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2
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Abstract

Clustering is a widely used technique to partition data in homogeneous groups.
It finds applications in many fields from information retrieval to bio-informatics.
The main goal of clustering algorithms is to discover the hidden structure of data
and group them without any a-priori knowledge of the data domain. Clustering is
often used for exploratory tasks.

The intuition behind partitioning data is that if two objects are closely related
and the former is also related to a third object, then more likely also the latter has
a similar relation. This idea is known as thecluster hypothesis.

In the first part of this chapter we survey the principal strategies for clustering,
the main clustering objective functions and related algorithms, the main definitions
for similarity and the clustering validation techniques. We conclude the chapter
giving some results about how we improved the Furthest-point-first algorithm in
terms of speed and quality.
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2.1 Introduction to clustering
Clustering is a technique to split a set of objects in groups such thatsimilar objects
are grouped together, while objects that are not similar fall in different clusters.
The choice of the notion of similarity (or distance) among objects that are needed
to be clustered is of crucial importance for the final result.

Clustering algorithms have no a-priori knowledge about thedata domain, its
hidden structure and also the number of hidden classes in which data are divided
is unknown. For this characteristic, clustering is often referred as un-supervised
learning in contrast to classification (or supervised learning) in which the number
of classes is known and for each class a certain number of examples are given.

The independence of clustering algorithms from the data domain is at the same
time the secret of its success and its main drawback. In fact since clustering does
not need any a-priori knowledge of the data domain, it can be applied to a wide
range of problems in different application areas. In contrast, general purpose pro-
cedures do not allow to apply (even trivial) problem dependent optimizations and
consequently they typically perform worse then ad-hoc solutions.

2.1.1 Metric space for clustering

The choice of how to represent the data objects one wants to cluster, together with
the choice of the clustering strategy, is critical for the clustering result. The repre-
sentation schema depends from the type of data we are workingon. In some fields
de-facto standards are widely used.

In text retrievalthe vector space model is the most commonly used. Documents
in this model are represented as vectors of weighted terms called bag of words.
For weighting, many approaches are used: binary schema (in which the weight of
a term is 0 if the term does not appear in the document, 1 otherwise), the tf-idf
scoring and so on. Invideo retrievalframes are represented as vectors in the HSV
color space. Inbio-informatics, DNA microarrays are matrices in which each gene
is stored in a row and each column corresponds to a probe.

In all the above cited cases, a set of objectsO = {o1, . . . , on} are represented
with m-dimensional vectors which are stored in a matrixM of n rows andm
columns, wheren is the number of objects in the corpus whilem is the number
of features of the objects. These vector spaces endowed witha distance function
define a metric space. The most widely used distance functions are:

• Cosine similarity: it is defined as the cosine of the angle betweenoa andob.
More formally

s(oa, ob) =
oa · ob

‖oa‖ · ‖ob‖
A distance can be easily derived from cosine similarity by:

d(oa, ob) =
√

1 − s2(oa, ob)
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The most important property of cosine similarity is that it does not depend
on the length of the vectors:s(oa, ob) = s(αoa, ob) for α > 0. This property
makes the cosine similarity widely used in text informationretrieval.

• Jaccard coefficient:in its basic form it is defined as:

J(oa, ob) =
#(oa ∩ ob)

#(oa ∪ ob)

whereoa∩ob is the set of features in common betweenoa andob andoa∪ob

is the total set of features (this approach assumes binary features). Many
variants of the Jaccard coefficient were proposed in the literature. The most
interesting is theGeneralized Jaccard Coefficient(GJC) that takes into ac-
count also the weight of each term. It is defined as

GJC(oa, ob) =
minm

i=1(oa,i, ob,i)

maxm
i=1(oa,i, ob,i)

GJC is proven to be a metric[Charikar, 2002]. The Generalized Jaccard Co-
efficient defines a very flexible distance that works well withboth text and
video data.

• Minkowski distance: it is defined as:

Lp(oa, ob) = (
m∑

i=1

|oa,i − ob,i|p)1/p

It is the standard family of distances for geometrical problems. Varying the
value of the parameterp, we obtain different well known distance functions.
Whenp = 1 the Minkowski distance reduces to the Manhattan distance. For
p = 2 we have the well known Euclidean distance

L2(oa, ob) =

√
√
√
√

m∑

i=1

(oa,i − ob,i)2

Whenp = ∞ this distance becomes the infinity norm defined as:

L∞(oa, ob) =
m

max
i=1

(oa,i, ob,i)

• Pearson correlation: it is defined as follows:

P (oa, ob) =

∑m
k=1(oa,k − µa)(ob,k − µb)

√∑m
k=1(oa,k − µa)2 ·

√∑m
k=1(ob,k − µb)2

,

whereµa andµb are the means ofoa andob, respectively. Pearson coeffi-
cient is a measure of similarity. In particular it computes the similarity of
the shapes between the two profiles of the vectors (it is not robust against
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outliers - potentially leading to false positive, assigning high similarity to a
pair of dissimilar patterns -, it is sensible to the shape butnot to the mag-
nitude). To compute a distance, we definedoa,ob

= 1 − P (oa, ob). Since
−1 ≤ P (oa, bb) ≤ 1, for all oa, ob, we have0 ≤ doa,ob

≤ 2. This distance
is not a metric since both the triangular inequality and small self-distance
(doa,ob

= 0) do not hold. However, the square root of1−P (oa, ob) is propor-
tional to the Euclidean distance betweenoa andob [Clarkson, 2006], hence
only the small self-distance condition fails for this variant, and metric space
methods can be used.

2.2 Clustering strategy
Clustering algorithms can be classified according with manydifferent characteris-
tics. One of the most important is the strategy used by the algorithm to partition the
space:

• Partitional clustering : given a setO = {o1, . . . , on} of n data objects, the
goal is to create a partitionC = {c1, . . . , ck} such that:

– ∀i ∈ [1, k] ci 6= ∅
–

⋃k
i=1 ci = O

– ∀i, j ∈ [1, k] ∧ i 6= j ci ∩ cj = ∅

• Hierarchical clustering: given a setO = {o1, . . . , on} of n data objects, the
goal is to build a tree-like structure (calleddendrogram) H = {h1, . . . , hq}
with q ≤ n, such that: given two clustersci ∈ hm and cj ∈ hl with hl

ancestor ofhm, one of the following conditions hold:ci ⊂ cj or ci ∩ cj = ∅
for all i, j 6= i,m, l ∈ [1, q].

Partitional clustering is saidhard if a data object is assigned uniquely to one
cluster,soft or fuzzy when a data object belongs to each cluster with a degree of
membership.

2.2.1 Partitional clustering

When the data representation and the distance functiond have been chosen, parti-
tional clustering reduces to a problem of minimization of a given target function.
The most widely used are:

• K-center minimizes the maximum cluster radius

min max
j

max
x∈cj

d(x,Cj)
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• K-mediansminimizes the sum of all the point-center distances

min
∑

j

∑

x∈cj

d(x, µj)

• K-meansminimizes the sum of squares of inter-cluster point-centerdis-
tances

min
∑

j

∑

x∈cj

(d(x, µj))
2

whereC = {c1, . . . , ck} arek clusters such thatCj is the center of thej-th
cluster andµj is its centroid.

For all these functions it is known that finding the global minimum is NP-hard.
Thus, heuristics are always employed to find a local minimum.

2.2.1.1 FPF algorithm for the k-center problem

As said in 2.2.1 one of the possible goal for partitional clustering is the minimiza-
tion of the largest cluster diameter solving thek-center problem. More formally
the problem is defined as:

Definition 1. The k-centers problem: Given a setO of points in a metric space
endowed with a metric distance functiond, and given a desired numberk of result-
ing clusters, partitionO into non-overlapping clustersC1, . . . , Ck and determine
their “centers”c1, . . . , ck ∈ O so thatmaxj maxx∈Cj

d(x, cj) (i.e. the radius of
the widest cluster) is minimized.

In [Feder and Greene, 1988] it was shown that thek-center problem is NP-
hard unlessP = NP . In [Gonzalez, 1985; Hochbaum and Shmoys, 1985] two-
approximated algorithms are given.

We first describe the originalFurthest Point First(FPF) algorithm proposed by
Gonzalez[Gonzalez, 1985] that represents the basic algorithm we adopted in this
thesis. Then, in section 2.4 we will give details about the improvements we made
to reduce the running time and obtain a better clustering quality.

Basic algorithm Given a setO of n points, FPF increasingly computes the set of
centersc1 ⊂ . . . ⊂ ck ⊆ O, whereCk is the solution to thek-center problem and
C1 = {c1} is the starting set, built by randomly choosingc1 in O. At a generic
iteration1 < i ≤ k, the algorithm knows the set of centersCi−1 (computed at the
previous iteration) and a mappingµ that associates, to each pointp ∈ O, its closest
centerµ(p) ∈ Ci−1. Iterationi consists of the following two steps:

1. Find the pointp ∈ O for which the distance to its closest center,d(p, µ(p)),
is maximum; makep a new centerci and letCi = Ci−1 ∪ {ci}.
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2. Compute the distance ofci to all points inO \ Ci−1 to update the mapping
µ of points to their closest center.

After k iterations, the set of centersCk = {c1, . . . , ck} and the mappingµ
define the clustering. ClusterCi is the set of points{p ∈ O \ Ck such thatµ(p) =
ci}, for i ∈ [1, k]. Each iteration can be done in timeO(n), hence the overall cost
of the algorithm isO(kn). Experiments have shown that the random choice ofc1

to initialize C1 does not affect neither the effectiveness nor the efficiencyof the
algorithm.

FPF:
Data: Let O be the input set,k the number of clusters
Result: C, k-partition ofO
C = x such thatx is an arbitrary element ofO;
for i = 0; i < k; i + + do

Pick the elementx of O \ C furthest from the closest element inC;
Ci = Ci = x;

end
forall x ∈ O \ C do

Let i such thatd(ci, x) < d(cj , x),∀j 6= i Ci.append (x);
end
Algorithm 1 : The furthest point first algorithm for thek-center problem.

2.2.1.2 K-means

The k-means algorithm[Lloyd, 1957] is probably the most widely used in the
literature. Its success comes from the fact it is simple to implement, enough fast
for relatively small datasets and it achieves a good quality. Thek-means algorithm
can be seen as an iterative cluster quality booster.

It takes as input a roughk-clustering (or, more precisely,k candidate centroids)
and produces as output anotherk-clustering, hopefully of better quality.

K-means, as objective function, attempts to minimize the sumof the squares of
the inter-cluster point-to-center distances. More precisely, this corresponds to par-
tition, at every iteration, the input points into non-overlapping clustersC1, . . . , Ck

and determining their centroidsµ1, . . . , µk so that

k∑

j=1

∑

x∈Cj

(d(x, µj))
2

is minimized.
It has been shown[Selim and Ismail, 1984] that by using the sum of squared

Euclidean distances as objective function, the procedure converges to a local min-
imum for the objective function within a finite number of iterations.

The main building blocks ofk-means are:
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• the generation of the initial k candidate centroids: In this phase an initial
choice of candidate centroids must be done. This choice in critic because
both the final clustering quality and the number of iterations needed to con-
verge are strongly related to this choice. In the next section we will survey the
most important initialization strategies. A more completesurvey and com-
parison can be found in[Bradley and Fayyad, 1998; Peñaet al., 1999].

• the main iteration loop: In the main iteration loop, given a set ofk cen-
troids, each input point is associated to its closest centroid, and the collec-
tion of points associated to a centroid is considered as a cluster. For each
cluster, a new centroid that is a (weighted) linear combination of the points
belonging to the cluster is recomputed, and a new iteration starts1.

• the termination condition: Several termination conditions are possible; e.g.
the loop can be terminated after a predetermined number of iterations, or
when the variation that the centroids have undergone in the last iteration is
below a predetermined threshold.

The use ofk-means has the advantage that the clustering quality is steadily
enough good in different settings and with different data. This makesk-means the
most used clustering algorithm. Due its importance, there is a vast literature that
discusses its shortcomings and possible improvements to the basic framework.

A lot of efforts was spent to reduce thek-means computational time that de-
pends on the size of the dataset, the number of desired clusters and the number
of iterations to reach convergence. Some methods attempt touse clever data struc-
tures to cache distances[Elkan, 2003; Smellie, 2004], others exploit the triangular
inequality for avoiding distance computations[Phillips, 2002]. For small datasets
or when only few iterations are enough to achieve the desiredoutput quality, the
performance ofk-means is acceptable, but for nowadays needs clustering time has
become a shortcoming (i.e. in chapter 6 we will see that for 100 thousand of docu-
ments and 1000 clusters,k-means running time is of the order of a week).

Another well-known shortcoming is that some clusters may become empty dur-
ing the computation. To overcome this problem, the “ISODATA” [Tou and Gonza-
lez, 1977] technique was proposed. Essentially when a cluster becomesempty,
ISODATA splits one of the “largest” clusters so as to keep thenumber of clusters
unchanged.

Initialize k-means Essentiallyk-means accepts as input an initial clustering that
can be made with any clustering algorithm. It is well-known that the quality of
the initialization (i.e. the choice of the initialk centroids) has a deep impact on
the resulting accuracy. Several methods for initializingk-means are compared in
[Bradley and Fayyad, 1998; Peñaet al., 1999]. The three most common initializa-
tions are:

1Note thatk-means is defined on vector spaces but not in general on metricspaces, since in metric
spaces linear combinations of points are not points themselves.
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RC The simplest (and widely used) initialization fork-means is the one in which
the initial centroids are Randomly Chosen among the input points and the
remaining points are assigned to the closest centroid. The resulting clustering
is often referred asrandom clustering.

RP In the Random Perturbation, for each dimensiondj of the space, the distri-
bution of the projections ondj of the data points is computed, along with its
meanµj and its standard deviationσj ; the k initial centroids are obtained
throughk perturbations, driven by theµj ’s andσj ’s, of the centroid of all
data points[Peñaet al., 1999].

MQ MacQueen’s[MacQueen, 1967] proposed a variant ofk-means: the initial
centroids are randomly chosen among the input points, and the remaining
points are assigned one at a time to the nearest centroid, andeach such as-
signment causes the immediate recomputation of the centroid involved. Then
k-means is initialized with the resulting clustering. Sinceit was experimen-
tally shown that this initialization achieves generally a good quality in con-
siderably less time thank-means, this initialization is often used in place of
the standardk-means and it is often referred asone-passk-means.

2.2.1.3 PAM: partition around medoids

Partition around medoids[Kaufman and Rousseeuw, 1990] was introduced by
Kaufman and Rousseeuw. PAM introduces the concept ofmedoid. A medoid is
a point of the input, it means that PAM is particularly suitable in all those cases
in which the concept of centroid in not well defined. Moreover, in many cases, the
more the number of objects increase, the less centroids tendto be representative;
instead medoids are not affected by this problem.

PAM builds ak-clustering and it can be described as follows[Ng and Han,
1994]:

1. Select a set ofk random input objectsO = {o1, . . . ok},

2. for each input objectx /∈ O compute the cost functionTC(x, oi),

3. select the pair of objectsx andoi that minimizeTC,

4. if TC(x, oi) < 0 replaceoi with x and restart from step 2.

The final clustering is obtained using the objectsoi as cluster centers and as-
signing the input points to the cluster with the nearest center.

PAM is computationally expensive, in fact there are(n − k) different pairs of
object for each of thk medoids. It means that for each iterationTC is computed
k(n − k) times. Due to its computational cost, many variations and performance
improvements were proposed in the literature[Zhang and Couloigner, 2005].
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2.2.1.4 SOM: self organizing maps

Self organizing Maps[Kohonen, 2001] were introduced by Teuvo Kohonen as sub-
type of artificial neural networks used to produce low dimensional representation
of the training samples while preserving the topological properties of the input
space.
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Figure 2.1. A simple 3 × 3 self organizing map.

A self-organizing map is a single layer feed-forward network, that is a network
without direct cyclic paths. Neurons are arranged in a low dimensional grid (typ-
ically two-dimensional or tridimensional). Each neuron has associated a vector of
weightswi = {wi,1, . . . , wi,m} of the same size of input vectors. There are two
main ways to initialize the weights vectors:

• using small random values,

• using a random perturbation from the subspace spanned by thetwo largest
principal component eigenvectors. This initialization was shown to speed up
the training phase of the SOM because they are already a good approxima-
tion of the SOM weights.

Self-organizing maps work in two phases:

• training : the training phase can be seen as the process in which the self-
organizing map attempts to adapt the weight vectors of its nodes to the train-
ing data. For this purpose a large number of examples must be fed in input.
If a training set is not available the input data are often used to train the net-
work. The training algorithm is based on acompetitive learningapproach:
when a new samplex(t) is presented to the network it is compared with all
the weights vectors and the neuron with closest weight vector (called Best
Matching Unit) is selected (i. e. the neuroni such thatmini d(x(t), wi)). The
weight vector of the BMU and its neighbors, are modified according with the
sample. More formally leti the BMU ande a generic neuron of the SOM.
Let h(e, i) be a proximity function between the two neurons andwe(t) be
the value ofwe at the epocht. The weight vector of the generic neurone is
updated according with the following:
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we(t + 1) = we(t) + α(t) ∗ h(e, i) ∗ (x(t) − we(t))

whereα(t) is a monotonically decreasing learning coefficient.

• mapping: in this phase the input vectors are simply assigned to the closest
neuron. Borrowing the terminology ofk-means the nodes of the network
in this phase play the same role of centroids. It is interesting to note that
the number of clusters in output depends on the number of neurons in the
network. This means that the structure of the SOM drastically influences the
clustering results.

Learning:
Data: the SOMM = {mj∀j ≤ TOTNodes}, α(t), h(−,−),

X = {x(t)∀t ≤ TOTSample}
Result: the trained SOMM
forall m ∈ M do

initialize (m);
end
for t = 1; t ≤ TOTSample; t + + do

i = arg minj d(x(t),mj);
forall me ∈ M do

me(t + 1) = me(t) + α(t) ∗ h(e, i) ∗ (x(t) − me(t))
end

end
return M;

Mapping:
Data: the SOMM = {mj∀j ≤ TOTNodes}, X = {x(t)∀t ≤ TOTSample}
Result: The clusteringC
for i = 1; t ≤ TOTNodes; t + + do

Ci = ∅;
end
for t = 1; t ≤ TOTSample; t + + do

i = arg minj d(x(t),mj);
Ci = Ci ∪ x(t)

end
return C;

Algorithm 2 : The self-organizing map algorithm.

In the case in which the size of input vectors is higher than the number of
nodes in the output grid, SOM becomes a powerful tool to make dimensionality
reduction[Tanet al., 2005] (Feature selection).
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2.2.2 Hierarchical clustering

The main difference between partitional clustering and hierarchical clustering con-
sists in the fact the latter does not limit only in grouping the data objects in a flat
partition, but it also arranges the data into a tree like structure. This structure is
known asdendrogram. Each data object is assigned to a leaf of the tree, while
internal nodes represent groups of objects such that for each pair of elements in
such group, their distance is within a certain threshold. The root of the dendro-
gram contains all the objects. A flat clustering can be easilyobtained by cutting the
dendrogram at a certain level.

An important characteristic of hierarchical clustering isthat it requires the com-
putation of theproximity matrixthat is the squared matrix of the distances between
all the pairs of points in the data set. This makes the time andspace complexity of
this family of algorithms at least quadratic in the number ofdata objects. In recent
years, a lot of effort was done to improve the hierarchical clustering algorithms
performances and make them suitable for large scale datasets. Typical example
are: BIRCH[Zhanget al., 1996] and CUTE[Guhaet al., 1998].

The two main strategies for hierarchical clustering are:

• Divisive: in this case the dendrogram is built from the root to the leafs. Ini-
tially all the n objects are in the same cluster. A series of split operations
is made until all clusters contains just a single element. The splitting opera-
tion is made by computing all the distances between the pairsof objects in
the same cluster and selecting the two diametral points as seeds, then all the
points in the group are assigned to the closest seed.

• Agglomerative: the dendrogram is built from the leaves to the root. At the
beginning each object is inserted in a cluster (that represent a leaf of the
dendrogram), than a series of merge operations is made untilall the points
belong to the same cluster. Since the data objects aren and each merge oper-
ation reduces the number of objects of one unit,n − 1 merge operations are
needed. It is important to note that the operations of merge are made between
the two closest entities (either objects or clusters). A notion of cluster-cluster
distance and cluster-object distance must to be defined.

2.2.2.1 Divisive clustering

As mentioned in section 2.2.2, hierarchical divisive clustering algorithms start with
considering the whole input set as a single cluster that is the root of the dendrogram.
Before to start the procedure, a threshold distance must be chosen. Once this is
done, hierarchical divisive clustering proceeds as follows:

• the proximity matrixM is calculated and for each cluster and the furthest
pair of objects is selected,
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• if the cluster satisfies the algorithm splitting criterion,(i.e. the distance be-
tween the diametral pair is higher than a certain threshold)the cluster is
divided into two clusters by using the pair selected in the previous step as
seeds,

• when no more clusters must to be splitted, the algorithm stops.

One of the most important issues in divisive hierarchical clustering is the choice
of the splitting criterion[Savaresiet al., 2002]. The following strategies are typi-
cally used[Karypiset al., 1999]:

• each cluster is recursively splitted until each subclustercontains exactly one
element. In this case a complete tree is obtained. The main advantage of this
method is that a complete tree is obtained. The main disadvantage is that the
final clustering quality is not taken into account by this schema.

• The cluster with the largest number of elements is splitted.Using this ap-
proach a balanced tree is obtained.

• The cluster with the highest variance with respect to its “centroid” is splitted.
This is a widely used method to choose the cluster to split because it is related
to the distribution of the elements inside the cluster.

2.2.2.2 Agglomerative clustering

As mentioned in section 2.2.2, hierarchical agglomerativeclustering attempts to
cluster a set ofn objects providing also a tree like structure built from the leafs to
the root.

In the merging operation the two closest entities of the dendrogram (leafs or
internal nodes) are joined into a single entity. Considering leafs as clusters contain-
ing only an element, the notion of inter-cluster distance must be defined. There are
many different possibilities for this choice. The most common ones are based on
a linkage criterion (i. e. the distance between two clustersis the distance between
two points that are associated to them in such a way). Given two clustersCi and
Cj we have:

• Single linkage: d(Ci, Cj) = minp∈Ciq∈Cj
d(p, q) is the distance between

the closest pair of objects from different clusters. This method has the draw-
back that it tends to force clusters together due to a single pair of close ob-
jects regardless of the positions of the other elements in the clusters. This is
known aschaining phenomenon.
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Figure 2.2. Single linkage criterion.

• Complete linkage: d(Ci, Cj) = maxp∈Ciq∈Cj
d(p, q) is the distance be-

tween the farthest pair of objects from different clusters.This method tends
to make more compact clusters, but it is not tolerant to noisydata.

Figure 2.3. Complete linkage criterion.

• Average linkage: d(Ci, Cj) = 1
|Ci||Cj |

∑

p∈Ci

∑

q∈Cj
d(p, q) is the mean of

the distance among all the pairs of objects coming from different clusters.
This method is more robust with respect to the previous ones,in fact the
impact of outliers is minimized by the mean and the chaining phenomenon
is typically not observed.

Figure 2.4. Average linkage criterion.

Single linkage and complete linkage can be generalized as suggested by Lance
and Williams in[Lance and Williams, 1967] using the following formula:

d(Cl, (Ci, Cj)) = αid(Cl, Ci) + αjd(Cl, Cj) + βd(Ci, Cj) +

+γ | d(Cl, Ci) − d(Cl, Cj) | (2.1)
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whered is the distance between two entities,(Ci, Cj) is the cluster coming
from the union ofCi andCj and the four parametersαi, αj , β, γ, depend on the
specific strategy used. Note that whenαi = αj = 1/2, β = 0 andγ = −1/2,
formula (2.1) becomes

d(Cl, (Ci, Cj)) = min(d(Cl, Ci), d(Cl, Cj))

that is the single linkage formula. Instead, the choice ofαi = αj = γ = 1/2 and
β = 0 makes (2.1) be

d(Cl, (Ci, Cj)) = max(d(Cl, Ci), d(Cl, Cj))

that is the formula of complete linkage.
The hierarchical agglomerative clustering algorithm can be summarized by the

following procedure:

1. Initialize the proximity matrixM such thatMi,j is the distance between the
i-th and thej-th entity

2. Findi andj such thati 6= j and∀h, k: h 6= k, Mi,j ≤ Mh,k

3. JoinCi andCj and updateM accordingly

4. Repeat from step 2 until all the clusters are merged

2.2.3 The choice of the number k of clusters

All the algorithms we considered in this chapter are not ableto discover the number
of groups in which the hidden structure of the input set should be divided. For all
the described algorithms, the number of clusters is part of the input. In some cases,
like SOMs, the choice ofk is subjugated to the algorithm constraints. It is clear
that the final clustering quality is strongly dependent fromthis choice. In fact, a too
large number of clusters can have the effect to complicate the analysis of results,
while too few clusters can lead to information loss or inaccurate modeling.

Many different techniques were proposed in the literature to find the “right”
value fork; the most common approaches are based on: the construction of indices
that take into account properties like homogeneity, separation and silhouette (a
survey of some of them and an evaluation of their performances can be found in
[Milligan and Cooper, 1985]); the optimization of some probabilistic functions and
heuristics.

It is also important to note that all those methods, based on the computation
of indices or on the optimization of probabilistic functions, must be applied to
many choices ofk. This makes desirable to have clustering algorithms able tomake
clusters incrementally without the need to knowk in advance and to backtrack if
needed. To this aim divisive hierarchical clustering and FPF are more flexible with
respect tok-means and SOMs.
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2.2.3.1 Stability based techniques

We describe here in more details the stability based technique based on the pre-
diction strength method (developed by Tibshirani et al[Tibshirani et al., 2005])
to estimate the numberk of clusters. Then we describe an efficient variant of this
schema applied to the FPF algorithm as we adopted in[Geraciet al., 2007]. This
approach can be used efficiently for all the incremental cluster algorithms such as
the divisive hierarchical clustering.

To obtain the estimate of a good value ofk, the method proceeds as follows.
Given the setO of n objects, randomly choose a sampleOr of cardinalityµ. Then,
for increasing values oft (t = 1, 2, . . . ) repeat the following steps:

1. using the clustering algorithm, cluster bothOds = O \ Or andOr into t
clusters, obtaining the partitionsCt(ds) andCt(r), respectively;

2. measure how well thet-clustering ofOr predicts co-memberships of mates
in Ods (i.e. count how many pairs of elements that are mates inCt(ds) are
also mates according to the centers ofCt(r)).

Formally, the measure computed in step 2 is obtained as follows. Givent, clus-
teringsCt(ds) andCt(r), and objectsoi andoj belonging toOds, let D[i, j] = 1 if
oi andoj are mates according to bothCt(ds) andCt(r), otherwiseD[i, j] = 0. Let
Ct(ds) = {Ct,1(ds), . . . , Ct,t(ds)} , then the prediction strengthPS(t) of Ct(ds)
is defined as:

PS(t) = min
1≤l≤t

1

#pairs ∈ Ct,l(ds)

∑

i,j∈Ct,l(ds),i<j

D[i, j] (2.2)

where the number of pairs inCt,l(ds) is given by its binomial coefficient over
2. In other words,PS(t) is the minimum fraction of pairs, among all clusters in
Ct(ds), that are mates according to both clusterings, hencePS(t) is a worst case
measure. The above outlined procedure terminates at the largest value oft such
thatPS(t) is above a given threshold, settingk equal to sucht.

We now describe the modified version of the stability based technique we ap-
plied to FPF in[Geraciet al., 2007]. Note that this modified procedure depends
only on the ability of the clustering algorithm to create clusters one by one. We
first run the clustering algorithm onOr up tot = µ, storing all the computed cen-
tersc1, . . . , cµ. In a certain sense, the order in which centers are selected by FPF,
is used as a sort of ranking of the points ofOr. In the case of using FPF this step
costsO(µ|Or|) = O(µ2).

We then cluster the input setOds. Suppose at stept we have computed the
clustersCt,1(ds), . . . , Ct,t(ds) and suppose, for eacho ∈ Ods, we keep the index
i(o, t) of its closest center amongc1, . . . , ct. Such index can be updated in constant
time by comparingd(o, ci(o,t−1)) with d(o, ct), i.e., the distance ofo from the “cur-
rent” center and that to the new centerct. Now, for eachCt,l(ds), l ∈ [1, . . . , t] we
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can easily count in timeO(|Ct,l(ds)|) the number of elements that are closest to
the same centercj, j ∈ [1, . . . , t], and finally compute the summations in formula
2.2 in timeO(|Ods|).

After the last iteration, we obtain the clustering ofO by simply associating the
pointsc1, . . . , cµ to their closest centers inCk(ds). The overall cost of the modified
procedure using FPF as clustering algorithm isO(µ2 + k(n − µ) + kµ) = O(kn)
for µ = O(n1/2). Note that, differently from the original technique, we stop this
procedure at the first value oft such thatPS(t) < PS(t − 1) and setk = t − 1.
In [Geraciet al., 2007] we have empirically demonstrated that this choice of the
termination condition gives good results.

2.3 Clustering validation
Since the clustering task has an ambiguous definition, the assessment of the quality
of results is also not well defined. There are two main philosophies for evaluating
the clustering quality:

• internal criterion : is based on the evaluation of how the output clustering
approximates a certain objective function,

• external criterion : is based on the comparison between the output clustering
and a predefined handmade classification of the data calledground truth.

When a ground truth is available, it is usually preferable touse an external
criterion to assess the clustering effectiveness, becauseit deals with real data while
an internal criterion measures how well founded the clustering is according with
such mathematical definition.

2.3.1 Internal measures

There is a wide number of indexes used to measure the overall quality of a cluster-
ing. Some of them (i.e. the mean squared error) are also used as goal functions for
the clustering algorithms.

2.3.1.1 Homogeneity and separation

According with the intuition, the more a cluster contains homogeneous objects the
more it is a good cluster. Nevertheless the more two clustersare well separated the
more they are considered good clusters. Following the intuition, homogeneity and
separation[Shamir and Sharan, 2002] attempt to measure how compact and well
distanciated clusters are among them.

More formally given a set of objectsO = {o1, . . . , on}, we denote withS(oi, oj)
the similarity of the objectsoi andoj according to a given similarity function. We
say thatoi andoj are mates if they belong to the same cluster. We define:
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Homogeneity of a clustering: the average similarity between mates. LetM be
the number of mate pairs:

Have =
1

M
∑

oi,oj mates,i<j

S(oi, oj)

Separation of a clustering: the average similarity between non-mates.As M is
the number of mate pairs, the number of non-mates pairs is given byn(n −
1)/2 −M.

Save =
2

n(n − 1) − 2M
∑

oi,oj non−mates,i<j

S(oi, oj)

Observe that the higher homogeneity is, the better the clustering is. Analo-
gously, the lower separation is, the better the clustering is.

Alternative definition can be given using distances insteadof similarities. In
this case a better solution is given with a higher separationand a lower homogene-
ity.

Finally, homogeneity and separation can be approximated sothat they can be
calculated in linear time with the numbern of objects (instead of quadratic). Given
a clusteringC = {C1, . . . , Ck}, let cr(t) be the center (or centroid) of clusterCt:

Happrox =
1

n

k∑

t=1

∑

oi∈Ct

S(oi, cr(t)),

Sapprox =
1

∑

t<z |Ct||Cz |
∑

t<z

|Ct||Cz |S(cr(t), cr(z)).

Again, these measures can be expressed in terms of distancesinstead of simi-
larities.

These two measures are inherently conflicting, because typically an improve-
ment on one will correspond to a worsening of the other.

2.3.1.2 Average silhouette

Another measure that is worth calculate for a given clustering is theaverage silhou-
ette[Rousseeuw, 1987]: for each element we compute a quantity, called silhouette,
that gives an indication of how well the element fits into the cluster it is assigned to.
The silhouette is based on homogeneity and separation; in particular we compute
the homogeneity of the element with the elements in its cluster and the separation
of the element with the closest cluster (among the others). In this way we can see if
the element is well placed or if it is better placed in anothercluster. The silhouette
of objectoi that belongs to clusterc ∈ C is given by:
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sil(oi) =
bi − ai

max{ai, bi}
,

whereai is the average distance ofoi to the elements in its cluster, whilebi is
the average distance ofoi to the elements of the closest cluster. In formulas:

ai =
1

|c|
∑

oj∈c

d(oi, oj)

bi = min
c′∈C,c′ 6=c







1

|c′|
∑

oj∈c′

d(oi, oj)






.

(The valuesai andbi can be approximated using the centers (or centroid) of
clusters, in the same way as for homogeneity and separation).

Observe that for each elementoi we have−1 < sil(oi) < 1 and that whenever
oi fits in its cluster, thenbi > ai andsil(oi) > 0, while if oi fits better in another
cluster, then we havebi < ai andsil(oi) < 0.

To measure the quality of the whole clustering we use theaverage silhouette:

sil(C) =
1

n

∑

i∈n

sil(oi).

The higher this value is, the better the clustering is.

1. A singleton{oi} has silhouette equal to one becauseai = 0 andbi > 0 (each
element fits well in a cluster by its own).

2. If there is only one big cluster then for eachoi ∈ n we havesil(oi) = −1,
becausebi = 0 andai > 0 (no element fits well in a cluster with all other
elements).

The silhouette is not only used for assessing the clusteringquality but can be
helpful to guide the clustering task in many ways:

1. Given a cluster, the elements with lower silhouette mightbe excluded from
the cluster to have more homogeneous clusters.

2. Given two clusterings of the same set of objects, done withthe same cluster-
ing algorithm, but with different number of clusters, the one with higher av-
erage silhouette is preferable to the one with lower averagesilhouette. Thus,
it can be used to decidek, the number of clusters in the clustering[Lamrous
and Tailerb, 2006]. Experiments show that silhouette index is not very useful
for this purpose.
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2.3.2 External measures

In the following, we denote withGT (S) = {GT1, . . . , GTk} the ground truth
partition formed by a collection ofclasses; and withC = {c1, . . . , ck} the outcome
of the clustering algorithm that is a collection ofclusters.

2.3.2.1 F-measure

The F-measure was introduced in[Larsen and Aone, 1999] and is based on the
precisionandrecall that are concepts well known in the information retrieval liter-
ature[Kowalski, 1997], [Van Rijsbergen, 1979]. Given a clustercj and a classGTi

we have:

precision(GTi, cj) =
|GTi ∩ cj |

|cj |
recall(GTi, cj) =

|GTi ∩ cj |
|GTi|

,

Note that precision and recall are real numbers in the range[0, 1]. Intuitively
precision measures the probability that an element of the classGTi falls in the
clustercj while recall is the probability that an element of the cluster cj is also an
element of the classGTi. The F-measureF (GTi, cj) of a clustercj and a classGTi

is the harmonic mean of precision and recall:

F (GTi, cj) = 2
precision(iGT,cj)recall(GTi, cj)

precision(GTi, cj) + recall(GTi, cj)

The F-measure of an entire clustering is computed by the following formula:

F =
∑

i

|GTi|
n

max
j

(F (GTi, cj)),

wheren is the sum of the cardinality of all the classes. The value ofF is in the
range[0, 1] and a higher value indicates better quality.

2.3.2.2 Entropy

Entropy is a widely used measure in information theory. In a nutshell we can use
the relative entropy to measure the amount of uncertainty that we have about the
ground truth provided the available information is the computed clustering. Given
a clustercj and a classGTi, we can define

pi,j =
|GTi ∩ cj |
|GTi|

,

Ej =
∑

i

pi,j log pi,j,

E =
∑

j

|cj |
n

Ej ,
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wheren is the number of elements of the whole clustering. The value of E is in the
range[0, log n] and a lower value indicates better quality.

2.3.2.3 Accuracy

While the entropy of a clustering is an average of the entropyof single clusters, a
notion of accuracy is obtained using simply the maximum operator:

Aj = max
i

pi,j

A =
∑

j

|cj |
n

Aj .

The accuracyA is in the range[0, 1] and a higher value indicates better quality.

2.3.2.4 Normalized mutual information

Thenormalized mutual information(see e.g.[Strehl, 2002, page 110]), comes from
information theory and is defined as follows:

NMI(C,GT ) =
2

log |C||GT |
∑

c∈C

∑

c′∈GT

P (c, c′) · log P (c, c′)
P (c) · P (c′)

whereP (c) represents the probability that a randomly selected objectoj be-
longs toc, andP (c, c′) represents the probability that a randomly selected object
oj belongs to bothc andc′. The normalization, achieved by the 2

log |C||GT | factor, is
necessary in order to account for the fact that the cardinalities ofC andGT are in
general different[Cover and Thomas, 1991].

Higher values ofNMI mean better clustering quality.NMI is designed for
hard clustering.

2.3.2.5 Normalized complementary entropy

In order to evaluate soft clustering, thenormalized complementary entropy[Strehl,
2002, page 108] is often used. Here we describe a version of normalized comple-
mentary entropy in which we have changed the normalization factor so as to take
overlapping clusters into account. The entropy of a clustercj ∈ C is

Ej =

|GT |
∑

k=1

−|GTk ∩ cj |
|GTk|

log
|GTk ∩ cj|
|GTk|

The normalized complementary entropy ofcj is

NCE(cj , GT ) = 1 − Ej

log |GT |
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NCE ranges in the interval[0, 1], and a greater value implies better quality of
cj . The complementary normalized entropy ofC is the weighted average of the

contributions of the single clusters inC. Let n′ =
∑|C|

j∈1 |cj | be the sum of the
cardinalities of the clusters ofC. Note that when clusters may overlap it holds that
n′ ≥ n. Thus

NCE(C,GT ) =

|C|
∑

j∈1

|cj |
n′ NCE(cj , GT )

2.4 Improving the FPF algorithm for the k-center
problem

One of the mayor effort we did in this thesis was devoted to improve the Furthest
Point First algorithm from both the computational cost point of view and the output
clustering quality. Since theoretically the FPF algorithmas proposed by Gonzalez
[Gonzalez, 1985] is optimal (unlessP = NP ), only heuristics can be used to
obtain better results and, in the worst case, it is not possible to go behind the the-
oretical bounds. We profiled FPF and analyzed the most computational expensive
parts of the algorithm. We found that most of the distance computation are devoted
to find the next furthest point. We observed that there are cases such that some dis-
tance computations can be avoided without changing the finalclustering algorithm.
In section 2.4.1 we describe our results in this sense. FPF clustering quality can be
improved modifying part of the clustering schema. In section 2.4.2 we describe
an approach that use the random sampling technique to improve clustering output
quality, we call this algorithm M-FPF. Another crucial shortcomings of FPF is that
it selects a set of centers not representative of the clusters. This phenomenon must
be imputed to the fact that, when FPF creates a new center, it selects the furthest
point from the previous selected centers and thus the new center can likely be close
to a boundary of the subspace containing the data set. To overcame this problem in
section 2.4.3 we modify M-FPF to usemedoidsinstead of centers. Other domain
specific modifications to FPF will be presented in chapters 5 and6.

2.4.1 Exploiting the triangular inequality to improve the FPF
speed

We observed that most of the running time of the FPF algorithmis devoted to
compute distances for finding the closest center to each point. More precisely at
a generic iteration1 < i ≤ k, after finding the centerµk, n − k distances must
be computed to decide whether or not to assign a point to the new center. If this
is done in a straightforward manner it takesO(n) time per iteration, thus the total
computational cost of the algorithm isO(nk).
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Exploiting the triangular inequality, in certain conditions we can avoid to com-
pute the distances among all the points in a cluster and the new center being sure
that they are closer to their center. Unfortunately the worst case time complexity
still remainO(nk) because the number of saved distance computations depends
on data distribution and thus, it can not be predicted in advance. The modifications
discussed here do not change the FPF output, they only speed up the algorithm. In
chapter 5 we will discuss some approximations to speed up thealgorithm which
are data driven and thus not widely applicable. We modified the algorithm as fol-
lows: consider, in the FPF algorithm, any centerci and its associated set of closest
pointsCi. StoreCi as a ranked list, in order of decreasing distance toci. When a
new centercj is selected, scanCi in decreasing order of distance, and stop scanning
when, for a pointp ∈ Ci, it is the case thatd(p, ci) ≤ 1

2d(cj , ci). By the triangular
inequality, any pointp that satisfies this condition cannot be closer tocj than to
ci. This rule filters out from the scan points whose neighbor cannot possibly be
cj , thus significantly speeding up the identification of neighbors. Note that all dis-
tances between pairs of centers must be available; this implies an addedO(k2) cost
for computing and maintaining these distances. Note that this modified algorithm
works in any metric space, hence in any vector space2.

In the remainder of this thesis, when we will refer to FPF, we mean this version
of the algorithm since the final output is identical to that ofthe original one.

2.4.2 Using a random sample

The efficiency of the algorithm is further improved by applying FPF algorithm not
to the whole data set but only to a random sample of sizen′ =

√
nk of the input

points (sample size suggested in[Indyk, 1999]). Note that given thatk ≤ n, it is
always true thatn′ ≤ n. Then we add the remaining(n − n′) points to the cluster
of their closest center, one by one.

C1 C2

C2C1d(      ,       )

C2C1d(      ,       )1/2

C1 Pd(      ,       )
P

Figure 2.5. Exploiting the triangular inequality.

Also in the operation of insertion of the(n − n′) remaining points, the bot-
tleneck is the time spent computing distances to the point tothe closest center.

2We recall that any vector space is also a metric space, but notvice-versa.
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According with [Phillips, 2002] this operation can be made more efficiently ex-
ploiting the triangular inequality (see figure 2.5), even ifthe worst case running
time does not change.

Consider to have available the distances between all the pairs of centers of the
clustering. Letp be the new point to be inserted in the clustering, by the triangu-
lar inequality if 1

2d(ci, cj) > d(ci, p) thend(ci, p) < d(cj , p). It means that the
computation of the distanced(cj , p) can be safely avoided. Note that the distances
between each pair of centers is available in this phase because they were already
computed for the optimization described in section 2.4.1. We will refer to this al-
gorithm as M-FPF.

M-FPF:
Data: Let O be the input set,k the number of desired clusters
Result: C: ak-partition ofO
Initialize R with a random sample of size

√

|O|k elements ofO;
C = FPF(R, k);
forall Ci ∈ C do

µi = getCenter (Ci);
end
forall p in O \ R do

assignp to clusterCi such thatd(p, µi) < d(p, µj),∀j 6= i;
end

Algorithm 3 : M-FPF.

2.4.3 Using medoids as centers

The concept of medoid was introduced by Kaufman and Rousseeuw in [Kaufman
and Rousseeuw, 1990]. Medoids have two main advantages with respect to cen-
troids: first of all, they are elements of the input and not “artificial” objects. This
make medoids available also in those environments in which the concept of cen-
troid is not well defined or results artificious. Nevertheless, in many environments
(i.e texts) centroids tends to become dense objects with a high number of features
more of which of poor meaning. This makes centroids to lose representativeness
and compute distances with them becomes more expensive withrespect to dis-
tances between “normal” objects.

The main drawback of the original definition is that the clustering algorithm
(Partition Around Medoids) and the computation of medoids is expensive. As illus-
trated in section 2.2.1.3 to overcome this disadvantage many different re-definitions
of medoids were introduced in the literature.

In the context of the Furthest Point First heuristic where some input points are
elected as cluster centers and are used to determinate whichinput points belong
to the cluster, the restrictions of the use of centroids are not present. However,
we observed that, although the objects selected from FPF as centers determine the
points belonging to the cluster, they are not “centers” in the sense suggested by the
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human intuition.

C2

C3

C1

Figure 2.6. An example of clustering made using FPF.

Figure 2.6 shows a clustering with three clusters. The first centerc1 is central
also in the human sense.c2 is the furthest point fromc1. It can be easily observed
that according to the human feeling it is not in the center of the cluster it defines.
The same holds forc3.

This fact can impact negatively on the final clustering quality. Moreover we
will see in chapter 5 that there are applications in which we want to use the center
as a representative point of the cluster. In that casec2 andc3 are not a good choice.

To understand how centers as defined in the original FPF algorithm can not be
representative, consider the example in figure 2.7:

C1
C2

Figure 2.7. An example with two clusters made by FPF, in gray the ground
truth.

In the figure there are two clusters. The two gray filled circles represent the
expected correct clustering. Due to the choice ofc2 as the furthest point fromc1,
the obtained clustering is the one formed from the two balls with centersc1 and
c2 respectively. This has as side effect that some points (three in this example) are
assigned to the wrong cluster. The error is due to the choice of c2 that is not a good
candidate to be a center. Starting from this observation, weused medoids instead
of centers in our evolution of the FPF heuristic.
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Our definition of medoid is quite different from those present in the literature.
In fact we want to make the computation of medoids the more efficient as possible,
and in certain cases quickly approximable.

Given a set ofn pointsO = {o1, . . . , on} endowed with a distance function
d(), let (a, b) = arg maxx,y∈O2 d(x, y) two diametral points forO. We say that the
point m ∈ O such that

m = arg min
oi∈O

|d(oi, a) − d(oi, b)| + |d(oi, a) + d(oi, b) − d(a, b)|

is the medoid ofo.
This formula is composed by two main components:|d(oi, a) − d(oi, b)| con-

straints the medoid to be as equidistant as possible from thediametral points, while
|d(oi, a) + d(oi, b)− d(a, b)| attempts to select the closest possible point to the di-
ametral pair.

The medoid formulae can be generalized via weighting the twocomponents

m = arg min
oi∈O

α|d(oi, a) − d(oi, b)| + β|d(oi, a) + d(oi, b) − d(a, b)| (2.3)

whereα andβ are real numbers andα + β = 1.
According with this definition, the computation of the medoid is quadratic in

the number of points ofO. In fact, one should compute the distance between all the
possible pairs of objects of the input in order to find the diametral points. Following
[Ömer Egeciolu and Kalantari, 1989] it is possible to find a good approximationa
andb in linear time using the following search schema:

1. select a random pointp ∈ O

2. in O(n) find the furthest point fromp and call ita

3. in O(n) find the furthest point froma and call itb

Note that then distances computed in the step 3 can be stored and used for the
computation of formula (2.3).

According with the clustering strategy described in section 2.4.2, every time
a new pointp is inserted in a cluster, the medoid should be updated. This can be
unacceptable for its computational cost. If the new point isnot diametral, update
can be done just computingd(p, a) andd(p, b). Otherwise all the distances must
be recomputed. This effort can be reduced using another approximation: if for ex-
ampled(p, a) > d(a, b) andd(p, a) > d(p, b), one can consider as new diametral
pair the couple(a, p). This allow us to avoid the re-computation of the diametral
points and, by keeping updated a cache of all the distances between each diametral
point and all the other points, also the distances computation betweena and the
other points of the input set can be saved. Using this approximation it is possible
to update a medoid at the cost ofn distance function invocations instead of3n. We
will refer to this algorithm as M-FPF-MD.
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A further approximation of the medoid computation is still possible. Although
it reduces drastically the cost during the update procedure, it is quite rough and
should be used only in those online contexts where computational time makes the
difference, or in those environments where there is a huge amount of redundant
data. After the first time in which we finda, b and the medoidm, when a new
point p is inserted in the cluster, the update of the medoid can be done using the
following procedure:

• if d(p, a) > d(a, b) ∧ d(p, a) > d(p, b) discardb and replace it withp

• if d(p, b) > d(a, b) ∧ d(p, b) > d(p, a) discarda and replace it withp

• if d(a, b) > d(p, a) ∧ d(a, b) > d(p, b):

– if |d(p, a) − d(p, b)| + |d(p, a) + d(p, b) − d(a, b)| < |d(m,a) −
d(m, b)| + |d(m,a) + d(m, b) − d(a, b)| discardm andp become the
new medoid

– otherwise discardp

After the first initialization, this procedure requires only the computation of
two distances. In chapter 5 we will use successfully this approximation for the
generation of static storyboards from HSV vectors.

M-FPF-MD :
Data: Let O be the input set,k the number of desired clusters
Result: C: ak-partition ofO
Initialize R with a random sample of size

√

|O|k elements ofO;
C = FPF(R, k);
forall Ci ∈ C do

ti = getRandomPoint (Ci);
ai = ci such thatmax d(ci, ti) for eachci ∈ Ci;
bi = ci such thatmax d(ci, ai) for eachci ∈ Ci;
mi = ci such that
min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|;

end
forall p in O \ R do

assignp to clusterCi such thatd(p,mi) < d(p,mj),∀j 6= i;
if d(p, bi) > d(ai, bi) then ai = p ;
if d(p, ai) > d(ai, bi) then bi = p ;
if d(p, bi) > d(ai, bi) or d(p, ai) > d(ai, bi) then

mi = ci such that
min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|;

end
end

Algorithm 4 : M-FPF-MD.
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