Chapter

Clustering

Abstract

Clustering is a widely used technique to partition data imbgeneous groups.
It finds applications in many fields from information ret@g\vo bio-informatics.
The main goal of clustering algorithms is to discover thadbiu structure of data
and group them without any a-priori knowledge of the data @lamClustering is
often used for exploratory tasks.

The intuition behind partitioning data is that if two objgeé@re closely related
and the former is also related to a third object, then moriklso the latter has
a similar relation. This idea is known as thleister hypothesis

In the first part of this chapter we survey the principal swés for clustering,
the main clustering objective functions and related athors, the main definitions
for similarity and the clustering validation techniquese \@bnclude the chapter
giving some results about how we improved the Furthesttgost algorithm in
terms of speed and quality.
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2.1 Introduction to clustering

Clustering is a technique to split a set of objects in growgs shatsimilar objects
are grouped together, while objects that are not similarifiatlifferent clusters.
The choice of the notion of similarity (or distance) amongects that are needed
to be clustered is of crucial importance for the final result.

Clustering algorithms have no a-priori knowledge aboutdhta domain, its
hidden structure and also the number of hidden classes ichvdita are divided
is unknown. For this characteristic, clustering is oftefemed as un-supervised
learning in contrast to classification (or supervised legin which the number
of classes is known and for each class a certain number off@garare given.

The independence of clustering algorithms from the dataagiom at the same
time the secret of its success and its main drawback. In fiaceé €lustering does
not need any a-priori knowledge of the data domain, it candpdied to a wide
range of problems in different application areas. In catirgeneral purpose pro-
cedures do not allow to apply (even trivial) problem depenagptimizations and
consequently they typically perform worse then ad-hoctamis.

2.1.1 Metric space for clustering

The choice of how to represent the data objects one wantsistec| together with
the choice of the clustering strategy, is critical for thestkring result. The repre-
sentation schema depends from the type of data we are warking some fields
de-facto standards are widely used.

In text retrievalthe vector space model is the most commonly used. Documents
in this model are represented as vectors of weighted terifteddazag of words
For weighting, many approaches are used: binary schemahfchwhe weight of
a term is 0O if the term does not appear in the document, 1 otbeywthe tf-idf
scoring and so on. Imideo retrievalframes are represented as vectors in the HSV
color space. Iiio-informatics DNA microarrays are matrices in which each gene
is stored in a row and each column corresponds to a probe.

In all the above cited cases, a set of obj&ets- {0y, ... ,0,} are represented
with m-dimensional vectors which are stored in a matkik of n rows andm
columns, where: is the number of objects in the corpus whileis the number
of features of the objects. These vector spaces endowedavdistance function
define a metric space. The most widely used distance fursciom

e Cosine similarity: it is defined as the cosine of the angle betwegandoy,.
More formally

5(0g, 0p) = —22" % _
v [[0al] - [los

A distance can be easily derived from cosine similarity by:

d(0q,0) = /1 — 5%(04,0p)
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The most important property of cosine similarity is thatdted not depend
on the length of the vectors(o,, o) = s(@oq, op) for e > 0. This property
makes the cosine similarity widely used in text informatietrieval.

Jaccard coefficient:in its basic form it is defined as:

#(Oa N Ob)
#(Oa U Ob)

whereo, N oy, is the set of features in common betwegrando, ando, U oy,
is the total set of features (this approach assumes binatyrés). Many
variants of the Jaccard coefficient were proposed in theatitee. The most
interesting is the&Generalized Jaccard Coefficie(BJC) that takes into ac-
count also the weight of each term. It is defined as

J(ch Ob) =

ming™ ; (0a,i, 0b,;)

GJIC(04,0p) =

max!" ; (0q,i; 0b,i)

GJC is proven to be a metri€harikar, 2002 The Generalized Jaccard Co-
efficient defines a very flexible distance that works well witith text and
video data.

Minkowski distance: it is defined as:
m
Lp(oaa Ob) = (Z |0a,i - 0b,i|p)1/p
i=1

It is the standard family of distances for geometrical peaid. Varying the
value of the parameter, we obtain different well known distance functions.
Whenp = 1 the Minkowski distance reduces to the Manhattan distanme. F
p = 2 we have the well known Euclidean distance

m
L3(0a,05) = | Y (0ai — 0b)?

i=1
Whenp = o this distance becomes the infinity norm defined as:

Loo(04,0p) = I?igilX(Oa,ia b,

Pearson correlation: it is defined as follows:

P(on, 0p) = > he1(0ak — Ha)(obk — 1)

ay - )
\/ZZL(Oa,k — fta)? - \/Zgzl(ob,k — p)?

where i, and u;, are the means af, and oy, respectively. Pearson coeffi-

cient is a measure of similarity. In particular it computhe similarity of
the shapes between the two profiles of the vectors (it is Hmistoagainst
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outliers - potentially leading to false positive, assigntrigh similarity to a
pair of dissimilar patterns -, it is sensible to the shapermitto the mag-
nitude). To compute a distance, we defifig ,, = 1 — P(0q4,0p). Since
—1 < P(0q,by) < 1, for all o4, 0, we haved < d,, ,, < 2. This distance
is not a metric since both the triangular inequality and $sef-distance
(do, 0, = 0) do not hold. However, the square rootlef P(o,, o) iS propor-
tional to the Euclidean distance betwegnando, [Clarkson, 2008 hence
only the small self-distance condition fails for this vautizand metric space
methods can be used.

2.2 Clustering strategy

Clustering algorithms can be classified according with ndifigrent characteris-
tics. One of the most important is the strategy used by tharigihgn to partition the

space:
e Partitional clustering: given a seOD = {oy,...,0,} of n data objects, the
goal is to create a partitiof’ = {cy, ..., cx} such that:
- Vi€ [l,k] ¢ #0
- U§:1 ¢ =0
- Vi,j€[Lk]ANi#j ciNej =10
e Hierarchical clustering: given a seO = {o4, ..., 0,} of n data objects, the

goal is to build a tree-like structure (calleéndrogram H = {h1,...,hq}
with ¢ < n, such that: given two clusteks € h,, andc; € h; with ky
ancestor ofi,,,, one of the following conditions hold; C ¢j or¢; Ne; =0
foralli,57 #i,m,l € [1,q].

Partitional clustering is saidard if a data object is assigned uniquely to one

cluster,soft or fuzzy when a data object belongs to each cluster with a degree of

membership.

2.2.1 Partitional clustering

When the data representation and the distance fundtltave been chosen, parti-
tional clustering reduces to a problem of minimization ofigeg target function.
The most widely used are:

e K-center minimizes the maximum cluster radius
min max max d(z, Cj)

7 TEC)
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e K-mediansminimizes the sum of all the point-center distances

min Z Z d(z, pj)

J xEC

e K-meansminimizes the sum of squares of inter-cluster point-ceudisf

tances
miny" 3 (d(e 1)
J TEC
whereC' = {ci,..., ¢} arek clusters such thaf’; is the center of thg-th

cluster andy; is its centroid.
For all these functions it is known that finding the global mrinm is NP-hard.
Thus, heuristics are always employed to find a local minimum.

2.2.1.1 FPF algorithm for the k-center problem

As said in 2.2.1 one of the possible goal for partitional @igg is the minimiza-
tion of the largest cluster diameter solving theenter problem. More formally
the problem is defined as:

Definition 1. The k-centers problem: Given a setO of points in a metric space
endowed with a metric distance functidnand given a desired numbkof result-
ing clusters, partitiorO into non-overlapping clusterst,. .., Cy and determine
their “centers’cy, ..., ¢, € O so thatmax; max,cc; d(w, ¢;) (i.e. the radius of
the widest cluster) is minimized.

In [Feder and Greene, 1988 was shown that thé&-center problem is NP-
hard unless? = NP. In [Gonzalez, 1985; Hochbaum and Shmoys, 138®-
approximated algorithms are given.

We first describe the origin&urthest Point First(FPF) algorithm proposed by
GonzaleZ4Gonzalez, 1986that represents the basic algorithm we adopted in this
thesis. Then, in section 2.4 we will give details about thpriotmements we made
to reduce the running time and obtain a better clusteringjtgua

Basic algorithm Given a set) of n points, FPF increasingly computes the set of
centerse; C ... C ¢ € O, whereCy, is the solution to thé:-center problem and
Cy = {1} is the starting set, built by randomly choosingin O. At a generic
iteration1 < i < k, the algorithm knows the set of cent&rs | (computed at the
previous iteration) and a mappingthat associates, to each paing O, its closest
centeru(p) € C;_,. Iteration: consists of the following two steps:

1. Find the poinp € O for which the distance to its closest centép, 1.(p)),
is maximum; make a new center; and letC; = C;—; U {¢;}.
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2. Compute the distance of to all points inO \ C;_; to update the mapping
u of points to their closest center.

After k iterations, the set of centers, = {c,...,c;} and the mapping:
define the clustering. Clust€; is the set of point§p € O \ C}, such thatu(p) =
¢}, fori € [1, k]. Each iteration can be done in tim¥n), hence the overall cost
of the algorithm isO(kn). Experiments have shown that the random choice, of
to initialize C, does not affect neither the effectiveness nor the efficieriahe
algorithm.

FPF:

Data: Let O be the input set; the number of clusters

Result C, k-partition of O

C = z such thatr is an arbitrary element ap;

fori=0;i<k;,i++do

Pick the element of O \ C furthest from the closest elementdh
Ci=Ci=u;
end
forall z € O\ C do
| Letisuchthati(c;,z) < d(cj,x), Vs # i C;.append£);
end
Algorithm 1: The furthest point first algorithm for the-center problem.

2.2.1.2 K-means

The k-means algorithn{Lloyd, 1957 is probably the most widely used in the
literature. Its success comes from the fact it is simple tplément, enough fast
for relatively small datasets and it achieves a good qudltg k-means algorithm
can be seen as an iterative cluster quality booster.

It takes as input a roughtclustering (or, more precisel,candidate centroids)
and produces as output anotiteclustering, hopefully of better quality.

K-means, as objective function, attempts to minimize the sliime squares of
the inter-cluster point-to-center distances. More pedgighis corresponds to par-
tition, at every iteration, the input points into non-oegbing clusterg’;, ..., Cy
and determining their centroids, . . ., ux S0 that

k
Z Z (d((ﬂ, :u'j))2

:EEC]'

is minimized.

It has been showfSelim and Ismail, 1984that by using the sum of squared
Euclidean distances as objective function, the procedomgerges to a local min-
imum for the objective function within a finite number of iéions.

The main building blocks of-means are:

CLUSTERING 12



Clustering strategy

¢ the generation of the initial £ candidate centroids In this phase an initial
choice of candidate centroids must be done. This choiceitic trecause
both the final clustering quality and the number of iteradioeeded to con-
verge are strongly related to this choice. In the next seeti@will survey the
most important initialization strategies. A more complstevey and com-
parison can be found iiBradley and Fayyad, 1998; Peé@gal., 1999.

¢ the main iteration loop: In the main iteration loop, given a set éfcen-
troids, each input point is associated to its closest ciehtemd the collec-
tion of points associated to a centroid is considered as sietluFor each
cluster, a new centroid that is a (weighted) linear commabf the points
belonging to the cluster is recomputed, and a new iteratanss

¢ the termination condition: Several termination conditions are possible; e.g.
the loop can be terminated after a predetermined numbeetibns, or
when the variation that the centroids have undergone inasieiteration is
below a predetermined threshold.

The use ofk-means has the advantage that the clustering quality iglistea
enough good in different settings and with different datsisTnakes:-means the
most used clustering algorithm. Due its importance, there vast literature that
discusses its shortcomings and possible improvementg toasic framework.

A lot of efforts was spent to reduce tlhkemeans computational time that de-
pends on the size of the dataset, the number of desired rdlumte the number
of iterations to reach convergence. Some methods attenusetolever data struc-
tures to cache distancgSlkan, 2003; Smellie, 20Q4others exploit the triangular
inequality for avoiding distance computatiof®hillips, 2002. For small datasets
or when only few iterations are enough to achieve the desitgput quality, the
performance ok-means is acceptable, but for nowadays needs clusterimghas
become a shortcoming (i.e. in chapter 6 we will see that férthGusand of docu-
ments and 1000 clusters;means running time is of the order of a week).

Another well-known shortcoming is that some clusters mayhbee empty dur-
ing the computation. To overcome this problem, the “ISODATFou and Gonza-
lez, 1977 technique was proposed. Essentially when a cluster becemesy,
ISODATA splits one of the “largest” clusters so as to keepribmber of clusters
unchanged.

Initialize k-means Essentiallyk-means accepts as input an initial clustering that
can be made with any clustering algorithm. It is well-knovimattthe quality of
the initialization (i.e. the choice of the initial centroids) has a deep impact on
the resulting accuracy. Several methods for initializingheans are compared in
[Bradley and Fayyad, 1998; Pe@gal., 1999. The three most common initializa-
tions are:

"Note thatk-means is defined on vector spaces but not in general on raptiies, since in metric
spaces linear combinations of points are not points themsel

CLUSTERING 13



Clustering strategy

RC The simplest (and widely used) initialization femeans is the one in which
the initial centroids are &xdomly Ghosen among the input points and the
remaining points are assigned to the closest centroid. &hdting clustering
is often referred asandom clustering

RP In the Rindom_Prturbation, for each dimensiaf} of the space, the distri-
bution of the projections od; of the data points is computed, along with its
meany; and its standard deviatian;; the k initial centroids are obtained
throughk perturbations, driven by the;’'s ando;’s, of the centroid of all
data pointdPefiaet al,, 1999.

MQ MacQueen’s[MacQueen, 1967proposed a variant df-means: the initial
centroids are randomly chosen among the input points, amdetimaining
points are assigned one at a time to the nearest centroiccaatdsuch as-
signment causes the immediate recomputation of the cdninadlved. Then
k-means is initialized with the resulting clustering. Sintc&as experimen-
tally shown that this initialization achieves generallyand quality in con-
siderably less time thakr-means, this initialization is often used in place of
the standard-means and it is often referred ase-pass-means.

2.2.1.3 PAM: partition around medoids

Partition around medoidEKaufman and Rousseeuw, 199@as introduced by
Kaufman and Rousseeuw. PAM introduces the concephedoid A medoid is
a point of the input, it means that PAM is particularly suieam all those cases
in which the concept of centroid in not well defined. Moregwemany cases, the
more the number of objects increase, the less centroidsttebe representative;
instead medoids are not affected by this problem.

PAM builds ak-clustering and it can be described as follolidgy and Han,
1994:

1. Select a set df random input object® = {o4,... 0},
2. for each input object ¢ O compute the cost functiohC'(x, o;),
3. select the pair of objectsando; that minimizeT'C,

4. if TC(z,0;) < 0 replaceo; with z and restart from step 2.

The final clustering is obtained using the objegetss cluster centers and as-
signing the input points to the cluster with the nearestarent

PAM is computationally expensive, in fact there &ne— k) different pairs of
object for each of thk medoids. It means that for each iteratidd’ is computed
k(n — k) times. Due to its computational cost, many variations antbpmance
improvements were proposed in the literat[ifbang and Couloigner, 2005
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2.2.1.4 SOM: self organizing maps

Self organizing Map$Kohonen, 200llwere introduced by Teuvo Kohonen as sub-
type of artificial neural networks used to produce low dinemsl representation
of the training samples while preserving the topologicalparties of the input
space.

INPUI VALUES

WEIGHT
MATRIX FEATURE MAP

Figure 2.1. A simple 3 x 3 self organizing map.

A self-organizing map is a single layer feed-forward netwydnat is a network
without direct cyclic paths. Neurons are arranged in a lowetisional grid (typ-
ically two-dimensional or tridimensional). Each neurors lagsociated a vector of
weightsw; = {wj1,...,w;m} of the same size of input vectors. There are two
main ways to initialize the weights vectors:

e using small random values,

e using a random perturbation from the subspace spanned hwthiargest
principal component eigenvectors. This initializationsvgiown to speed up
the training phase of the SOM because they are already a gpovdxdma-
tion of the SOM weights.

Self-organizing maps work in two phases:

e training: the training phase can be seen as the process in which the sel
organizing map attempts to adapt the weight vectors of iesdo the train-
ing data. For this purpose a large humber of examples mustcm finput.

If a training set is not available the input data are ofterdusdrain the net-
work. The training algorithm is based orcampetitive learningapproach:
when a new sample(t) is presented to the network it is compared with all
the weights vectors and the neuron with closest weight vectdled Best
Matching Unit) is selected (i. e. the neurbsuch thainin; d(z(t), w;)). The
weight vector of the BMU and its neighbors, are modified agdirwy with the
sample. More formally lef the BMU ande a generic neuron of the SOM.
Let h(e,i) be a proximity function between the two neurons andt) be
the value ofw, at the epochi. The weight vector of the generic neureris
updated according with the following:
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We(t + 1) = we(t) + a(t) x hie, i) = (x(t) — we(t))
wherea(t) is a monotonically decreasing learning coefficient.

e mapping: in this phase the input vectors are simply assigned to isest
neuron. Borrowing the terminology df-means the nodes of the network
in this phase play the same role of centroids. It is intemgsto note that
the number of clusters in output depends on the number obnsun the
network. This means that the structure of the SOM drastigafluences the
clustering results.

Learning:
Data: the SOMM = {m;Vj < TOTNoges }, (t), h(—, =),
X = {m(t)Vt < TOTSample}
Result the trained SOMV/
forall m € M do
| initialize (m);
end
fort =1;t < TOTsqmpie; t + + do
i = argmin; d(x(t), m;);
forall m, € M do
| me(t+1) =me(t) + alt) * he,i) * (x(t) — me(t))
end
end
return M;

Mapping:
Data: the SOMM = {m;Vj < TOTNoges }» X = {x(t)Vt < TOTsqmpic }
Result The clustering”
for i =1;t < TOTnNoges; t + + dO
| Ci=0;
end
fort =1;t < TOTsqmpie; t + + do
i = argmin; d(x(t), m;);
CZ' = CZ U x(t)
end

return C} _ o .
Algorithm 2: The self-organizing map algorithm.

In the case in which the size of input vectors is higher thanrtbmber of
nodes in the output grid, SOM becomes a powerful tool to makesionality
reduction[Tanet al, 2009 (Feature selection).
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2.2.2 Hierarchical clustering

The main difference between partitional clustering anddnihical clustering con-
sists in the fact the latter does not limit only in grouping tiata objects in a flat
partition, but it also arranges the data into a tree likecstme. This structure is
known asdendrogram Each data object is assigned to a leaf of the tree, while
internal nodes represent groups of objects such that fdr pait of elements in
such group, their distance is within a certain thresholde Tdot of the dendro-
gram contains all the objects. A flat clustering can be eakitgined by cutting the
dendrogram at a certain level.

An important characteristic of hierarchical clusteringhiat it requires the com-
putation of theproximity matrixthat is the squared matrix of the distances between
all the pairs of points in the data set. This makes the timespade complexity of
this family of algorithms at least quadratic in the numbedafa objects. In recent
years, a lot of effort was done to improve the hierarchicabkigring algorithms
performances and make them suitable for large scale dataBgiical example
are: BIRCH[Zhanget al., 1996 and CUTE[Guhaet al., 1999.

The two main strategies for hierarchical clustering are:

e Divisive: in this case the dendrogram is built from the root to thedehfi-
tially all the n objects are in the same cluster. A series of split operations
is made until all clusters contains just a single elemeng glitting opera-
tion is made by computing all the distances between the péiobjects in
the same cluster and selecting the two diametral pointseissthen all the
points in the group are assigned to the closest seed.

e Agglomerative: the dendrogram is built from the leaves to the root. At the
beginning each object is inserted in a cluster (that reptegdeaf of the
dendrogram), than a series of merge operations is madealirttile points
belong to the same cluster. Since the data objects arel each merge oper-
ation reduces the number of objects of one unit; 1 merge operations are
needed. It is important to note that the operations of magenade between
the two closest entities (either objects or clusters). Aamodf cluster-cluster
distance and cluster-object distance must to be defined.

2.2.2.1 Divisive clustering

As mentioned in section 2.2.2, hierarchical divisive auisty algorithms start with
considering the whole input set as a single cluster thaeisdbt of the dendrogram.
Before to start the procedure, a threshold distance mushbsea. Once this is
done, hierarchical divisive clustering proceeds as fatlow

¢ the proximity matrix)M is calculated and for each cluster and the furthest
pair of objects is selected,
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e if the cluster satisfies the algorithm splitting criterighe. the distance be-
tween the diametral pair is higher than a certain threshibld)cluster is
divided into two clusters by using the pair selected in thevimus step as
seeds,

e when no more clusters must to be splitted, the algorithmsstop

One of the most important issues in divisive hierarchicastgring is the choice
of the splitting criterion[Savareskt al., 2004. The following strategies are typi-
cally usedKarypiset al., 1999:

e each cluster is recursively splitted until each subclustertains exactly one
element. In this case a complete tree is obtained. The maangabe of this
method is that a complete tree is obtained. The main distayans that the
final clustering quality is not taken into account by thisestia.

e The cluster with the largest number of elements is splittésing this ap-
proach a balanced tree is obtained.

e The cluster with the highest variance with respect to itatiasd” is splitted.
This is a widely used method to choose the cluster to splabseit is related
to the distribution of the elements inside the cluster.

2.2.2.2 Agglomerative clustering

As mentioned in section 2.2.2, hierarchical agglomeratiustering attempts to
cluster a set ofi objects providing also a tree like structure built from thaft to
the root.

In the merging operation the two closest entities of the degrém (leafs or
internal nodes) are joined into a single entity. Considglaafs as clusters contain-
ing only an element, the notion of inter-cluster distancenine defined. There are
many different possibilities for this choice. The most coomones are based on
a linkage criterion (i. e. the distance between two clustethe distance between
two points that are associated to them in such a way). GiverctustersC; and
C; we have:

e Single linkage d(C;, C;) = minyec,qec; d(p,q) is the distance between
the closest pair of objects from different clusters. Thighrod has the draw-
back that it tends to force clusters together due to a sirgjlegb close ob-
jects regardless of the positions of the other elementsarrlisters. This is
known aschaining phenomenon
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Figure 2.2. Single linkage criterion.

e Complete linkage d(C;,C;) = maxyec,qec; d(p,q) is the distance be-
tween the farthest pair of objects from different clustd@itis method tends
to make more compact clusters, but it is not tolerant to ndéetg.

Figure 2.3. Complete linkage criterion.

e Average linkage d(C;, C;) = Wl\c]\ >opec: 2oqec, d(p, q) is the mean of
the distance among all the pairs of objects coming from wdifie clusters.
This method is more robust with respect to the previous anefact the
impact of outliers is minimized by the mean and the chainihgnmmenon
is typically not observed.

Figure 2.4. Average linkage criterion.

Single linkage and complete linkage can be generalizedgggested by Lance
and Williams in[Lance and Williams, 1947using the following formula:

d(Cy, (Cy, Cy)) = d(Cy, C;) + ad(Cy, Cy) + Bd(Cy, Cj) +
+7y ‘ d(Cl,C,') — d(Cl,Cj) ’ (2.1)
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whered is the distance between two entiti€€/;, C;) is the cluster coming
from the union ofC; andC}; and the four parameters;, «;, 3, v, depend on the
specific strategy used. Note that when= «o; = 1/2, 3 = 0 andy = —1/2,
formula (2.1) becomes

d(Cla (027 Oj)) = min(d(cb Cz)v d(Clv CJ))

that is the single linkage formula. Instead, the choicevof= ; = v = 1/2 and
[ = 0 makes (2.1) be

d(Cy, (Cy,Cy)) = max(d(Cy, C;), d(Cy, C;))

that is the formula of complete linkage.
The hierarchical agglomerative clustering algorithm carstoammarized by the
following procedure:

1. Initialize the proximity matrix\/ such that)/; ; is the distance between the
i-th and thej-th entity

2. Findi andj such that # j andVh, k: h # k, M; ; < My, 1,
3. JoinC; andC; and updatel/ accordingly

4. Repeat from step 2 until all the clusters are merged

2.2.3 The choice of the number £ of clusters

All the algorithms we considered in this chapter are not &btiscover the number
of groups in which the hidden structure of the input set sthddl divided. For all
the described algorithms, the number of clusters is patieirtput. In some cases,
like SOMs, the choice ok is subjugated to the algorithm constraints. It is clear
that the final clustering quality is strongly dependent fithia choice. In fact, a too
large number of clusters can have the effect to complicaeaittalysis of results,
while too few clusters can lead to information loss or inaatel modeling.

Many different techniques were proposed in the literatorénd the “right”
value fork; the most common approaches are based on: the construttiatiaes
that take into account properties like homogeneity, seéjparand silhouette (a
survey of some of them and an evaluation of their performaiges be found in
[Milligan and Cooper, 1993; the optimization of some probabilistic functions and
heuristics.

It is also important to note that all those methods, basechercomputation
of indices or on the optimization of probabilistic functggrmust be applied to
many choices of. This makes desirable to have clustering algorithms ahiestice
clusters incrementally without the need to knévin advance and to backtrack if
needed. To this aim divisive hierarchical clustering an& BFRe more flexible with
respect tok-means and SOMs.
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2.2.3.1 Stability based techniques

We describe here in more details the stability based tedenipsed on the pre-
diction strength method (developed by Tibshirani efTabshiraniet al., 2009)
to estimate the numbdr of clusters. Then we describe an efficient variant of this
schema applied to the FPF algorithm as we adoptderaciet al., 2007. This
approach can be used efficiently for all the incrementaltetuslgorithms such as
the divisive hierarchical clustering.

To obtain the estimate of a good valuekfthe method proceeds as follows.
Given the seO of n objects, randomly choose a samplgof cardinality .. Then,
for increasing values of (t = 1,2, ... ) repeat the following steps:

1. using the clustering algorithm, cluster bath, = O \ O, andO, into ¢
clusters, obtaining the partitiorts,(ds) andC,(r), respectively;

2. measure how well theclustering ofO,. predicts co-memberships of mates
in Oy (i.e. count how many pairs of elements that are mates; (ds) are
also mates according to the centergpfr)).

Formally, the measure computed in step 2 is obtained aswellGivent, clus-
teringsC;(ds) andCy(r), and objects; ando; belonging toO;, let D[i, j] = 1 if
o; ando; are mates according to bofl)(ds) andCy(r), otherwiseD|i, j] = 0. Let
Ci(ds) = {Cy1(ds),...,Cit(ds)} , then the prediction strengtiS(t) of Cy(ds)
is defined as:

. 1 .
PS(t) = I s € Coalds) EC% | _<'D[z,J] (2.2)
2,] t,1(aS8),1<]

where the number of pairs i ;(ds) is given by its binomial coefficient over
2. In other words,PS(t) is the minimum fraction of pairs, among all clusters in
Cy(ds), that are mates according to both clusterings, heéng€) is a worst case
measure. The above outlined procedure terminates at tpestavalue oft such
that PS(t) is above a given threshold, settihgequal to such.

We now describe the modified version of the stability basebrtigjue we ap-
plied to FPF in[Geraciet al,, 2007. Note that this modified procedure depends
only on the ability of the clustering algorithm to createstkrs one by one. We
first run the clustering algorithm of,. up to¢ = u, storing all the computed cen-
terscy,...,c,. In a certain sense, the order in which centers are selegtédBb,
is used as a sort of ranking of the points(@f. In the case of using FPF this step
costsO(u|O,[) = O(1?).

We then cluster the input sé,;;. Suppose at stepwe have computed the
clustersC; 1 (ds), ..., C:+(ds) and suppose, for eache Oy, we keep the index
i(o, t) of its closest center among, . . ., ¢;. Such index can be updated in constant
time by comparingi(o, ¢, ;1)) With d(o, ¢), i.e., the distance af from the “cur-
rent” center and that to the new centgrNow, for eachCl ;(ds), I € [1,...,t] we
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can easily count in timé&(|Cy;(ds)|) the number of elements that are closest to
the same center;, j € [1,...,t], and finally compute the summations in formula
2.2intimeO(|Oys).

After the last iteration, we obtain the clustering@by simply associating the
pointscy, . . ., ¢, to their closest centers i, (ds). The overall cost of the modified
procedure using FPF as clustering algorithr®ig:? + k(n — p) + kp) = O(kn)
for p = O(nl/z). Note that, differently from the original technique, westhis
procedure at the first value ofsuch thatPS(t) < PS(t — 1) and setc =t — 1.

In [Geraciet al, 2007 we have empirically demonstrated that this choice of the
termination condition gives good results.

2.3 Clustering validation

Since the clustering task has an ambiguous definition, gesament of the quality
of results is also not well defined. There are two main phjpbsss for evaluating
the clustering quality:

e internal criterion : is based on the evaluation of how the output clustering
approximates a certain objective function,

e external criterion: is based on the comparison between the output clustering
and a predefined handmade classification of the data aaiteshd truth

When a ground truth is available, it is usually preferablaise an external
criterion to assess the clustering effectiveness, bedadsals with real data while
an internal criterion measures how well founded the clusgeis according with
such mathematical definition.

2.3.1 Internal measures

There is a wide number of indexes used to measure the overditygof a cluster-
ing. Some of them (i.e. the mean squared error) are also ssgohfunctions for
the clustering algorithms.

2.3.1.1 Homogeneity and separation

According with the intuition, the more a cluster containsrnegeneous objects the
more it is a good cluster. Nevertheless the more two clustersvell separated the
more they are considered good clusters. Following thetiotyihomogeneity and
separatior Shamir and Sharan, 20pattempt to measure how compact and well
distanciated clusters are among them.

More formally given a set of object8 = {0y, ..., 0, }, we denote wittf(o;, 0;)
the similarity of the objects; ando; according to a given similarity function. We
say thaip; ando; are mates if they belong to the same cluster. We define:
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Homogeneity of a clustering: the average similarity between mates.Akbe
the number of mate pairs:

che - M Z S(Oiaoj)

0;,0; mates,i<j

Separation of a clustering: the average similarity between non-matassM is
the number of mate pairs, the number of non-mates pairs endiyn(n —
1)/2 — M.

2
Save = nin—1) —2M Z 5(0:,05)

0i,0; non—mates,i<j

Observe that the higher homogeneity is, the better theeringt is. Analo-
gously, the lower separation is, the better the clustesng i

Alternative definition can be given using distances instefagimilarities. In
this case a better solution is given with a higher separaimha lower homogene-
ity.

Finally, homogeneity and separation can be approximatatiagcdhey can be
calculated in linear time with the numberof objects (instead of quadratic). Given
a clusteringC = {C1, ..., Ck}, leter(t) be the center (or centroid) of clustéf:

k
Hap;m"om = %Z Z S(Oi,CT‘(t)),

t=1 0;€C4

1
S T Ci||CL|S (er(t), cr(z)).
oppror = S o] él 1C2 S (er(t), er(2))
Again, these measures can be expressed in terms of distastesd of simi-
larities.
These two measures are inherently conflicting, becauseatjypian improve-
ment on one will correspond to a worsening of the other.

2.3.1.2 Average silhouette

Another measure that is worth calculate for a given clustgis theaverage silhou-
ette[Rousseeuw, 1987for each element we compute a quantity, called silhouette,
that gives an indication of how well the element fits into thester it is assigned to.
The silhouette is based on homogeneity and separationjiicydar we compute
the homogeneity of the element with the elements in its etushd the separation
of the element with the closest cluster (among the otherghi$ way we can see if
the element is well placed or if it is better placed in anottiaster. The silhouette

of objecto; that belongs to cluster € C is given by:
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. b; — a;
sil(o)) = ————
(0i) max{a;, b;}’
whereaq; is the average distance of to the elements in its cluster, whilg is
the average distance of to the elements of the closest cluster. In formulas:

1
a; = HZd(OZ‘,Oj)

oj€c

|
b — ; il d(0:. 0
o= L > d(oi,05)

. /
oj€cC

(The valuesa; andb; can be approximated using the centers (or centroid) of
clusters, in the same way as for homogeneity and separation)

Observe that for each elementwe have—1 < sil(o;) < 1 and that whenever
o; fits in its cluster, them; > a; andsil(o;) > 0, while if o; fits better in another
cluster, then we havig < a; andsil(o;) < 0.

To measure the quality of the whole clustering we useatl@rage silhouette

sil(C) = % Z sil(0;).

1En

The higher this value is, the better the clustering is.

1. Asingleton{o;} has silhouette equal to one because- 0 andb; > 0 (each
element fits well in a cluster by its own).

2. If there is only one big cluster then for eaghe n we havesil(o;) = —1,
because); = 0 anda; > 0 (no element fits well in a cluster with all other
elements).

The silhouette is not only used for assessing the clusteypiraity but can be
helpful to guide the clustering task in many ways:

1. Given a cluster, the elements with lower silhouette migghexcluded from
the cluster to have more homogeneous clusters.

2. Given two clusterings of the same set of objects, done tvélsame cluster-
ing algorithm, but with different number of clusters, theeamith higher av-
erage silhouette is preferable to the one with lower avesdgeuette. Thus,
it can be used to decideg the number of clusters in the clusteridgamrous
and Tailerb, 2006 Experiments show that silhouette index is not very useful
for this purpose.
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2.3.2 External measures

In the following, we denote wittGT'(S) = {GT1,...,GT}} the ground truth
partition formed by a collection aflassesand withC' = {¢y, ..., ¢; } the outcome
of the clustering algorithm that is a collectiondéisters

2.3.2.1 F-measure

The F-measure was introduced [ioarsen and Aone, 199%nd is based on the
precisionandrecall that are concepts well known in the information retrievarh
ature[Kowalski, 1991, [Van Rijsbergen, 1999Given a cluster; and a clas&:T;
we have:

|GTi N ¢
|51
Note that precision and recall are real numbers in the réhge. Intuitively

precision measures the probability that an element of tass¢lT; falls in the

clusterc; while recall is the probability that an element of the clustgis also an

element of the clas§’T;. The F-measuré'(GT;, ¢;) of a clusterc; and a class:T;
is the harmonic mean of precision and recall:

GTiij‘

precision(GT;, cj) = recall(GT;, ¢j) = | GT,

precision(iGT cj)recall(GT;, ;)
precision(GT;, ¢j) + recall(GT;, ;)
The F-measure of an entire clustering is computed by theviiatig formula:

F(GTIZ‘,CJ') =2

GT;
=Y ot o),

wheren is the sum of the cardinality of all the classes. The valug€ @ in the
range[0, 1] and a higher value indicates better quality.
2.3.2.2 Entropy

Entropy is a widely used measure in information theory. lrutsinell we can use
the relative entropy to measure the amount of uncertairdy we have about the
ground truth provided the available information is the caiepl clustering. Given
a clusterc; and a clasg-7;, we can define

o 1GTing]
p’l7j - ‘Gz—;‘ )
Ej = pijlogpi;,

3
¢
="l
s
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wheren is the number of elements of the whole clustering. The vafug is in the
range[0, log n] and a lower value indicates better quality.

2.3.2.3 Accuracy

While the entropy of a clustering is an average of the entadjsingle clusters, a
notion of accuracy is obtained using simply the maximum aiger

Aj= miaxpm

|4
A= A;.
2 A
J
The accuracy is in the rangd0, 1] and a higher value indicates better quality.

2.3.2.4 Normalized mutual information

Thenormalized mutual informatio(see e.glStrehl, 2002, page 11)) comes from
information theory and is defined as follows:

B 2 , P(c,d)
NMI(C,GT) = g |CTIGT C;C;Tp(c,c) log 5 B

where P(c) represents the probability that a randomly selected objebie-
longs toc, and P(c, ¢’) represents the probability that a randomly selected object
o, belongs to botkr and¢’. The normalization, achieved by tlﬂ%% factor, is
necessary in order to account for the fact that the cardiesiofC' andGT are in
general differenfCover and Thomas, 1991

Higher values ofN M I mean better clustering qualiti)y M [ is designed for
hard clustering.

2.3.2.5 Normalized complementary entropy

In order to evaluate soft clustering, thermalized complementary entrofitrehl,
2002, page 1d8is often used. Here we describe a version of normalized aampl
mentary entropy in which we have changed the normaliza@eotof so as to take
overlapping clusters into account. The entropy of a cluster C'is
|GT|
|GTkﬂCj| |GTkﬁCj|
E; = — log
=2 |GTy| |GTy|

k=1
The normalized complementary entropycgfis
Lj
log |GT|

NCE(C],GT) =1-
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NCE ranges in the interval, 1], and a greater value implies better quality of
c¢;. The complementary normalized entropy @fis the weighted average of the

contributions of the single clusters @. Letn’ = Z'fé‘l lc;| be the sum of the
cardinalities of the clusters @f. Note that when clusters may overlap it holds that
n’ > n. Thus
IC]| o]
NCE(C,GT) Z SINCE(e, GT)

Jjel

2.4 Improving the FPF algorithm for the k-center
problem

One of the mayor effort we did in this thesis was devoted toraw the Furthest
Point First algorithm from both the computational cost poihview and the output
clustering quality. Since theoretically the FPF algoritamproposed by Gonzalez
[Gonzalez, 198bis optimal (unlessP = N P), only heuristics can be used to
obtain better results and, in the worst case, it is not ptessibgo behind the the-
oretical bounds. We profiled FPF and analyzed the most catipnél expensive
parts of the algorithm. We found that most of the distancepmaation are devoted
to find the next furthest point. We observed that there arescsisch that some dis-
tance computations can be avoided without changing thediustering algorithm.
In section 2.4.1 we describe our results in this sense. ARfering quality can be
improved modifying part of the clustering schema. In sect4.2 we describe
an approach that use the random sampling technique to imtastering output
quality, we call this algorithm M-FPF. Another crucial sttmmings of FPF is that
it selects a set of centers not representative of the chisthis phenomenon must
be imputed to the fact that, when FPF creates a new centetgeitts the furthest
point from the previous selected centers and thus the netgroesm likely be close
to a boundary of the subspace containing the data set. Toawerthis problem in
section 2.4.3 we modify M-FPF to useedoidsinstead of centers. Other domain
specific modifications to FPF will be presented in chaptensdba

2.4.1 Exploiting the triangular inequality to improve the FPF
speed

We observed that most of the running time of the FPF algorithrdevoted to
compute distances for finding the closest center to each.pddiore precisely at
a generic iteration < i < k, after finding the centen, n — k distances must
be computed to decide whether or not to assign a point to tweceater. If this
is done in a straightforward manner it tak@én) time per iteration, thus the total
computational cost of the algorithm @(nk).
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Exploiting the triangular inequality, in certain condit®®we can avoid to com-
pute the distances among all the points in a cluster and thecapter being sure
that they are closer to their center. Unfortunately the woase time complexity
still remain O(nk) because the number of saved distance computations depends
on data distribution and thus, it can not be predicted in adeaThe modifications
discussed here do not change the FPF output, they only speeé algorithm. In
chapter 5 we will discuss some approximations to speed uplgwithm which
are data driven and thus not widely applicable. We modifiedatlqorithm as fol-
lows: consider, in the FPF algorithm, any centgand its associated set of closest
pointsC;. StoreC; as a ranked list, in order of decreasing distance; t&Vvhen a
new center; is selected, scaf in decreasing order of distance, and stop scanning
when, for a poinp € C;, it is the case thai(p, ¢;) < %d(cj, ¢i). By the triangular
inequality, any poinf that satisfies this condition cannot be closertdhan to
¢;. This rule filters out from the scan points whose neighbomoaipossibly be
c;, thus significantly speeding up the identification of neigtsb Note that all dis-
tances between pairs of centers must be available; thissengh added (k?) cost
for computing and maintaining these distances. Note thaitntlodified algorithm
works in any metric space, hence in any vector space

In the remainder of this thesis, when we will refer to FPF, weamthis version
of the algorithm since the final output is identical to thatrad original one.

2.4.2 Using a random sample

The efficiency of the algorithm is further improved by applyiFPF algorithm not
to the whole data set but only to a random sample of size v/nk of the input
points (sample size suggested/indyk, 1999). Note that given that < n, it is
always true that' < n. Then we add the remainin@ — »’) points to the cluster
of their closest center, one by one.

Figure 2.5. Exploiting the triangular inequality.

Also in the operation of insertion of thg: — n’) remaining points, the bot-
tleneck is the time spent computing distances to the poinheéoclosest center.

2\We recall that any vector space is also a metric space, buiceversa.
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According with [Phillips, 2002 this operation can be made more efficiently ex-
ploiting the triangular inequality (see figure 2.5), evernhi& worst case running
time does not change.

Consider to have available the distances between all the picenters of the
clustering. Letp be the new point to be inserted in the clustering, by the gran
lar inequality if £d(c;, ¢c;) > d(c;,p) thend(c;,p) < d(cj,p). It means that the
computation of the distana§c;, p) can be safely avoided. Note that the distances
between each pair of centers is available in this phase bedhey were already
computed for the optimization described in section 2.4.&.Will refer to this al-
gorithm as M-FPF.

M-FPF:

Data: Let O be the input set; the number of desired clusters

Result C: a k-partition ofO

Initialize R with a random sample of siz¢/|O|k elements oD;

C =FPF(R, k);

forall C; € C do

| ;= getCenter;);
end
forall pin O\ R do
| assignp to clusterC; such that(p, ;) < d(p, p1;),Vj # 1;
end
Algorithm 3: M-FPF.

2.4.3 Using medoids as centers

The concept of medoid was introduced by Kaufman and RousseelKaufman
and Rousseeuw, 19P0Medoids have two main advantages with respect to cen-
troids: first of all, they are elements of the input and notifigial” objects. This
make medoids available also in those environments in wiiielconcept of cen-
troid is not well defined or results artificious. Neverthslda many environments
(i.e texts) centroids tends to become dense objects witblarhumber of features
more of which of poor meaning. This makes centroids to lopeesentativeness
and compute distances with them becomes more expensiveregpect to dis-
tances between “normal” objects.

The main drawback of the original definition is that the austg algorithm
(Partition Around Medoids) and the computation of medosdsxipensive. As illus-
trated in section 2.2.1.3 to overcome this disadvantage whéferent re-definitions
of medoids were introduced in the literature.

In the context of the Furthest Point First heuristic whemnasanput points are
elected as cluster centers and are used to determinate wpichpoints belong
to the cluster, the restrictions of the use of centroids atepnesent. However,
we observed that, although the objects selected from FPE&mdsrs determine the
points belonging to the cluster, they are not “centers” sgbnse suggested by the
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human intuition.

Figure 2.6. An example of clustering made using FPF.

Figure 2.6 shows a clustering with three clusters. The festearc; is central
also in the human sens&. is the furthest point frona;. It can be easily observed
that according to the human feeling it is not in the centethefcluster it defines.
The same holds fof;.

This fact can impact negatively on the final clustering dyaliMoreover we
will see in chapter 5 that there are applications in which ve@tto use the center
as a representative point of the cluster. In that easedcs are not a good choice.

To understand how centers as defined in the original FPFidigocan not be
representative, consider the example in figure 2.7:

Figure 2.7. An example with two clusters made by FPF, in gray the ground
truth.

In the figure there are two clusters. The two gray filled cBadlepresent the
expected correct clustering. Due to the choice-oés the furthest point fromy,
the obtained clustering is the one formed from the two balth wentersc; and
co respectively. This has as side effect that some pointsetinréhis example) are
assigned to the wrong cluster. The error is due to the chdiegtbat is not a good
candidate to be a center. Starting from this observationyseel medoids instead
of centers in our evolution of the FPF heuristic.
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Our definition of medoid is quite different from those presiarthe literature.
In fact we want to make the computation of medoids the moreieffi as possible,
and in certain cases quickly approximable.

Given a set ofn pointsO = {oy,...,0,} endowed with a distance function
d(), let(a,b) = argmax, ,co2 d(,y) two diametral points fo©. We say that the
pointm € O such that

m = arg mllol ’d(oia CL) - d(0i7 b)’ + ’d(OZ’,CL) + d(0i7 b) - d(a7 b)‘
0; €

is the medoid ob.

This formula is composed by two main componem$o;, a) — d(o;, b)| con-
straints the medoid to be as equidistant as possible fromidimeetral points, while
|d(0i,a) 4 d(o;,b) — d(a, )| attempts to select the closest possible point to the di-
ametral pair.

The medoid formulae can be generalized via weighting thecovoponents

m = arg mein ald(o;,a) — d(o;,b)| + B|d(0;, a) + d(0;,b) — d(a,b)|  (2.3)
wherea and are real numbers and+ 3 = 1.

According with this definition, the computation of the madi® quadratic in
the number of points ad. In fact, one should compute the distance between all the
possible pairs of objects of the input in order to find the ditrad points. Following
[Omer Egeciolu and Kalantari, 198®is possible to find a good approximatian
andb in linear time using the following search schema:

1. select arandom poipte O
2. in O(n) find the furthest point fronp and call ita

3. inO(n) find the furthest point froma and call itb

Note that the: distances computed in the step 3 can be stored and used for the
computation of formula (2.3).

According with the clustering strategy described in secfiod.2, every time
a new pointp is inserted in a cluster, the medoid should be updated. Trishe
unacceptable for its computational cost. If the new pointds diametral, update
can be done just computing(p, a) andd(p,b). Otherwise all the distances must
be recomputed. This effort can be reduced using anothepzipmation: if for ex-
ampled(p, a) > d(a,b) andd(p,a) > d(p,b), one can consider as new diametral
pair the couplga, p). This allow us to avoid the re-computation of the diametral
points and, by keeping updated a cache of all the distande&er each diametral
point and all the other points, also the distances comutdietweern: and the
other points of the input set can be saved. Using this appration it is possible
to update a medoid at the costrotlistance function invocations instead3ef. We
will refer to this algorithm as M-FPF-MD.
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A further approximation of the medoid computation is stidsgible. Although
it reduces drastically the cost during the update procedure quite rough and
should be used only in those online contexts where computatiime makes the
difference, or in those environments where there is a hugauatrof redundant
data. After the first time in which we find, b and the medoidn, when a new
point p is inserted in the cluster, the update of the medoid can be deimg the
following procedure:

e if d(p,a) > d(a,b) Nd(p,a) > d(p,b) discardb and replace it wittp
e if d(p,b) > d(a,b) Ad(p,b) > d(p,a) discarda and replace it wittp
e if d(a,b) > d(p,a) Ad(a,b) > d(p,b):

— if |d(p,a) — d(p,b)| + |d(p,a) + d(p,b) — d(a,b)| < |d(m,a) —
d(m,b)| + |d(m,a) + d(m,b) — d(a,b)| discardm andp become the
new medoid

— otherwise discarg

After the first initialization, this procedure requires wrthe computation of
two distances. In chapter 5 we will use successfully thisragmation for the
generation of static storyboards from HSV vectors.

M-FPF-MD:

Data: Let O be the input set; the number of desired clusters

Result C: a k-partition of O

Initialize R with a random sample of siz¢/|O|k elements of);

C =FPFK(R, k),

forall C; € C do
t; = getRandomPoint((;);

a; = ¢; such thatmax d(c;, t;) for eache; € Cy;

b; = ¢; such thatmax d(c;, a;) for eache; € C;;

m; = ¢; such that

min ’d(CZ‘, CLZ‘) — d(CZ‘, bz)’ + ’d(CZ‘, CLZ‘) + d(CZ‘, bl) — d(a,-, bz)‘,
end

forall pin O\ R do

assignp to clusterC; such thatd(p, m;) < d(p, m;),Vj # i;
if d(p, bz) > d(a,-, bl) then q; = P,

if d(p, ai) > d(ai, bl) then b; = D,

if d(p, bz) > d(a,-, bl) or d(p, CLZ') > d(ai, bl) then

m; = ¢; such that

min |d(c;, a;) — d(c;, bi)| + |d(ci, ai) + d(ci, bi) — d(as, bi)l;
end
end

Algorithm 4 : M-FPF-MD.
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