The rsync algorithm

Filippo Geraci, lIT CNR Pisa
March 2020

https://rsync.samba.org/tech_report/tech_report.html

Roberto Grossi
Filippo Geraci, IIT CNR Pisa
March 2020

An easy problem

* | have two files A and B. | want to update B to be the
same as A

 What is the cost?
— CPU
— Data moved (reads, writes)

The problem of rsync

Slow network link

I How can | save bandmdthl

The problem of rsync

Slow network link

How can | save bandwidth?

Compression

* Typically gain a factor of 2
to4

A naive approach

HASH (B)

Beta computes a hash of
the file B and send it to
alpha

A naive approach

SEND (A) IF HASH (B) <> HASH (A)
SEND (HASH (A)) IF HASH (B) == HASH (A)

Alpha computes the hash of
A and send back to beta
either the hash (if the two
hash are the same) or the
content of A if they differ

A naive approach

Beta checks if the
message is the hash or has
to update B

A naive approach

Beta computes a hash of the file B and send it to
alpha

Alpha computes the hash of A and send back to beta
either the hash (if the two hash are the same) or the
content of A if they differ

Beta checks if the message is the hash or has to
update B

What is the cost?
What is the hash function?

Cryptographic hash

1. Deterministic

2. Quick to compute
3. Infeasible to generate a message from the

hash

. A small change in the message should
drastically change the hash

. Itis infeasible to find collisions

Cryptographic hash

1. Deterministic

2. Quick to compute
3. Infeasible to generate a message from the

hash

. A small change in the message should
drastically change the hash

. Itis infeasible to find collisions

Can | do better?

e Can | save bandwidth when A and B are
similar?

Solution 1 - bucketing

e Can | do better?

Solution 2 - sliding windows

Can | do better?

* Intense use of cpu in alpha

Solution 3 —rolling hashing

Hy,(sli + 1:j + 1)) = H, (sli:jD + f(sli+ 1D = f(sliD)

We want to compute

f(slil)

l H, (s[i + 1:j + 1])
x
| |

S[i] S[j]

\)
|
We already

computed HW(S[l]])
f(slj+ 1))

Solution 3 — rsync rolling hashing

* A 32 bit long hash consisting in merging 2 16
bit hash functions

a(k,l) b(k,l)
16bit 16bit

\ }

32bit

Solution 3 — rsync rolling hashing

* A two hashing strategy

Document = X X, ... X,

l
a(k,l) = (z Xl)mod M

=k

l
b(k, 1) = (Z(l i+ 1)Xl-> mod M
i=k

s(k,1) = a(k, 1) + M b(k, 1)

Solution 3 —rolling hashing

* A convenient way to derive next hash

atk+1,l+1)=C(Calk,)+ X;y{— X)) mod M

b(k+ 1,1+ 1)
= (b(k,)-(U-k+ 1)X,
+ a(k+ 1,l+1)) mod M

* |sit M=2'® a good idea?
* Collisions?

Update: an example

* Sequence: ABCDE
 Window size: 4
* Get rid of the modulo for simplicity

Update: an example
l [‘ |

Al B C D E
\ Y) T

alk+1,l+1)=(Calk)+ X;.1 — X;,) mod M

e a(1,4)=A+B+C+D

e a(2,5)=a(1,4)-A+E=
= A+B+C+D-A+E=
= B+C+D+E

Update: an example

[
b(k,1) = (Z(l—i+1)Xi)modM Al B
1=k

Update an example (2)

4A |
[|
Al B | C D | E

\ J
|

b(1,4) =4A+3B+2C+ 1D

b(k+1,l+1)
= (b(k,1) — (1 -k + 1)X,
+ a(k+1,l+ 1)) mod M

|
a(2,5)=B+C+D+E

Update: an example

 b(1,4)=4A+3B+2C+1D
 b(2,5)=Db(1,4)-4A + a(2,5) =
= 4A+3B+2C+1D-4A+a(2,5) =
= 3B+2C+ 1D +a(2,5) =
= 3B+2C+1D+B+C+D+E-=
= AB+3C+2D+E

Can | do better?

* Collision probability high enough to ensure
equality of blocks

* One scan of the file A in alpha for each block
of B in beta

Solution 4 - rsync

e Use two hash functions

— One 32bit rolling hashing function
— A stronger 128bit hash (Rsync uses MD4)

* The rolling hashing for each possible offset
* The stronger hashing in case a collision is detected

Solution 4 - rsync

Use two hash functions

— One 32bit rolling hashing function
— A stronger 128bit hash (Rsync uses MD4)

The rolling hashing for each possible offset
The stronger hashing in case a collision is detected

How to generate collisions in MD4
— https://eprint.iacr.org/2005/151.pdf

Checksum searching

e Beta send several checksums

* For each test alpha performs a search on
these checksums

* |slinear scanning an option?

Checksum searching: possible
solutions

* Binary search
— Preprocessing requires sorting O(n Ig n)
— Searching requires O (lg n)

* Bloom filters

— Constant time insert and query, but can have false
positives

e Perfect hashing

— Preprocessing space/time tradeoff
— Constant time searching

The rsync three way test

e Search for a match in
B

the table
— If nul the block is not
Rolling checksum found
16bit 16bit

—
—
—
—
—

’/f>» 128kb

216 enties

Rolling checksum

The rsync three way test

S —

16bit

16bit

Sorted by incremental

/ hash value

N N
_—

.
—

_—

216 enties

e Scan the sorted list
to find a match with
the second half of
the checksum

Rolling checksum

The rsync three way test

16bit

16bit

L Use the strong

— fingerprint to
confirm the match

216 enties

The rsync three way test

 What happens if two blocks in B have the
same fingerprint?

* |sit possible to copy a corrupted file?

Things you may want to try and
discuss next week

* Test binary search or perfect hashing
* Test the impact of the length of the block
* Small vs huge files

