is put into making
it efficient.

DMC is adaptive. Both the probabilities and the structure of the finite-state ma-
chine change as coding proceeds. Figure 2.28 shows a model created by DMC. The
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Figure 228 A model generated by the DMC method.

Figure 229 A simple injtial model for DMC.

input alphabet comprises single bits, rather than bytes. Each transition out of a state
records how often it has been traversed, and these counts are used to estimate the
probabilities of the transitions. For example, the transition out of state 1 labeled
0/5 indicates that a O bit in state 1 has occurred five times. The decoder constructs
an identical model using the symbols decoded and keeps track of which state the
encoder is in. In practice, the values on the transitions are not necessarily integers
because counts are divided up when states are cloned, as explained later.

The zero-frequency problem is avoided by initializing unused transitions to a
count of one. Probabilities are estimated using the relative frequencies of the two
transitions out of the current state. For example, if an encoder using the model in
Figure 2.28 is in state 2 and the next input bit is a 0, then that input is coded with
a probability of 3/(2 + 3) = 0.6, corresponding to-0.737 bits. The count on the 0
transition is then incremented to 4, and the transition is followed so that state 3 is
now the current state. The next input bit is coded from this new state.

The adaptation of the structure of a DMC model is achieved by a heuristic called
cloning. In its simplest form, DMC starts with the elementary model shown in Fig-
ure 2.29. When a transition appears to be heavily used, the state that it leads to is
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Figure 2.30 The DMC cloning operation.

cloned into two states. Figure 2.30 shows the cloning of state ¢. The heavy use of
the transition into it from state u has triggered the cloning, and so a new state, ¢/,
is created. The transition from state u now goes to t’, while transitions from other
states (v and w) to ¢ remain the same. The transitions out of state ¢ are set to be the
same as those out of state £. The counts on the transitions out of ¢/ are in the same
ratio as the counts out of £, and the counts for the transitions out of ¢ and #' are
adjusted so that their sum is equal to thé sum of courits on transitions coming in.
This is a logical equivalent of Kirchoff’s law for electrical circuits, which states that
the algebraic sum of the currents flowing into any node must be zero. The extended
structure means that a new state is now available to record independent probabili-
ties for symbols occurring after a transition from state u to state ¢, Previously, these
probabilities were confused with those of states v and w.

The encoding algorithm for DMC is shown in Figure 2.31. The structure of the
finite-state machine is stored using the array T'. Entry T'[t][e] in the array stores
the state reached on transition e out of state £. The array C[t][e] storés the number
of times the input has traversed transition e out of state ¢, with one added to avoid
the zero-frequency problem. Initially there is just one state, number 1, with both
transitions going to state 1 (although more sophisticated initial models could be
used). Linking in a new cloned state requires just three assignments to the entries in
T, plus some work to redistribute the counts. The pseudocode shown here contains
most of the details for implementing a DMC model—just a little over a dozen lines
of codé are required, with a simple data structure. The decoder is similar.

Being a finite-state model rather than a finite-context model, DMC is potentially
more powerful than, for example, PPM. However, it has been shown that the choice
of initial models and the nature of the cloning heuristic mean that énly finite con-
texts are generated (Bell and Moffat 1989). This is borne out in the compression
performance of DMC, which is similar to that of PPM.

The use of bits rather than bytes simplifies the implementation of DMC, al-
though it has the disadvantage that every bit in the input must be coded individ-
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To encode using the DMC method,
1. Set s ¢— 1. /* the current number of states */
2. Sett < 1. /* the current state */
3. Set T[1][0] <- 1and T[1][1] < 1. /* initial model */
4. Set C[1][0] < 1 and C[1][1] < 1. /* set counts to 1 to avoid
zero-frequency problem */
5. For each input bit e do
(a) Setwu < t.
(b) Sett «+ T'[u]le]. /* follow the transition */
(c) Code e with probability C[u][e] /(C[u][0] + C[u][1]).
(d) Set Clu]le] < Clulle] +1.
(e) If cloning thresholds are exceeded then
Set s +— 5+ 1 /* the new state (/) */,
Set T'[ul[e] + s,
Set T'[s][0] « T'[¢]1[0],
Set T'[s][1] < T'[£][1], and
Move some of the counts from C[¢] to C[s].

Figure 231 Encoding using DMC.

ually, and this can be slow. Bitwise DMC is probably one of the easiest models
to implement—only a few lines of code are needed to perform the counting and
cloning—yet DMC is one of the best compression methods in terms of compres-
sion performance. Its speed can be improved by adapting it to work with bytes
rather than bits, but this requires more sophisticated data structures to avoid ex-
cessive memory usage. In this case, the implementation effort becomes compa-
rable to that of other high-performance methods, such as PPM, and the differ-
ence between the two methods—both in implementation effort and compression
efficiency—Dbecomes small.

Woerd-based compression

Word-based compression methods parse a document into “words” (typically, con-
tiguous alphanumeric characters) and “nonwords” (typically, punctuation and
white-space characters) between the words. The words and nenwords become the
symbols to be compressed. There are various ways to compress them. Generally, the
most effective approach is to form a zero-order model for words and another for
nonwords. It is assumed that the text consists of strictly alternating words and non-
words (the parsing method néeds to ensure this), and so the two models are used
alternately. If the models are adaptive, a means of transmitting previously unseen
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words and nonwords is required. Usually, some éseape symbol is transmitted, and
then the novel word is spelled out character by character. The-explicit characters can
be compressed using a simple model, typically a zere-order model of the characters.

Although this approach seems to be specific to textual documents, it does not
perform too badly on other types of data. This is because if few “words” are found,
then the model effectively reverts to the simple zero-order model of characters, and
for nontextual data such as images, this sort of model is reasonably appropriate.
A well-tuned word-based compressor can achieve compression performance close
to that of PPM, and it has the potential to be substantially faster because it codes
several characters at a time.

There are many different ways to break English text into words and the interven-
ing nonwords.? One scheme is to treat any string of contiguous alphabetic charac-
ters as a word and anything else as a nonword. More sophisticated schemes.could
take into account punctuation that is part of a word, such as apostrophes and hy-
phens, and even accommodate some likely sequences, such as a capital letter follow-
ing a period. This kind of improvement does not have much effect on compression
but may make the resulting list of words more useful for indexing purposes in a
full-text retrieval system.

One ‘aspect of parsing that deserves attention is the processing of numbers. If
digits are treated in the same way as letters, a sequence of digits will be parsed as
a word. This can cause problems if a document contains many numbers—such as
tables of financial figures. The same situation occurs, and can easily be overlooked,
when a large document contains page numbers—with 100,000 pages, the page num-
bers will generate 100,000 “words,” each of which occurs only once. Such a host of
unique words can have a serious impact on opération: in an adaptive system, each
one must be spelled out explicitly, and in a static system, each. will be stored in the
compression model. In both cases this is grossly inefficient because the frequency
distribution of these numbers is quite different from the frequency distribution of
normal words for which the system is designed. One solution is to limit the length
of numbers to just a few digits. Longer numbers are broken up-into shorter ones,
with a null punctuation marker in between. This moderates the vocabulary gener-
ated by the numbers and can result in considerable savings in decode-time memory
requirements.

‘Word-based schemes can generate a large number of symbels since there is a dif-
ferent symbol for each word and word variant that appears in the text being coded.
This means that special attention must be given to efficient data structures for stor-
ing the model. In a static or semi-static situation, a canonical Huffman code is

Note, however, that not all languages are so cooperative. Most Asian languages are written
and stored without any equivalent of the white-space characters that are taken for granted
in English, and they are very difficult to segment into words. For compression purposes,
this:is not a serious handicap, as-other methods ¢an be-used. But for infermation retrieval
purposes (see Chapter 4), where discrete words are employed as the terms used to search for
documentsrelevant to a query, segmentation is an important problem indeed.
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ideal. It provides efficient decoding, and because even the most common words
occur with a relatively low frequency, coding inefficiency'is small. Details of exactly
such a scheme are given in Section 9.1.

This section has described a relatively small selection of symbolwise models for
compression. Many other models have been proposed. They are generally based on
the principles discussed above and differ chiefly in how they compromise between
speed, memory requirements, and compression performance. The “Further read-
ing” section at the end of this chapter cites books and surveys that discuss some of
these methods in more detail.

Dictionary models

Dictionary-based compression methods use the principle of replacing substrings in
a text with a codeword that identifies that substring in a dictionary, or codebook. The
dictionary contains a list of substrings and a codeword for each substring. This type
of substitution is used naturally in everyday life, for example, in the substitution
of the number 12 for the word December, or representing “the chord of B minor
with the seventh added” as Bm7. Unlike symbolwise methods, dictionary methods
often use fixed codewords rather than explicit probability distributions because rea-
sonable compression can be obtained even if little attention is paid to the coding
component.

The simplest dictionary compression methods use small codebooks. For exam-
ple, in digram coding, selected pairs of letters are replaced with codewords. A code-
book for the AScII character set might contain the 128 ASCII characters, as well as
128 common letter pairs. The output codewords are eight bits each, and the pres-
ence of the full ASCII character set in the codebook ensures that any input can be
represented. At best, every pair of characters is replaced with a codeword, reducing
the input from seven bits per character to four bits per character. At worst, each
seven-bit character will be expanded to eight bits. Furthermore, a straightforward
extension caters to files that might contain some non-ASCII bytes—one codeword
is reserved as an escape, to indicate that the next byte should be interpreted as a
single eight-bit character rather than as a codeword for a pair of ASCII characters.
Of course, a file consisting of mainly binary data will be expanded significantly by
this approach; this is the inevitable price that must be paid for use of a'static model.

Another natural extension of this system is to put even larger entries in the
codebook—perhaps common words, like and and the, or common components of
words, such as pre and tion. Strings like these that appear in the dictionary are some-
times called phrases. A phrase may sometimes be as short as one or two characters,
or it may iniclude several words. Unfortunately, having a dictionary with a predeter-
mined set of phrases does not give very good compression because the entries must
usually be quite short if input independence is to be achieved. In fact, the more
suitable the dictionary is for one sort of text, the less suitable it'is for others. For
example, if this book wete to be compressed, then we would do well if the codebook
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contained phrases like compress, dictionary, and even arithmetic coding, but such a
codebook would be unsuitable for a text on, say, business management.

One way to avoid the problem of the dictionary being unsuitable for the text at
hand is to use a semi-static dictionary scheme, constructing a new codebook for
each text that is to be compressed. However, the overhead of transmitting or stor-
ing the dictionary is significant, and deciding which phrases should be put in the
codebook to maximize compression is a surprisingly difficult problem.

The elegant solution to this problem is to use an adaptive dictionary scheme.
Practically all adaptive dictionary compression methods are based on one of just
two related methods developed by Jacob Ziv and Abraham Lempel in the 1970s (Ziv
and Lempel 1977, 1978). We label the methods LZ77 and LZ78, respectively; after
the years in which they were published; some authors refer to the two methods as
LZ1 and LZ2, respectively. They are only rarely referred to as being “ZL” methods,
even though this is the ordering of the authorship of the seminal papers in which
they are described. These methods are the basis for many schemes that are widely
used in utilities for compressing and archiving, although they have undergone much
fine-tuning since their invention.

Both methods use a simple principle to achieve adaptivity: a substring of text is
replaced with a pointer to where it has occurred previously. Thus, the codebook is
essentially all the text prior to the current position, and the codewords are repre-
sented by pointers. The prior text makes a very good dictionary since it is usually in
the same style and language as upcoming text; furthermore, the dictionary is trans-
mitted implicitly at no cost because the decoder has access to all previously encoded
text. The many variants of Zjv-Lempel coding differ primarily in how pointers are
represented and in the limitations they impose on what the peointers are able to
refer to.

The LZ77 family of adaptive dictionary coders

One of the key features of LZ77 (Ziv and Lempel 1977) and its'successors is that it
is relatively easy to implement, and decoding can be performed extremely quickly
using only.a small amount of memory. For these reasons it is particularly suitable
when theresources required for decoding must be minimized, such as when data is
distributed or broadcast from a central source to a number of small computers.

Like many compression methods, LZ77 is most easily explained in terms of its
decoding. Figure 2.32 shows some output from an LZ77 encoder, supposing for
the purposes of the example that the input alphabet consists of just as and bs. The
output consists of a series of triples. The first component of a triple indicates how
far back to look in the previous (decoded) text to find the next phrase, the second
compenent records how long the phrase is, and the third gives the next character
from the input. The first two items constitute a pointer back into the text. Strictly,
the third is necessary only when the'character'to be coded does not occur anywhere
in the previous input; it is included in every triple for the sake of simplicity.

In Figure 2.32, the characters abaabab have already been decoded, and the next
characters to be decoded are represented by the triple (5, 3, b). Thus the decoder



16

CHAPTER TWO: TEXT COMPRESSION

encoder

<0,0,a> <0,0,b> <2,1,a> <3,2,b> <5,3,b> <1,10,a>
output

—

oot [2lp[alalo[a[=[ T [ [T T]

Figure 232 Example of LZ77 compression.

goes back five characters in the decoded text (to the third one from the start) and
copies three characters, yielding the phrase aab. The third item in the triple, b, is
then added to the output. The next triple, (1,10, a), is a recursive reference. To
decode it, the decoder starts copying from one character back (the:b) and copies
the next 10 characters. Despite the recursive reference, each of the characters will
be available before it is needed, yielding 10 consecutive bs. In this way, a kind of
run-length coding is achieved.

1Z77 places limitations on how far back a pointer can refer and the maximum
size of the string referred to. For English text there is little advantage in allowing
the reach of pointers to exceed a window of a few thousand characters. For exam-
ple, if the window is limited to 8,192 characters, then the amount of text it holds is
equivalent to several book pages, and the first component of the triple can be rep-
resented in 13 bits. Extending the reach of the pointer beyond this makes more text
available for referencing, but the gain is generally offset by the extra cost of storing
the pointer. The second component of the triple, the length of the phrase, is also
limited, typically to about 16 characters. Again, matches longer than this are rare
and do not justify allocating extra space to the number representifig the length of
the phrase.

Algorithms for LZ77 encoding and decoding are shown in Figure 2.33. The
search for a match may return a length of zero, in which case the position of the
match is not relevant. Notice that the decoder is simply a small loop that copies
from an array. In practice the array can be a circular buffer of W characters, and
characters are written to the output as they are decoded.

The LZ77 method has gradually been refined into systems that have fast imple-
mentations and give good compression. There are some straightforward ways to
improve the method described above. It is common to use different representa-
tions for the pointers. For the first component (the offset), it can be effective to use
shorter codewords for recent matches and longer codewords for matches further
back in the window, because recent matches are more common than distant ones.
The second component of a pointer (the match length) can be represented more ef-
ficiently with variable-length codes that use fewer bits to represent smaller numbers.
Also, in many schemes the third element of the triple, the character, is included only
when necessary. For example, a-one-bit flag can be used to indicate whether the next
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To encode the text S[1... N] using the LZ77 method, with a sliding window of W
characters,

1. Setp <— 1. /* the next character of S to be coded */
2. While there is text remaining to be coded do
(a) Search for the longest match for S[p...]inS[p— W ...p— 1]
Suppose that the match occurs at position m, with length [.
(b) Output the triple (p — m, I, S[p + 1]).
(c) Setp—p+1+1.
To decode the text S[1 ... N] using the LZ77 method, with a sliding window of W
characters,
1. Setp <— 1. /* the next character of .S to be decoded */
2. For each triple (f,, ¢) in the input do
(a) SetS[p...p+l—1]1+Slp—f...p—f+[—1].
(b) SetS[p+1] + c
(c) Setp —p+1+1.

Figure 2:33 Encoding and decoding using LZ77.

Figure 2.34 Coding of Hardy’s book using an LZ77-type method.

item in the output is a pointer (offset and match length) or a character. Figure 2.34
shows how part of the Hardy book is coded using an LZ77-baséd method. Boxes are
drawn around characters that can be coded as pointers. The rest of the characters
could not be coded econormically as part of a pointer and were transmitted as “raw”
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characters. It is interesting to compare this coding with the one shown in Figure 2.24
on page 64, which shows the PPM algorithm: both methods tend to have difficulty
with the same parts of the text.

Encoding for LZ77 involves searching the window of prior text for the longest
match with the upcoming phrase. A naive linear search is very time-consuming
and can be accelerated by indexing the prior text with a suitable data structure,
such as a trie;* hash table, or binary search tree. A simple but effective method of
searching is to use an index of pairs of characters in the window. Each entry in the
index is the head of a linked list that points to each eccurrence of the given pair
of characters in the window. This can greatly decrease the number of matches that
need to be evaluated. The index could be a two-dimensional array, a hash table, ora
structure that stores just the more popular character pairs. Speed can be guaranteed
at the expense of slight compression loss by limiting how much of the linked list is
searched. The characters in the window can be stored in a circular buffer, so very
little data movement is required to maintain the window.

Decoding for LZ77-type methods is very fast because each character decoded re-
quires just one array lookup; moreover, the array is small compared to the cache
size of current computers, so the lookup is likely to be very fast. The decoding pro-
gram is very simple, so it can be included with the data at very little cost—in fact,
the compressed data is stored as part of the decoder program, so the user sees just
one file. This makes the data self-expanding, in that the original compression soft-
ware is not needed to read it. For example, a compressed file could be downloaded
from a network and expanded without needing any extra software. It is common to
distribute files using this technique. When executed, this “program” generates the

original file or files, greatly simplifying the distribution and installation of software
and data.

The gzip variant of LZ77

One of the higher-performance compression methods based on LZ77 is gzip, dis-
tributed by the Gnu Free Software Foundation in Cambridge, Massachusetts (Gailly
1993). It contains many worthwhile refinements and so is described in a little more
detail here.

Gzip uses a hash table to locate previous occurrences of strings. The next three
characters to be coded are hashed, and the resulting value is used to look up a table
entry. Thisis the head of a linked list that contains places whete the three characters
have occurred in the window. At the expense of a small loss in compression, the
length of the linked list is restricted to prevent search time from growing too much.
The size of the limit on the list length can be chosen at encoding time, so that the
speed/compression trade-off is made by the user. Having a limit is particularly im-
portant if the input contains long runs of the same character because this results in
a very long list of references. Long lists are time-consuming to maintain and are un-

A trie is a multiway tree with a path for each string inserted in it, which allows rapid location
of strings and substrings, and is discussed in more detail on page 80.
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necessary because the first few items in the list will usually be more than sufficient to
find a good match. Compression can be improved slightly by storing recent occur-
rences at the beginning of the linked list, in order to favor recent matches. Matches
are represented in the encoded file by a pointer consisting of an offset and a length.
If no suitable previous occurrence can be found, a raw character is transmitted. The
offset of a pointer is represented using a Huffman code so that more frequent offsets
(usually recent ones) are coded in fewer bits. The match length is represented by
another Huffman code, and the same code is also used for raw characters. It may
seem contradictory to combine the match lengths and raw characters into one code,
but in fact this gives better compression because if they were separated, an extra bit
would need to be transmitted to indicate whether the next input is a match length
cor a character; the combined code, however, can use less than one bit on average.
The match length is sent before the offset of a pointer so that the decoder can tell
whethier a pointer or a raw character is being transmitted.

As described so far, the matching algorithm for gzip is “greedy”—it codes the
upcoming characters as a pointer if at all possible. Sometimes, long-term compres-
sion is actually better if a raw character is transmitted, even though a pointer could
beused. This occurs when the use of a raw character gives a better match for the
characters immediately following the one about to be coded. If the user specifies
that compression is more important than speed, gzip checks for this situation and
transmits a raw character if that yields better compression in the long run.

The Huffman codes for gzip are generated semi-statically. Blocks of up to 64
Kbytes from the input file are processed at-a time. The appropriate canonical Huff-
man codes are generated for the pointers and raw characters, and a code table is
placed-at the beginning of the compressed form of the block. This means that gzip is
not really a single-pass method. However, the blocks are small enough to be held in
memory. As a result, the input file need be read only once, and the program behaves
as if it operates in one pass.

Because of the fast searching algorithm and compact output representation based
upon Huffman codes, gzip outperforms most other Ziv-Lempel methods in termsof
both speed and compression effectiveness. One implementation that is faster is the
LZRW1 method, which achieves extremely fast encoding and decoding by limiting
the search of previous text to just one candidate phrase:(Williams 1991b). As with
gzip, a hash table is used to locate previous occurrences of triples of characters. How-
ever, the table has just one entry for each hashed value, so a collision results in the
previous phrase at that hash location being lost. Further time is saved by updating
the hash table only with triples that begin a coded phrase; that is, it is updated only
once per phrase coded, rather than once per byte in the input. Simple byte-aligned
binary codes are used for all output components. This ruthless housekeeping re-
sults in considerable speed, at the price of compression performance. Performance
measurements: for these methods are given in Section 2.8.

The LZ78 family of adaptive dictionary coders
In contrast to.the LZ77 method, in which poeinters can refer to any substring in the
window of prior text, the LZ78 method (Ziv and Lempel 1978) places restrictions
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encoder <0,a> <0,b> <1l,a> <2,a> <4,a> <4,b> <2,b> <7,b> <8,b>
output

decoder B b, aa, ba, baa,
output

phrase 1
phrase 2
phrase 3
phrase 4
phrase 5

Figure 235 A string compressed by LZ78.

on which substrings can be referenced. However, it does not have a window to
limit how far back substrings can be referenced. By restricting the set of strings
that can be referenced, LZ78 avoids the inefficiency of having more than one coded
representation for the same string, which occurs frequently in LZ77 methods since
the window will often contain many repeated substrings.

Figure 2.35 shows a string being decoded by LZ78. The text prior to the current
coding position has been parsed into substrings, and only these parsed phrases can
be referenced. They are numbered in sequence, so phrase number 1 is , number 2
is b, number 3 is aa, and so on. The characters about to be encoded are represented
by the number of the longest parsed substring that the characters match, followed
by an explicit character. The next part of the encoder output to be decoded is the
pair (4, b), which represents phrase 4 (ba) followed by a b. The characters just de-
coded (bab) are added to the dictionary as a new phrase, number 6. The remaining
pairs represent a run of consecutive bs. The code (2,b) represents bb, and in the
remainder of the example the phrases used to code the run. gradually increase in
length, one character at a time.

Phrase 0 is the empty string, so if there is no match with a previous phrase then
the next character, say, ¢, can always be coded as (0, ¢).

The parsing strategy can be implemented efficiently by storing the phrases in a
trie data structure (sometimes also known as a digital search tree). Figure 2.36 shows
the trie for the parsed phrases of Figure 2.35. The characters of each phrase specify
a path from the root of the trie to the node that contains the number of the phrase.
The characters that are about to be encoded are used to traverse the trie until the
path is blocked, either because there is no onward path for the indicated character
or because a leaf is reached. The node at which the block occurs gives the phrase
number to output. The next character from the input is then used to add a new
node below this one, and this is how new phrases are added to the codebook. In the
example, when the phrase bab was being encoded, the first two characters (ba) were
used to traverse the trie to node 4, and then the extra branch from this node was
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Figure 2.36 Trie data structure for LZ78 coding.

added to create node 6 (shown shaded in Figure 2.36). Thus, the longest previous
phrase (phrase 4) is found, and the structure is updated with the new phrase at the
same time. In practice, the multiway branches of a trie are tricky to implement
efficiently because most nodes have relatively few children if the input alphabet is
large, requiring an efficient representation for the sparse array of pointers. It can
be faster and simpler to use a hash table in which the current node number and the
next input character are hashed to determine where the next node can be found.

The data structure for an LZ78 compressor continues to grow throughout cod-
ing, and eventually growth must be stopped to avoid using too much memory.
Several strategies can be used when memory is full. The trie can be removed and
reinitialized; it can be used as it is, without further updates; or it can be partially
rebuilt using the last few hundred bytes of coded text, thereby avoiding much of the
léarning penalty of starting again from scratch.

Although encoding for LZ78 can be faster than for LZ77, decoding is slower be-
¢ause the decodeér must also store the parsed phrases. Nevertheless, the scheme
is attractive, and one of its variants, LZW, forms the basis of several widely used
compression systems.

The LZW variant of LZ78
LZW {Welch 1984) is one of the more popular variants of Ziv-Lempel coding, partly
because the paper describing it is more accessible than Ziv and Lempel’s 1978 one in
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encoder b a ab ab ba aba abaa
input
encoder
output 97 98 97 128 128 129 131 134
o
s Q p ©
o d
4 8§ & 4 9 88 3
new phrase ) " I i I i
AT NN
dictionary N 2 o 2 @ 9 9
o g g o g © ]
= =y £ < < < S
[=% Q. [+ % [N Q. [=% [N

Figure 237 Example of LZW coding.

which the original idea was proposed. It has been used as the basis of several pop-
ular programs, including the Unix compress program and some personal computer
archiving systems.

The main difference between LZW and LZ78 is that LZW encodes only the phrase
numbers and does not have explicit characters in the output. This is made possi-
ble by initializing the list of phrases to include all characters in the input alphabet,
A new phrase is constructed from a coded one by appending the first character of
the next phrase to it. Figure 2.37 shows a string that has been partially coded. The
phrases are numbered from 128 because 0 to 127 are used to represent the 128 char-
acters of the ASCII alphabet. Each phrase is coded as a single number that identifies a
previously parsed phrase. For example, the eighth and ninth characters, ba, are rep-
resented by transmitting the number 129 to identify a phrase that was constructed
earlier. The new phrase to be added after the ba is received is constructed by adding
the next character, a (not yet coded), to the phrase, creating the new phrase baa,
which is number 133. Next, the phrase aba is coded as the number 131. It is only at
this point that the decoder can construct phrase 133 because it needs to use the first
character of phrase 134 (abaa).

This lag in construction of phrases is not a problem unless a new phrase is used
by the encoder immediately after it is constructed. The last phrase in Figure 2.37
shows how this situation can arise for the decoder. The fixst seven phrases have been
decoded, and the phrase abaa (number 134) has just been added to the encoder’s
dictionary. The decoder does not yet know what the last character of the phrase
is, so it cannot be added to the decoder’s dictionary. The next input codeword,
134, now requires the use of the new phrase. Fortunately, the decoder knows the
beginning of the new phrase—it is aba—and the last (currently-unknown) character
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To encode the text S[1... V] using the LZW method,
1. Setp < 1. /* the next character of S to be coded */
2. For each character d € 0...qg — 1 in the alphabet do /* initial dictionary */
Set D[d] < character d.

3. Setd < g — 1. /* d points to the last entryin the dictionary */
4. While there is text remaining to be coded do

(a) Search for the longest match for S{p...]in D.
Suppose that the match occurs at entry ¢, with length [.

(b) Output the code c.
(¢) Setd < d+1./* add an entry to the dictionary */
(d) Setp +— p+1.
(e) SetD[d] + Dle] ++ S[p]. /* concatenation */
To decode using the LZW method,
1. Setp < L. /* the next character of S to be decoded */

2. For each character d € 0...¢ — 1 in the alphabet do
Set D[d] + character d.

3. Setd < g — 1. /* d points to the last entry in the dictionary */
4. For each code c in the input do
(a) Ifd # (g — 1) then /* first time is an exception */
Set last character of D[d] < first character of D[c].
(b) Output D|c].
(e) Setd < d+ 1./* add an entry to the dictionary */
(d) Set D[d] + Dlc] ++ 2. /* last character is currently unknown */

Figure2.38 Encoding and decoding using LZW.

of the phrase is the first character of the next phrase (number 135). Since phrase
135 will be constructed by appending one character to phrase 134, phrase 135 must
begin with the same character as phrase 134, an a. Thus, phrase 134 must be abaa,
and decoding can proceed. In fact, whenever a phrase is referenced as soon as the
encoder has constructed it, the last character of the phrase must be the same as its
first, so the decoder can construct the phrase too: Despite the slight inelegance of
having to deal with this exception, LZW gives good compression and is relatively
easy to implement efficiently.

The LZW algorithms for encoding and decoding are shown in Figure 2.38. The
dictionary D is initialized to contain the-qg symbols in the alphabet (typically g =
256 for bytewise coding). The text is coded by looking for the longest match in
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Figure 2.39 Phrases parsed by Unix compress coding the Hardy book.

the dictionary, and a new entry is created at each step by concatenating the next
input symbol with the code just used (concatenation of strings is represented by
“++”). The decoder begins with the same initial dictionary and adds an entry each
time an input code is processed. However, the last character of the last entry in the
dictionary (entry d) is unknown until the next code is read from the input, and it is
represented by a question mark in Figure 2.38.

There are several variants to LZW, which are the result of fine-tuning. The Unix
utility compress is one of the more widely used variants. Here, the number of bits
used to indicate phrases is gradually increased instead of using more bits than neces-
sary when there are few phrases in the dictionary. Compress also places a maximum
on the number of phrases that are constructed, which in turn limits the amount of
memory required for coding. When the dictionary is full, adaptation ceases. Com-
pression performance is monitored, and if it deteriorates significantly, the dictio-
nary is cleared and rebuilt from scratch. Figure 2.39 shows how the Hardy book is
parsed into phrasés by compress. A box is drawn around each phrase-that is trans-
mitted. This segment is from the end of the book, and each phrase is represented in
15 bits. The dictionary contains many common phrases at this stage; such as never
and ave been. Only rarely is a single character coded as a 15-bit reference, and whole
words are often represented by a single pointer.

Many other variations on Ziv-Lempel coding have been proposed. They can be
classified according to how they parse strings from the input, héw they represent
pointers in the output, and how they prevent the dictionary from using too much
memory. Hybrids of LZ77 and LZ78 have also been described; these build up a
limited list of previous strings that can be referenced but also allow the length of the
string to be specified so that partial matches can be used.



