
Section 3.1

APPROXIMATE
SOLUTIONS WITH
GUARANTEED
PERFORMANCE

variables, that Program 3.1 always satisfies at least c/2 clauses. Since no
optimal solution can have value larger than c, the theorem will follow.
The result is trivially true in the case of one variable. Let us assume that

it is true in the case of n−1 variables (n> 1) and let us consider the case
in which we have n variables. Let v be the variable corresponding to the
literal which appears in the maximum number of clauses. Let c1 be the
number of clauses in which v appears positive and c2 be the number of
clauses in which v appears negative. Without loss of generality suppose
that c1 ≥ c2, so that the algorithm assigns the value TRUE to v. After
this assignment, at least c− c1− c2 clauses, on n− 1 variables, must be
still considered. By inductive hypothesis, Program 3.1 satisfies at least
(c−c1−c2)/2 such clauses. Hence, the overall number of satisfied clauses
is at least c1+(c− c1− c2)/2≥ c/2. QED

Within the class NPO, the class of problems that allow polynomial-time
r-approximate algorithms (or, equivalently, !-approximate algorithms)
plays a very important role. In fact, the existence of a polynomial-time
r-approximate algorithm for an NP-hard optimization problem shows that,
despite the inherent complexity of finding the exact solution of the prob-
lem, such a solution can somehow be approached.

APX is the class of all NPO problems P such that, for some r ≥ 1, there ! Definition 3.9
Class APXexists a polynomial-time r-approximate algorithm for P .

As shown above and in the previous chapter, MAXIMUM SATISFIABIL-
ITY, MAXIMUM KNAPSACK, MAXIMUM CUT, MINIMUM BIN PACK-
ING, MINIMUM GRAPH COLORING restricted to planar graphs, MINI-
MUM SCHEDULING ON IDENTICAL MACHINES, and MINIMUM VERTEX
COVER are all in APX.
The definition of the class APX provides a first important notion for char-

acterizing NPO problems with respect to their degree of approximability.
For several important NPO problems, in fact, it can be shown that they do
not allow any r-approximate algorithm, unless P = NP. In other words,
for these problems, approximate solutions with guaranteed performance
are as hard to determine as the optimal solutions. This means that, under
the hypothesis that P #= NP, the class APX is strictly contained in the class
NPO.
In the next subsection we will show that MINIMUM TRAVELING

SALESPERSON is a problem for which determining approximate solutions
with constant bounded performance ratio is computationally intractable.
Other NPO problems that do not belong to APX, such as MAXIMUM
CLIQUE and MAXIMUM INDEPENDENT SET, will be seen in Chap. 6,
where some techniques needed to prove such results will also be provided.

93

Roberto Grossi

Chapter 3

APPROXIMATION
CLASSES

at most four colors (see Bibliographical notes), the problem of deciding whether
a planar graph is colorable with at most three colors is NP-complete. Hence, in
this case, the gap is 1/3 and we can hence conclude that no polynomial-time r-
approximate algorithm for MINIMUM GRAPH COLORING can exist with r< 4/3,
unless P = NP. Actually, much stronger results hold for the graph coloring prob-
lem: it has been proved that, if P #= NP, then no polynomial-time algorithm can
provide an approximate solution whatsoever (that is, MINIMUM GRAPH COLOR-
ING belongs to NPO−APX).

The considerations of the previous example can be extended to show
that, for any NPO minimization problem P , if there exists a constant k
such that it is NP-hard to decide whether, given an instance x, m∗(x) ≤ k,
then no polynomial-time r-approximate algorithm for P with r< (k+1)/k
can exist, unless P = NP (see Exercise 3.8). Another application of the
gap technique has been shown in the proof of Theorem 3.3: in that case,
actually, we have seen that the constant gap can assume any value greater
than 0. Other results which either derive bounds on the performance ratio
that can be achieved for particular optimization problems or prove that a
problem does not allow a polynomial-time approximation scheme can be
obtained by means of a sophisticated use of the gap technique. Such results
will be discussed in Chap. 6.

3.2 Polynomial-time approximation schemes

AS WE noticed before, for most practical applications, we need to ap-
proach the optimal solution of an optimization problem in a stronger

sense than it is allowed by an r-approximate algorithm. Clearly, if the
problem is intractable, we have to restrict ourselves to approximate solu-
tions, but we may wish to find better and better approximation algorithms
that bring us as close as possible to the optimal solution. Then, in order
to obtain r-approximate algorithms with better performances, we may be
also ready to pay the cost of a larger computation time, a cost that, as we
may expect, will increase with the inverse of the performance ratio.

Let P be an NPO problem. An algorithm A is said to be a polynomial-time! Definition 3.10
Polynomial-time
approximation scheme

approximation scheme (PTAS) for P if, for any instance x of P and any ra-
tional value r> 1, A when applied to input (x,r) returns an r-approximate
solution of x in time polynomial in |x|.

While always being polynomial in |x|, the running time of a PTAS may
also depend on 1/(r− 1): the better is the approximation, the larger may
be the running time. In most cases, we can indeed approach the optimal so-
lution of a problem arbitrarily well, but at the price of a dramatic increase

102

Roberto Grossi

Section 3.2

POLYNOMIAL-TIME
APPROXIMATION
SCHEMES

Problem 3.2: Maximum Integer Knapsack

INSTANCE: Finite set X of types of items, for each xi ∈ X , value pi ∈ Z+

and size ai ∈ Z+, positive integer b.
SOLUTION: An assignment c : X '→ IN such that "xi∈X aic(xi)≤ b.
MEASURE: Total value of the assignment, i.e., "xi∈X pic(xi).

w(Y1)≥ L≥ w(Y2) and m∗(x) ≥ L, the performance ratio of the computed
solution is

w(Y1)
m∗(x)

≤
w(Y1)
L

≤ 1+ ah
2L

≤ 1+ 1
k(r)+1

≤ 1+ 1
2−r
r−1 +1

= r.

Finally, we prove that the algorithm works in time O(n logn+ nk(r)).
In fact, we need time O(n logn) to sort the n items. Subsequently, the
first phase of the algorithm requires time exponential in k(r) in order to
perform an exhaustive search for the optimal solution over the k(r) heaviest
items x1, . . . ,xk(r) and all other steps have a smaller cost. Since k(r) is
O(1/(r−1)), the theorem follows. QED

3.2.1 The class PTAS

Let us now define the class of those NPO problems for which we can obtain
an arbitrarily good approximate solution in polynomial time with respect
to the size of the problem instance.

PTAS is the class of NPO problems that admit a polynomial-time approxi- ! Definition 3.11
Class PTASmation scheme.

The preceding result shows that MINIMUM PARTITION belongs to
PTAS. Let us now see other examples of problems in PTAS. The first exam-
ple will also show another application of the algorithmic technique of Pro-
gram 3.3, which essentially consists of optimally solving a “subinstance”
and, then, extending the obtained solution by applying a polynomial-time
procedure.
Problem 3.2 models a variant of MAXIMUM KNAPSACK in which there

is a set of types of items and we can take as many copies as we like of
an item of a given type, provided the capacity constraint is not violated
(observe that this problem is equivalent to Problem 2.8 with d = 1).

MAXIMUM INTEGER KNAPSACK belongs to the class PTAS. Theorem 3.9 "

105

Roberto Grossi

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

regardless of the truth-assignment, for each random string # for which the
verifier will reject, at least one clause in the group of clauses constructed
from A# is not satisfied. Hence there will be at least 2r(n)/2 clauses that
are not satisfied. The fraction of unsatisfiable clauses is therefore at least
(2r(n)/2)/(q− 2)2q+r(n) ≤ (2r(n)/2)/2q+r(n) = 2−(q+1), that is a constant
fraction.QED

It is important to observe that, if we have a precise information on the
number of bits queried by the verifier, the proof of the above theorem not
only shows that MAXIMUM 3-SATISFIABILITY is not in PTAS but it also
allows to explicitly derive a precise bound on the approximability of this
problem (see Exercise 6.23).

6.4.2 The maximum clique problem

In this final section, we show non-approximability results for MAXIMUM
CLIQUE. To this aim, we first show that this problem is at least as hard to
approximate as MAXIMUM 3-SATISFIABILITY.

MAXIMUM CLIQUE is not in PTAS unless P=NP.! Lemma 6.4

We will show that MAXIMUM 3-SATISFIABILITY is “reducible” to MAX-PROOF

IMUM CLIQUE in such a way that any approximate solution for the latter
problem could be transformed in polynomial time into an approximate so-
lution for the former problem having at most the same performance ratio.
From this fact and from Theorem 6.3, the lemma will follow.
Given an instance (U,C) of MAXIMUM 3-SATISFIABILITY where U is

the set of variables andC is the set of clauses, we define a graph G= (V,E)
such that:

V = {(l,c) : l ∈ c and c ∈C}

and

E = {((l1,c1),(l2,c2)) : l1 #= l2∧ c1 #= c2}

where l, l1, l2 denote literals, i.e., variables or negation of variables in U ,
and c,c1,c2 denote clauses. For any clique V ′ in G, let $ be a truth assign-
ment defined as follows: for any variable u, $(u) is TRUE if and only if a
clause c exists such that (u,c) ∈ V ′. This assignment is consistent since
no variable receives both the value TRUE and the value FALSE. In fact,
if this happens for a variable u then two clauses c1 and c2 exist such that

198

Section 6.4

USING PCP TO
PROVE NON-
APPROXIMABILITY
RESULTS

(u,c1),(u,c2) ∈V ′. From the definition of E , these two nodes are not con-
nected thus contradicting the hypothesis that V ′ is a clique. Moreover, $
satisfies any clause c containing a literal l such that (l,c) ∈ V ′: indeed,
either l = u and $(u) = TRUE or l = u and, since V ′ is a clique, there is no
clause c′ such that (u,c′) ∈ V ′, so that $(u) = FALSE. From the definition
of E the number of these clauses is equal to |V ′|. Since $ may satisfy some
more clauses, we have that m((U,C),$) ≥ |V ′|.
It remains to show that the maximum number of satisfiable clauses is

equal to the size of the maximum clique in G. Given a satisfiable set of
clauses C′ ⊆C, for any truth-assignment satisfying C′ and for any c ∈C′,
let lc be any literal in c which is assigned the value TRUE. The set of nodes
(lc,c) defined in this way is clearly a clique in G.
Hence the performance ratio of $ is no worse than the performance ratio

of V ′ and the lemma is proved. QED

By exploiting an interesting property of the MAXIMUM CLIQUE prob-
lem, known as self-improvability, we can now strenghten the previous non-
approximability result to the following.

MAXIMUM CLIQUE is not in APX unless P=NP. Theorem 6.5 "

Let us suppose that there is an algorithm A approximating MAXIMUM PROOF

CLIQUE within a constant % > 1 in polynomial time. Instead of apply-
ing A directly on an instance G = (V,E) of MAXIMUM CLIQUE, we will
transform G into another, larger, instance f (G) of MAXIMUM CLIQUE,
and apply A to f (G). Then we will use the approximate solution A (f (G))
to find a better approximate solution to G than we would have got by ap-
plying A directly to G.
As the transformation f we will use the k-th graph product of G, defined

in the following way (where k is a constant to be specified later). Let the
vertex set Vk of f (G) be the k-th Cartesian product of V . This means that
each vertex in Vk can be denoted by (v1, . . . ,vk) where vi ∈ V for every
1≤ i≤ k. The number of vertices in Vk is |V |k. There is an edge between
(v1, . . . ,vk) and (w1, . . . ,wk) in f (G) if and only if, for every 1 ≤ i ≤ k,
either vi = wi or (vi,wi) ∈ E (see Fig. 6.9).
Now suppose that there is a clique C ⊆V in G. Then it is easy to verify

that
{(v1, . . . ,vk) : vi ∈C for every 1≤ i≤ k}

is a clique in f (G) (for example, from the clique {v1,v2} of graph G
of Fig. 6.9 we obtain the clique {(v1,v1),(v1,v2),(v2,v1),(v2,v2)} of its
second product). Since this clique is of size |C|k, we have shown that
m∗(f (G))≥ (m∗(G))k.

199

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

v1

v2 v3

(v1,v1)

(v1,v2) (v1,v3)

(v2,v1)

(v2,v2) (v2,v3)

(v3,v1)

(v3,v2) (v3,v3)

(a) (b)

Figure 6.9
The graph product: (a) a
graph G and (b) its second
product

Next we suppose that there is a clique C′ ⊆Vk in f (G) with at least mk

vertices, for some integer m. There must then be a coordinate i between 1
and k such that, in the vertices of C′ written as k-tuples, there are at least
m different elements in coordinate i. Each such element corresponds to a
vertex in V , and moreover these elements must form a clique in V . Thus,
given a clique of size |C′| in f (G), we can use this procedure to find a
clique C of size at least |C′|1/k in G. Call this procedure g.
The new approximation algorithm that we get by applying g to the clique

obtained by running the approximation algorithm A on the constructed
graph f (G) has the following performance ratio:

m∗(G)
m(G,g(A (f (G))))

≤
(

m∗(f (G))
m(f (G),A (f (G)))

)1/k
≤ %1/k.

That is, for any r > 1, if we choose k ≥ log%/ log r, then we have a
polynomial-time r-approximate algorithm for MAXIMUM CLIQUE. But
Theorem 6.4 said that MAXIMUM CLIQUE is not in PTAS unless P=NP.
Thus, unless P=NP, we have a contradiction.QED

Theorems 6.3 and 6.5 are two examples of non-approximability results
that can be derived from the PCP theorem. The following chapter will be
devoted to the proof of this theorem while in Chap. 8 we will see other
non-approximability results for large classes of NP optimization problems
that do not require the explicit use of the PCP theorem but are an indirect
consequence of it.

6.5 Exercises

Exercise 6.1 Prove that the language recognized by the Turing machine of
Example 6.1 consists of all strings over the alphabet {a,b} with at least

200

