
The	rsync	algorithm	

https://rsync.samba.org/tech_report/tech_report.html	

Roberto Grossi
Filippo Geraci, IIT CNR Pisa
March 2020

An	easy	problem	

•  I	have	two	files	A	and	B.	I	want	to	update	B	to	be	the	
same	as	A	

•  What	is	the	cost?	
–  CPU	
–  Data	moved	(reads,	writes)	A	 B	

The	problem	of	rsync	

How	can	I	save	bandwidth?	

A	 B	

α	 β	Slow	network	link	

The	problem	of	rsync	

How	can	I	save	bandwidth?	
	
Compression		
•  Typically	gain	a	factor	of	2	
to	4	

	

A	 B	

α	 β	Slow	network	link	

A	naïve	approach	

Beta	computes	a	hash	of	
the	file	B	and	send	it	to	
alpha	A	 B	

α	 β	HASH	(B)	

A	naïve	approach	

Alpha	computes	the	hash	of	
A	and	send	back	to	beta	
either	the	hash	(if	the	two	
hash	are	the	same)	or	the	
content	of	A	if	they	differ	

A	 B	

α	 β	SEND	(A)															IF	HASH	(B)	<>	HASH	(A)	
SEND	(HASH	(A))	IF	HASH	(B)	==	HASH	(A)	
	

A	naïve	approach	

Beta	checks	if	the	
message	is	the	hash	or	has	
to	update	B	A	 B	

α	 β	

A	naïve	approach	

•  Beta	computes	a	hash	of	the	file	B	and	send	it	to	
alpha	

•  Alpha	computes	the	hash	of	A	and	send	back	to	beta	
either	the	hash	(if	the	two	hash	are	the	same)	or	the	
content	of	A	if	they	differ	

•  Beta	checks	if	the	message	is	the	hash	or	has	to	
update	B	

•  What	is	the	cost?	
•  What	is	the	hash	function?	

Cryptographic	hash	

1.  Deterministic	
2.  Quick	to	compute	
3.  Infeasible	to	generate	a	message	from	the	

hash	
4.  A	small	change	in	the	message	should	

drastically	change	the	hash	
5.  It	is	infeasible	to	find	collisions	

Cryptographic	hash	

1.  Deterministic	
2.  Quick	to	compute	
3.  Infeasible	to	generate	a	message	from	the	

hash	
4.  A	small	change	in	the	message	should	

drastically	change	the	hash	
5.  It	is	infeasible	to	find	collisions	

Can	I	do	better?	

•  Can	I	save	bandwidth	when	A	and	B	are	
similar?	

Solution	1	-	bucketing	

•  Weakness?	
•  Can	I	do	better?	

α	

β	

Solution	2	–	sliding	windows	

α	

β	

Can	I	do	better?	

•  Intense	use	of	cpu	in	alpha	

Solution	3	–	rolling	hashing	
!! ! ! + 1: ! + 1 =	!! ! !: ! + ! ! ! + 1 − !(! !)	
	

!! ! ! + 1: ! + 1 	
	

!! ! !: ! 	

! ! ! + 1 	
	

! ! ! 	
	

S[i]	 S[j]	

We	want	to	compute	

We	already		
computed	

Solution	3	–	rsync	rolling	hashing	

•  A	32	bit	long	hash	consisting	in	merging	2	16	
bit	hash	functions	

16bit	 16bit	

! !, ! 	
	

! !, ! 	

32bit	

Solution	3	–	rsync	rolling	hashing	

•  A	two	hashing	strategy	

!"#$%&'(= !!,!!…!!	
	

! !, ! = !!
!

!!!
!"# !	

! !, ! = (! − ! + 1)!!
!

!!!
!"# !	

! !, ! = ! !, ! + ! !(!, !)	
	

Solution	3	–	rolling	hashing	

•  Is	it	M=216	a	good	idea?	
•  Collisions?	

!(# + 1, ' + 1) = (!(#, ') +	+,-. − 	+0)	123	4	
	
5(# + 1, ' + 1) 																																																															

= 	(5(#, ') − (' − # + 1)+0														
+ 	!(# + 1, ' + 1))	123	4	

	

•  A	convenient	way	to	derive	next	hash	

Update:	an	example	

•  Sequence:		ABCDE	
•  Window	size:	4	
•  Get	rid	of	the	modulo	for	simplicity	

A	 B	 C	 D	 E	

Update:	an	example	

•  a(1,4)	=	A	+	B	+	C	+	D	
•  a(2,5)	=	a(1,4)	-	A	+	E	=		
	 	 		= 	A	+	B	+	C	+	D	–	A	+	E	=		
	 	 		= 	B	+	C	+	D	+	E	

A	 B	 C	 D	 E	

! ! + 1, ! + 1 = ! !, ! + !!!! − !! !"# !	
	

Update:	an	example	

A	 B	 C	 D	 E	! !, ! = (! − ! + 1)!!
!

!!!
!"# !	

	 4	 3	 2	 1	

4	 3	 2	 1	

Update	an	example	(2)	

! ! + 1, ! + 1
= ! !, ! − ! − ! + 1 !!
+ !(! + 1, ! + 1) !"# !	

	

A	 B	 C	 D	 E	

4A	

a(2,5)	=	B	+	C	+	D	+	E	

b(1,4)	=	4A	+	3B	+	2C	+	1D	

Update:	an	example	

•  b(1,4)	=	4A	+	3B	+	2C	+	1D	
•  b(2,5)	=	b(1,4)	-	4A	+	a(2,5)	=		

	 	 		= 		4A	+	3B	+	2C	+	1D	-	4A	+	a(2,5)	=		
	 	 		= 											3B	+	2C	+	1D	+	a(2,5)	=		
	 	 		= 											3B	+	2C	+	1D	+	B	+	C	+	D	+	E	=	
	 	 		=													4B	+	3C	+	2D	+	E	

A	 B	 C	 D	 E	

Can	I	do	better?	

•  Collision	probability	high	enough	to	ensure	
equality	of	blocks	

•  One	scan	of	the	file	A	in	alpha	for	each	block	
of	B	in	beta	

Solution	4	-	rsync	

•  Use	two	hash	functions	
–  One	32bit	rolling	hashing	function	
–  A	stronger	128bit	hash	(Rsync	uses	MD4)	

•  The	rolling	hashing	for	each	possible	offset	
•  The	stronger	hashing	in	case	a	collision	is	detected	

Solution	4	-	rsync	

•  Use	two	hash	functions	
–  One	32bit	rolling	hashing	function	
–  A	stronger	128bit	hash	(Rsync	uses	MD4)	

•  The	rolling	hashing	for	each	possible	offset	
•  The	stronger	hashing	in	case	a	collision	is	detected	

•  How	to	generate	collisions	in	MD4	
–  https://eprint.iacr.org/2005/151.pdf	

Checksum	searching	

•  Beta	send	several	checksums		
•  For	each	test	alpha	performs	a	search	on	
these	checksums	

•  Is	linear	scanning	an	option?	

Checksum	searching:	possible	
solutions	

•  Binary	search	
– Preprocessing	requires	sorting	O(n	lg	n)	
– Searching	requires	O	(lg	n)	

•  Bloom	filters	
– Constant	time	insert	and	query,	but	can	have	false	
positives	

•  Perfect	hashing	
– Preprocessing	space/time	tradeoff	
– Constant	time	searching	

The	rsync	three	way	test	

16bit	

216	enties	

•  Search	for	a	match	in	
the	table	
–  If	nul	the	block	is	not	
found	

128kb	

16bit	

Rolling	checksum	

The	rsync	three	way	test	

•  Scan	the	sorted	list	
to	find	a	match	with	
the	second	half	of	
the	checksum	

16bit	

Rolling	checksum	

216	enties	

16bit	

Sorted	by	incremental	
	hash	value	

The	rsync	three	way	test	

•  Use	the	strong	
fingerprint	to	
confirm	the	match	

16bit	

Rolling	checksum	

216	enties	

16bit	

The	rsync	three	way	test	

•  What	happens	if	two	blocks	in	B	have	the	
same	fingerprint?	

•  Is	it	possible	to	copy	a	corrupted	file?	

Things	you	may	want	to	try	and	
discuss	next	week	

•  Test	binary	search	or	perfect	hashing	
•  Test	the	impact	of	the	length	of	the	block	
•  Small	vs	huge	files	

