
Notes Accompanying Today’s Class in Algorithm Design

Roberto Grossi
Università di Pisa

Feb. 28, 2020

1 Bloom Filters, Cuckoo Hashing, and Succinct Rank Data
Structure

These notes are based on [3, 4]. Consider a set S of n keys chosen from a universe U .

(1) For a given (1-side) error probability 0 < f < 1, we learned that Bloom filters achieve
probability f using k ≈ (m/n) ln 2 hash functions that map U → [m]. They take O(k)
time, and use nearly (log(1/f)/ ln 2)n ≈ 1.44 log(1/f)n bits of space.

(2) We learned that Cuckoo hashing, using two hash functions h1, h2 : U → [m], achieves
worst-case constant-time lookup, by checking at most two positions indicated by these hash
functions.

(3) Today, we look at a succinct Rank data structure R, which takes as input a bitvector B
of m bits, where n of them are 1s. The constant-time supported operation is rankB(j)
which returns the number of 1s in the first j bits of B. Space is dlog

(m
n

)
e + o(m) bits for

the entire structures (no need to store B explicitly1), where dlog
(m
n

)
e is the information-

theoretic lower bound for storing a binary string of length m with n 1s (equivalently, a set
of n elements from a universe size m) [2, 1].2

1.1 First Part

We show that using the data structures (2) and (3) we can improve the bounds of Bloom filters
in 1) when S is static (i.e. S does not change over time) and log(1/f) is a power of two.

Specifically, we see how to obtain a 1-side error probability f for lookup/membership using
nearly log(6/f)n bits: as log(6/f) ≈ 2.58 + log(1/f), we have an additive constant instead of
a multiplicative in the space bound for (1), which is much better (e.g. try with f = 10−6).
Moreover we use just three hash functions and lookup takes constant time.

Fingerprints. The first idea is to choose, randomly and uniformly, a hash function h ∈ H
from a universal hash family H (as the one seen in class), where h : U → [m′].

We thus define S′ = {h(x) | x ∈ S}, where |S′| ≤ |S| = n. When we want to test, given any
y ∈ U , whether y ∈ S, we lookup h(y) ∈ S′. What is the lookup error? If y 6∈ S but h(y) ∈ S′,
we have that there exists x ∈ S such that h(y) = h(x). And we saw that the latter collision
probability is one over the range of the hash function, namley, Prh∈H{h(y) = h(x)} = 1/m′.

1We observe that log
(
m
n

)
≤ m, thus R is always preferred instead of storing B explicitly.

2Fast implementations of rankB() can be found, for example, in https://github.com/simongog/sdsl-lite.

1

Thus the probability that there exists x ∈ S such that h(y) = h(x) is n/m′ by the union bound
on x. In order to get the same error f as the Bloom filter in (1), we need to fix f = n/m′.

Given x ∈ S, note that h(x) uses logm′ = log(n/f) bits and is called its signature. The
elements of S′ require log(n/f)n bits in total: we only store S′, not S to save space as each key
in S could be very large (same motivation as Bloom filters). But still space is too much.

In the following, we want to store S′ in little additional space and access in constant-time.

Cuckoo hashing. Cuckoo hashing uses two randomly and independently chosen hash func-
tions h1, h2 ∈ H, where h1, h2 : [m′] → [m] and m = 3|S′| ≤ 3n.3 Lookup to check whether
y′ ∈ S′ takes constant time as it probes locations h1(y

′) and h2(y
′) in a table T of m entries.

Are we happy? We use fingerprint h, but this time we fix m′ = 2/f . Given any y ∈ U ,
we check whether y ∈ S by computing its fingerprint y′ = h(y) and checking whether y′ ∈ S′
in constant time. We observe that now the probability that there exists x ∈ S such that
h(y) = h(x), is 2/m′ = f by the union bound on x, as x can stay in just two positions.4

But what about the space? Since T uses m ≤ 3n entries, each capable of storing log(2/f)
bits, we use a total of 3 log(2/f)n bits, more than twice those required by the Bloom filters
in (1)!

We observe that we waste space for at least 2n empty entries of T . To put a remedy on that
we proceed as follows.

• We mark with a 1 which positions in T contains a nonempty entry, and 0 othwerise. This
yields a bitvector B of m bits, where |S′| ≤ n of them are 1s. In the following, let us
assume |S′| = n wlog. Recall that m = 3n.

• We pack the n nonempty entries of T into an array P of n entries. Note that P stores a
permuation of the elements in S′, and thus takes log(2/f)n bits.

We observe that the nonempty entries in T in left-to-right order are in 1-to-1 correspondence
with the 1s in B and the elements in P , both in left-to-right order. Thus the ith nonempty
entry in T corresponds to the ith 1 in B and the ith element in P .

Now, in order to check whether y′ ∈ S′ in constant time using cuckoo hashing, we need to
check whether T [h1(y

′)] = y′ or T [h2(y
′)] = y′. Since we do not want to use T anymore, we

equivalently perform the following test.

1. If B[h1(y
′)] = B[h2(y

′)] = 0, then y′ 6∈ S′ (and thus y 6∈ S, with no error).

2. Otherwise, let B[h1(y
′)] = 1, wlog. If B[h1(y

′)] is the ith bit 1 in B, we test whether
P [i] = y′. Same test when B[h2(y

′)] = 1.

Note that the missing piece in the puzzle is how to test if B[h1(y
′)] = 1 is the ith bit 1 in

B. Letting j = h1(y
′), this requires to check whether B[j] = 1 (easy), and there are i 1s in the

first j bits of B. For the latter, we need to introduce and use the Rank succinct data structure
in (3).

Rank data structure. The input is a bitvector B of m bits, where n of them are 1s. We
want to replace B with a succinct Rank data structure R that answser constant-time rankB(·)
queries. Recall that rankB(j) returns the number of 1s in the first j bits of B. Note that
B[j] = 1 iff rankB(j) 6= rankB(j − 1), so it is enough to store R in place of B.

3In class we saw that m > 2cn for any constant c > 2, but the choice m = 3n works fine as we saw.
4The union bound says that Pr(∪iAi) ≤

∑
i
Pr(Ai) for a set of events Ai.

2

The best implementations of R use dlog
(m
n

)
e+ o(m) bits. Thus we can replace T in cuckoo

hashing with P and R. Hence, we can simulate Bloom filters with our claimed bounds, storing
three hash functions h, h1, h2, which take O(log(1/f)+log n) bits, plus P , which takes log(2/f)n
bits, plus R, which takes dlog

(m
n

)
e+o(m) ≈ n log(m/n) +o(m) = n log 3 + 0(n) bits as m = 3n.

Overall this is log(6/f)n+ o(n) bits as claimed.
In the class, we described a less space-efficient implementation of R for illustrative purposes.

It uses 3m+ o(m) bits, but it gives an idea on how R works.
Let ` = (1/2) logm. We build, using the so-called Four-Russians trick, a two dimensional

table L of 2` × ` = O(
√
m logm) entries. Entry L[α, j′′] returns the number of 1s contained in

the first j′′ bits of binary string α. We build L by brute force, generating all binary strings α
of length `, and scanning each of them for each j′′. Since there are 2` = O(

√
m) such strings α,

we take O(
√
mpolylog(m)) = o(m) time to build it. Moreover, since each entry of L uses

O(log logm) bits, the space occupied by L is O(
√
m polylog(m)) = o(m) bits. Clearly, L can

be queried in constant time.
Now, consider B and partition it into chunks of ` bits each. Each chunk is a string α, so we

can use L to compute in constant time how many 1s are found in the first j′′ bits of α. Because
of that, we can conceputally see B as an array B′ of m/` chunks. We store an array C, so that
C[t] explicitly contains an integer that tells how many 1s are found in the the first t− 1 chunks
of B′. Array C uses m/` · logm = 2m bits. Hence, L, B, and C occupy a total of 3m + o(m)
bits to implement R.

In order to answer rankB(j), let us take the chunk of B within which j falls. It corresponds
to α = B′[j′], where j′ = 1 + bj/`c. Observe that the jth bit in B is the j′′th bit in α where
j′′ = 1 + j mod `. Thus we return C[j′] + L[α, j′′] as the value of rankB(j), in constant time.

1.2 Second Part

Better upper bound. Suppose that we stick to the first choice of the fingerprtins, so h :
U → [m′], where m′ = n/f , and randomly chosen as h ∈ H. We have seen that the probaility
of collision is n/m′ = f by the union bound.

Let S′ be stored in this way, that is, S′ = {h(x) | x ∈ S} (and thus |S′| ≤ |S| = n). We
already observed that S′ uses too much space as is. Instead, S′ can be equivalently seen as
a bitvector B′ of m′ bits, such that B′[i] = 1 if and only if i ∈ S′. If we use the Rank data
structure in (3), we can store succinctly B′, that is, S′, in place of S. Note that while the
universe of S is U , now the universe of S′ is [m′].

In order to query y ∈ U , we check whether B[h(y)] = 1 in constant time using the Rank
data structure in (3). The error probability is f , as discussed above. As for the space, it takes

log
(m′

|S′|
)

+ o(m′) bits, as mentioned in point (3). Since |S′| < m′/2 (otherwise we store the

complement of S′), we can bound log
(m′

|S′|
)
≤ log

(m′

n

)
. Using the approximation that log

(a
b

)
≈

b log(a/b), we obtain n logm′/n = (log(1/f)n. We show next that this bound is difficult to
improve significantly.

Lower bound. Let us see why log(1/f)n bits are needed to store S with membership error f .
This is of general interest in all applications where sets can be stored approximately to save
space (e.g. the inverted lists in search engines when estimating the number of occurrences of
searched terms).

In order to give a full picture, let U be the universe from which the keys of S are taken, and
let F ⊆ U \ S be set of false positives.5 As false positives occur with probability f , we observe
that |F | ≤ f |U |, so we can assume wlog that |F | = f |U |.

5We do not need to specify here how F is obtained as it is a lower bound. In our setting, when using h ∈ H,

3

Suppose that b is the minumum number of bits to store S approximately, so that we can
establish membership on S with error f of false positives. That is, the b bits encode sets S and
F in our terminolgy, as we provide a positive answer to membership for the elements in S ∪ F ,
rather than for the elements of S alone. Note that we can mark the false positives in F , using
not less than log

(|S|+|F |
|S|

)
bits. In other words, using b+ log

(|S|+|F |
|S|

)
bits we can store exactly S,

without any errors.
By the information-theoretic lower bound, we cannot take less than log

(|U |
|S|
)

bits: this trans-

lates into the necessary condition b+ log
(|S|+|F |
|S|

)
≥ log

(|U |
|S|
)
, from which we get

b ≥ log

(
|U |
|S|

)
− log

(
|S|+ |F |
|S|

)
.

Using the approximation that log
(a
b

)
≈ b log(a/b) and log(1 +x) ≈ log x for large x, we get that

log
(|U |
|S|
)
− log

(|S|+|F |
|S|

)
≈ |S| log |U ||S| − log |S|+|F ||S| ≈ |S| log |U ||S| − log |F ||S| = |S| log |U ||F | = |S| log |U |f |U | =

n log(1/f) ignoring lower order terms (here n = |S|).

References

[1] M. Patrascu. Succincter. In IEEE, editor, Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science: October 25–23, 2008, Philadelphia, Pennsylvania,
USA, pages 305–313. IEEE Computer Society Press, 2008.

[2] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to
encoding k -ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3(4):43, 2007.

[3] I. Razenshteyn. Cuckoo hashing for sketching sets. http://blog.ilyaraz.org/?go=all/

cuckoo-hashing-for-sketching-sets/, 2019. [Online; accessed 28-Feb-2020].

[4] R. Venturini. Simple lower bound for approximate set query. Personal communication, 2020.

we have that F = {y ∈ U \ S | there exists x ∈ S such that h(x) = h(y)}.

4

