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1 The k-clique-community finding algorithm

Our community definition is based on the observation that a typical member in a community is linked
to many other members, but not necessarily to all other nodes in the community. In other words, a
community can be interpreted as a union of smaller complete (fully connected) subgraphs that share
nodes. In the mathematical literature, such complete subgraphs are called k-cliques, where k refers to
the number of nodes in the subgraph. Therefore, we define a k-clique-community as the union of all k-
cliques that can be reached from each other through a series of adjacent k-cliques, where two k-cliques
are said to be adjacent if they share k−1 nodes. Using k-clique adjacency we can define a k-clique chain
as the union of a sequence of adjacent k-cliques, and introduce the concept of k-clique connectedness:
two k-cliques are k-clique-connected if they are parts of a k-clique chain. Our k-clique-communities are
equivalent to the k-clique connected components of the network.

An illustration of these communities can be given by “k-clique template rolling”. A k-clique template
can be thought of as an object that is isomorphic to a complete graph of k nodes. Such a template can
be placed onto any k-clique of the network, and rolled to an adjacent k-clique by relocating one of its
nodes and keeping its other k − 1 nodes fixed. Thus, the k-clique-communities of a graph are all those
subgraphs that can be fully explored by rolling a k-clique template in them but cannot be left by this
template.

The k-clique-communities of a network at k = 2 are equivalent to the connected components, since
a 2-clique is simply an edge and a 2-clique-community is the union of those edges that can be reached
from each other through a series of shared nodes. Similarly, a 3-clique-community is given by the union
of triangles that can be reached from one an other through a series of shared edges. As we increase k,
the k-clique-communities shrink, but on the other hand become more cohesive since their member nodes
have to be part of at least one k-clique.

Our experience shows that in real networks complete subgraphs of size between 10 and 100 can
easily occur. Such a large complete subgraph of size s contains

(

s

k

)

different k-cliques, therefore, an
algorithm that tries to locate the k-cliques individually and examine the adjacency between them would
be extremely slow when analysing real networks. However, a complete subgraph of size s is obviously
a k-clique connected subset for any k ≤ s, since for any pair of included smaller k-cliques, a series of
adjacent k-cliques linking them can be trivially found. Furthermore, two large complete subgraphs that
share at least k − 1 nodes form one k-clique connected component as well. This implies that instead of
searching for k-cliques, it is a far better strategy to locate the large complete subgraphs in the network
first, and then look for the k-clique connected subsets of given k (the k-clique-communities) by studying
the overlap between them.

1.1 The method

1.1.1 From cliques to k-clique-communities

To be more precise, our algorithm first extracts all complete subgraphs of the network that are not parts
of larger complete subgraphs. (The details of this procedure are discussed in Sect. 1.1.2.) These maximal
complete subgraphs are simply called cliques, and the difference between k-cliques and cliques is that
k-cliques can be subsets of larger complete subgraphs. Once the cliques are located, the clique-clique
overlap matrix is prepared [1]. In this symmetric matrix each row (and column) represents a clique and
the matrix elements are equal to the number of common nodes between the corresponding two cliques,
and the diagonal entries are equal to the size of the clique. (Note that the intersection of two cliques is
always a complete subgraph.) The k-clique-communities for a given value of k are equivalent to such
connected clique components in which the neighbouring cliques are linked to each other by at least k−1

common nodes. These components can be found by erasing every off-diagonal entry smaller than k − 1
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Figure 1: A simple illustration of the extraction of the k-clique-communities at k = 4 using the clique-
clique overlap matrix. Top left picture shows the graph in which the different cliques are marked by
different colours. The according clique-clique overlap matrix is shown in the top right corner. To obtain
the k-clique-communities at k = 4, we delete the off-diagonal elements that are smaller than 3 and also
the diagonal elements that are smaller than 4, resulting in the matrix shown in the bottom left of the
figure. The connected components (the k-clique-communities) corresponding to this matrix are shown
in the bottom right.

and every diagonal element smaller than k in the matrix, replacing the remaining elements by one, and
then carrying out a component analysis of this matrix. The resulting separate components are equivalent
to the different k-clique-communities. A simple illustration of the above is given in Fig. 1.

Another advantage of this method is that the clique-clique overlap matrix encodes all information
necessary to obtain the communities for any value of k, therefore once the clique-clique overlap matrix
is constructed, the k-clique-communities for all possible values of k can be obtained very quickly. In
contrast to this, in a simple k-clique finding approach the search for the k-cliques would have to be
restarted from the beginning for every single value of k.

1.1.2 Locating the cliques

As discussed in the previous section, in contrast to the k-cliques, cliques cannot be subsets of larger
cliques, therefore they have to be located in a decreasing order of their size. The largest possible clique
size in the studied graph is determined from the degree-sequence. Starting with this clique size, our
algorithm repeatedly chooses a node, extracts every clique of this size containing that node, then deletes
the node and its edges. (The deletion of the already examined nodes inhibits the finding of the same
clique multiple times). When no nodes are left, the clique size is decreased by one and the clique finding
procedure is restarted on the original graph. The already found cliques influence the further search since
the yet unrevealed (smaller) cliques cannot be subsets of them.

The cliques of size s containing a given node v can be found by examining the interrelations of the
neighbours of v. In our algorithm this is implemented in the following way: First, a set A is constructed
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Figure 2: The time in hours on a PC needed to locate the communities as a function of the system size
in the number of edges for the cond-mat archive (triangles) and for the graph of autonomous systems
(squares). The former dataset is fitted with 3 · 10−7M0.11 ln(M) (solid curve).

that contains nodes all linked to each other. Initially A consists of v only and our goal is to enlarge this
set to the actual clique-size s. Another disjunct set B is also determined as the set of nodes that are linked
to each node in A, but not necessarily to the nodes in B. Initially set B consists of the neighbours of v.

Set A can be enlarged transferring nodes from B. This is accomplished in a recursive way in order
to check every possible combination of the nodes being transfered. (To avoid finding the same clique
multiple times, the nodes have to be transferred from B to A in a decreasing/increasing order of their
indices.) When a node w from B is placed into A, the nodes that are not neighbours of w are removed
from B. (This is done in order to preserve the property that the members of B are all linked to each
member of A).

If B runs out of nodes before A reaches size s, or if the union of the sets A and B can be included
in an already found (larger) clique, the recursion is stepped back to check other possibilities. Whenever
the size of A reaches s, a new clique is found. After recording the clique, the algorithm is stepped back
again to check the remaining possible combinations of the neighbours indices.

1.2 Efficiency of the algorithm

The determination of the full set of cliques of a graph is widely believed to be non-polynomial problem.
In spite of this, our algorithm proves to be very efficient when applied to the graphs of the investigated
real systems. Our experience shows that the required CPU time depends on the structure of the input
data very strongly, therefore in general no closed formula can be given even to estimate the system size
dependence. As an illustration of the computational speed, however, we note that a complete analysis of
a co-authorship network with 127000 links takes less than 2 hours on a PC.

In Fig. 2 we display the time it took to explore the community structure (using a PC) as a function
of the system size in case of the co-authorship network of the Los Alamos Condensed Matter e-print
archive [2, 3] at the optimal threshold for k = 6 and the network of autonomous systems [4]. (In both
cases the graphs of different size correspond to the state of the system at different times). As it can be
seen in the figure, the curves can be fitted with t = AMB ln(M) where t denotes the time needed by our
algorithm, M stands for the number of edges, and A and B are fitting parameters.
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Figure 3: Statistics of the k-clique-communities for the Los Alamos Condensed Matter e-print archive
at k = 5 (squares) and k = 6 (triangles). (a) the cumulative distribution function of the k-clique-
community size (b) the cumulative distribution function of the k-clique-community degree (the degree
distribution of the graph of communities), (c) the cumulative distribution function of the overlap size,
and (d) the cumulative distribution function of the membership number of nodes.

2 Community statistics at different values of k

Our method can be directly applied to binary (undirected, unweighted) networks only. Therefore, when
analysing an arbitrary system, the directionality of the links has to be ignored and if the connections are
weighted, a threshold weight w∗ can be introduced to prune weak links and keep those that are stronger
than w∗. (If we want to keep all links, w∗ is simply set to zero). If the threshold weight is increased,
the number of edges is decreased and the communities shrink, however they consist of stronger links on
average. Similarly, if k is increased at fixed threshold weight, the communities become smaller and more
disintegrated, but at the same time also more cohesive (since every member in a community has to be
part of a larger complete subgraph).

The criterion we used to fix the optimal k and w∗ values is based on finding a community structure
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as highly structured as possible. Usually a lower threshold weight is accompanied by a larger number of
communities as more edges are left in the network. However, at a certain critical point a giant community
appears which smears out the details of the community structure. Thus, for each selected value of k we
adjusted the weight threshold to the point where the largest community becomes twice as big as the
second largest one (just below the critical point). The restriction for the value of k we used was that at
least half of the links should remain for the optimal threshold.

In case of the network representing the Los Alamos Condensed Matter e-print archive the criterions
for the global k and w∗ values could be matched at both k = 5 and k = 6. (In the former case the
fraction f∗ of the connections being kept during the application of our method was equal to f ∗

= 0.75,
whereas in the latter case it turned out to be f ∗

= 0.93). In Fig. 3 we compare the relevant distributions
characterising the community structure for the two values of k. In Fig. 3a the two scaling cumulative
community size distributions are almost on top of each other. In case of the community degree (Fig. 3b)
the scaling tails of the distribution functions are parallel similarly to the previous case. However the two
distributions differ slightly at their exponential part, namely the characteristic community degree is a bit
higher for k = 6 than for k = 5. There is a small difference between the two overlap size distributions as
well at the middle part of the distributions (Fig. 3c). Finally, the two membership number distributions
displayed in Fig. 3d match each other very well.

It can be seen from the distributions at m = 1 that the fraction of nodes belonging to at least one
community is somewhere between 25% and 50%. The majority of the rest of the nodes fall out sim-
ply because their degree is less than k − 1. Nevertheless, after identifying the communities, most of
these weakly connected nodes can be associated with the communities to which they are most strongly
connected.

Besides this very good agreement between the relevant statistical distributions, the communities
themselves show great similarities in the two cases: 44 % of the 6-clique-communities are present
amongst the 5-clique-communities, and for 70 % of the 6-clique-communities one can find a correspond-
ing 5-clique-community that differs in less than 10 % of the members. The good agreement between the
results obtained for different values of k signals that the fundamental properties of the observed commu-
nity structure are characteristic to the system itself and are largely independent of k.

3 Further examples

In this section we present a few more examples from the results of our community finding method. These
concern both the global statistical properties of the communities determined for two additional data sets,
(the Hungarian synonyms and the variables of the source code of the ftp program under Linux), as well
as the local community structure around further vertices in the word association graph and in the network
of the ftp program.

3.1 Community statistics

Similarly to Fig. 4 in the manuscript, the four major distributions characterising the global community
structure of two further systems are plotted in Fig. 4. The triangles correspond to the network of the wu-
ftp program under Linux [5] and the squares refer to the Hungarian synonym graph obtained from the
OpenOffice word processor [6]. In the former network the nodes correspond to variables in the source
code and are assumed to be connected if they appear together in an expression or function call, whereas
in the second network two words are linked if they are synonyms of each other. The number of nodes N

and links M are given by N = 1886, 20139 and M = 6001, 100427 for the network of the ftp program
and the synonyms respectively. In both cases, our criterions for the global choice of the k-clique size can
be matched only at k = 5.
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Figure 4: Statistics of the k-clique-communities for the wu-ftp program under Linux (triangles, k=4) and
the graph of the Hungarian synonyms obtained from the OpenOffice word processor (squares, k = 4).
(a) The cumulative distribution of the community size, (b) the cumulative distribution of the community
degree, plot (c) is the cumulative distribution of the overlap size and (d) is that of the membership number.

Although our results for the two new data sets resemble those obtained for the data in the manuscript,
there are also some deviations. In Fig. 4a the tails of the community size distributions are power-law like
(however, not over such a wide range as, i.e., in case of the co-authorship network). The lower part
of the community degree distributions is exponential (Fig. 4b), but the extra power-law like tail present
in case of the co-authorship network and the word association network is much less pronounced here.
Due to the relatively small system size there is only one outstanding community degree in case of the
ftp program, whereas the tail of the community degree distribution of the synonyms is somewhat like
staircase. The community overlap distributions (Fig. 4c) are rather truncated, the maximal overlap size
reaches just the k-clique size for the synonyms and is equal to k − 1 for the ftp program. In Fig. 4d, the
membership number distributions decay somewhat faster than in case of the co-authorship network or
the word association network.
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Figure 5: The k-clique communities of the word gold in the South Florida Free Association norm list for
w∗

= 0.025 and k = 4. The purple community is related to Olympic medals, the green one consists of
metals, the blue one can be associated to jewels and finally the yellow community is related to welfare.
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Figure 6: The k-clique communities of the word day in the South Florida Free Association norm list
at w∗

= 0.025 and k = 4. The green community is related to work-days, the purple one consists of
day times, the yellow one can be associated to weather, whereas the blue community is related to the
calendar.

3.2 Local community structure

In Figs. 5-7 the k-clique communities of three words picked from the South Florida Free Association
norm list [7] are shown in a similar fashion to Fig. 2 in the manuscript. The communities are colour
coded, the overlapping nodes and links between them are emphasised in red, and the size of the nodes
and the width of the links are proportional to their membership numbers (the total number of communities
they belong to). The threshold weight w∗ and the k-clique size in these examples are set to w∗

= 0.025

and k = 4.
In Fig. 5 the four communities of the word gold are related to Olympic medals, metals, jewels and
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Figure 7: The k-clique communities of the word play in the South Florida Free Association norm list
for w∗

= 0.025 and k = 4. The blue community is associated with music, the purple one is related to
theatre and the yellow community can be associated with children.

welfare respectively. In Fig. 6 the communities of the word day are shown. The green community can be
associated with work days. Thursday has only two neighbours (Wednesday and Wed) even in the original
(unpruned) network, therefore it is missing from this community, whereas Saturday and Sunday are in
another community related to weekend containing Friday, night, week and weekend itself as well. The
purple community of Fig. 6 consists of day times, the yellow community contains common adjectives of
day related to weather, and the blue community can be associated with the calendar. Fig. 7 displays the
three communities of the word play: the blue one is related to music, the purple one to theatre and the
green one can be associated with children.

In Fig. 8 of we show a component from the community graph of the wu-ftp program at k = 5

in a fashion similar to Fig. 3 in the manuscript. The name of each node consists of two parts: the
first one is specific to the variable represented by the node and the second part (separated by ‘@’) is
specific to the scope of the variable (typically a function). The names ending in ‘@glb’ denote global
variables. Since these variables have global scope, (and therefore are visible in the entire program), they
may appear in several function calls and expressions throughout the entire source code. Thus, in the
corresponding network the vertices representing these variables are candidates for community overlaps.
Indeed, in Fig. 8, the majority of the communities are related to functions in the source code, and several
community overlaps are provided by vertices representing global variables.

4 Random community statistics

The non-trivial aspects of the distributions presented in Fig. 4 of the manuscript naturally give rise to
the question whether the community statistics of a random graph would significantly differ from those
studied in the manuscript. In other words, what happens with the community structures if the links of the
networks studied in the manuscript are reshuffled in a random way?

We calculated the major statistical distributions for two types of random graphs corresponding to the
three systems studied in the manuscript. In the first case, the degree sequences of the original graphs
were preserved during the randomisation process. We implemented this by link randomisation [8]: in
each step two links were selected randomly, and then one of the endpoints of the links were swapped.
This process was repeated until on average about a dozen relocations per link was reached. The other
type of random graphs we tested were simple Erdős-Rényi random graphs [9] with the same number of
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Figure 8: A component in the community graph of the wu-ftp program. Most of these communities are
related to functions (sub routines) in the source code. The nodes with a name ending in ‘@glb’ represent
global variables. These are likely to appear in several function calls in the source code, hence they are
likely to be members in several communities at the same time.

nodes and links as the co-authorship network at f ∗
= 0.93, the word association graph at f ∗

= 0.67 or
the protein interaction graph. (The degree sequences in these cases are different from the original ones).

We have found that except for the link-randomised word association graph, cliques of size larger
than three were totally absent in the random networks, therefore, naturally, no k-clique communities for
k > 3 can exist at all in them. In comparison the largest clique sizes are 12, 8, 9 and k = 6, 4, 4 in the
original co-authorship network, word association network and protein interaction network respectively.
In Fig. 9. we show the four major statistical distributions for the link-randomised word association
network (triangles) compared to the original system (squares, the same as in Fig. 4 in the manuscript).
In the randomised system the maximal community size is five (Fig. 9a), the maximal community degree
is two (Fig. 9b), the maximal overlap size is one (Fig. 9c), and the maximal membership number is two
(Fig. 9d), therefore the corresponding distributions are very truncated compared to the original ones.

In conclusion, we can say that randomisation severely (in some cases entirely) destroys the observed
community structure. The fact that randomisation can lead to complete loss of communities also implies
that they are present in the original system entirely due to specific correlations.
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Figure 9: Statistics of the 4-clique-communities for the link-randomised word association network of the
South Florida Free Association norm list at f ∗

= 0.67 (triangles), plotted together with the distributions
of the original system (squares). The degree sequence was preserved during the randomisation process.
(a) The cumulative distribution of the community size, (b) the cumulative distribution of the community
degree, plot (c) is the cumulative distribution of the overlap size and (d) is that of the membership number.
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