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Abstract—Bottom-k sketches are an alternative to
k×minwise sketches when using hashing to estimate the
similarity of documents represented by shingles (or set
similarity in general) in large-scale machine learning. They
are faster to compute and have nicer theoretical properties.
In the case of k×minwise hashing, the bias introduced by not
truly random hash function is independent of the number
k of hashes, while this bias decreases with increasing k
when employing bottom-k. In practice, bottom-k sketches can
expedite classification systems if the trained classifiers are
applied to many data points with a lot of features (i.e., to
many documents encoded by a large number of shingles on
average). An advantage of b-bit k×minwise hashing is that it
can be efficiently incorporated into machine learning methods
relying on scalar products, such as support vector machines
(SVMs). Still, experimental results indicate that a nearest
neighbors classifier with bottom-k sketches can be preferable
to using a linear SVM and b-bit k×minwise hashing if the
amount of training data is low or the number of features is
high.

Keywords-large-scale machine learning; hashing; nearest
neighbor classification; set similarity; document encoding

I. INTRODUCTION

Hashing algorithms have been successfully applied to

scaling up the computation of set and bit-string similarities

in large-scale machine learning and data mining (e.g., see

[1], [2], [3], [4], [5]). The most prominent example is the

comparison of text documents represented by bags of n-

grams, where each document is represented by the set of all

n-grams (i.e., sequences of n contiguous words) it contains,

and the similarity of documents is computed as the similarity

of the corresponding sets. Using a standard corpus (i.e.,

set of words that are considered), the sets get very large

even for documents of moderate length and moderate value

of n. Given the ever increasing digital document sources

– the Internet being the most extreme example – it is

obvious that efficient large-scale algorithms for computing

or approximating set similarities are required.

Hashing algorithms can be employed to compute a short

summary, a sketch, of the document representation, which

can then be processed efficiently. Li and König [5] propose

to use sketches generated by b-bit k×minwise hashing [6],

[7] for large-scale classification of documents. In this short

paper, we explore using bottom-k sketches instead [8]. These

are faster to compute and, as has been shown recently, have

more appealing theoretical properties. However, in contrast

to b-bit k×minwise sketches, they do not directly lead to a

scalar product.

The next section will briefly review minwise hashing for

estimating set similarities. Section III will discuss bottom-k
sketches and their properties. In section IV, experiments,

similar to those conducted by [5], will be presented in

order to validate the computational properties of bottom-k
sketches for document classification.

II. SET SIMILARITY USING HASHING

We consider the Jaccard similarity or Jaccard index for

quantifying the similarity of sets. For two sets A and B
containing elements from a universe of discourse U (e.g.,

n-grams), the Jaccard index is defined as

J(A,B) =
|A ∩B|
|A ∪B| .

When A and B are huge, calculating the Jaccard similarity

can be very time consuming, especially if we want to

calculate the similarity of (almost) all pairs of sets in a

big collection. Hashing can be employed to create a small

signature (a sketch) for each set, which can be used to

estimate the Jaccard similarity between any two of them.

We consider hash functions h : U → {0, . . . ,m − 1},
m ∈ N, and define h(A) = {h(a) | a ∈ A} for A ⊆ U .

Let us for now assume truly random hash functions and let

h be such a function. If for each set A only the smallest

hash value min(h(A)) is stored, this value can be used to

estimate the Jaccard index, because it holds that

R = Pr{min(h(A)) = min(h(B))} = J(A,B) .

However, the variance of this estimator is much too high

for practical purposes. Therefore, Broder et al. [1], [2] have

introduced a technique using k hash functions h1, . . . , hk.

This method is known as k×minwise hashing and gives an

unbiased estimator

R̂ =
1

k

k∑
i=1

[min(hi(A)) = min(hi(B))]

of the Jaccard Index J(A,B). Here [P ] is the Iverson bracket

notation defined as [P ] = 1 when P is true and 0 otherwise.

This estimator has a variance Var(R̂) = 1
kR(1−R) decreas-

ing with k.

A variant of k×minwise sketches was presented in [6],

[7]. The authors suggest only using the b least significant
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bits of each hash value, which results in less storage re-

quirements. They analyze the variance of this new estimator

and show that, when estimating resemblances R ≥ 0.5, a

lot of storage can be saved. For instance, choosing b = 1
only requires an increase in k of a factor of 3 in order to

achieve the same variance as b = 64 (the original R̂). This

gives a 64/3-fold improvement if one is only interested in

resemblances greater than 0.5.

III. BOTTOM-K SKETCHES

We will now consider an alternative to k×minwise

sketches called bottom-k sketches. This method described

in [8] uses just a single hash function and stores the k
smallest hash values instead of only one. Let the function

k-min return the k smallest elements of a set, and let

Sh,k(A) = k-min(h(A)) denote the k smallest hash values

of a set A according to some hash function h. We drop

the indices and write S(A) if h and k are clear from the

context. Given a truly random hash function, the bottom-k
sketch S(A) of a set A represents k random samples without

replacement. We can use this random sample to estimate the

relative size of some subset Y ⊆ A as |S(Y )∩S(A)|/k. In

order to estimate the Jaccard similarity we need the relative

size of A ∩ B to A ∪ B. Using bottom-k sketches we get

the unbiased estimator of the Jaccard index

R̄ =
|S(A) ∩ S(B) ∩ S(A ∪B)|

k

=
|S(A) ∩ S(B) ∩ k-min(S(A) ∪ S(B))|

k
.

By using Chernoff bounds, we can see that this estimator

has an expected error of O(1/
√
k). In the following, we

will contrast k×minwise and bottom-k sketches.

A. Sketch creation

The main advantage of bottom-k sketches compared to

k×minwise sketches is that sketch creation is much faster.

With k×minwise sketches, k hash functions must be eval-

uated for each member of the input set A. This leads to a

sketch creation time of O(|A|·k), where |A| is the cardinality

of the input set A.

With bottom-k sketches just the single hash function h
must be evaluated per element of the input set A. Instead the

bulk of the work is in maintaining the set of the k smallest

hash values. This can be done using a priority queue (max

heap), yielding a sketch creation time of O(|A| · lg k).
In the large-scale learning applications, the sizes |A| of

the input sets can be huge, and therefore the differences in

sketch creation time can become a significant advantage of

bottom-k.

B. Bias and variance

Under the assumption of truly random hash functions

without collisions, the two estimators of the Jaccard simi-

larity using k×minwise and bottom-k sketches, respectively,

are unbiased and have a standard deviation bounded by

1/
√
Rk, where R is the real Jaccard similarity of the two

sets. However, in practice we do not employ truly random

hash functions and the situation is different.

When practical hash functions are considered, k×minwise

sketches lead to biased estimates of the Jaccard index – and

this bias is independent of k. Two concepts are helpful to

analyze how the methods work with practical hash functions.

First, let us introduce the notion of a (1±ε)-minwise family

of hash functions:

Definition 1: A family of hash functions H is said to be

(1 ± ε)-minwise if the probability over h ∈ H that any

element x ∈ U has the smallest hash value is off by at most

a factor of 1± ε.

Clearly a truly random hash function is 1-minwise and

using a (1 ± ε)-minwise hash family causes a bias in the

estimator of the Jaccard index of (1 ± ε)R. Furthermore,

recall the notion of k-independent hashing:

Definition 2: A family H of hash functions is k-indepen-

dent or k-universal if for any k distinct keys (x1, . . . , xk) ∈
Uk and any k hash values (y1, . . . , yk) ∈ {0, 1, . . . ,m−1}k
we have

Pr
h∈H

{h(x1) = y1 ∧ . . . ∧ h(xk) = yk} = 1

mk
.

For k×minwise hashing it has been shown that there will

always be bias in the estimation of the Jaccard index using

practical hash functions. This is captured by the following

theorem from [9]:

Theorem 3 (Pătraşcu & Thorup [9]): (1 ± ε)-minwise

hashing requires Ω(lg 1
ε )-independent hashing. Additionally,

for 2-independent hash functions, there exists specific inputs

leading to Θ(lg n) bias no matter the value of k.

Because bottom-k and k×minwise sketches are the same

for k = 1 we might expect the same to hold for bottom-k
sketches. This is however not the case.

Theorem 4 (Thorup [10]): Using bottom-k sketches with

2-independent, the expected relative error of the Jaccard

index estimator is O(1/
√
Rk). In particular, the bias of the

estimator vanishes as k increases.

This means that we can use the very fast multiply-shift

hash function by Dietzfelbinger [11] together with bottom-

k sketches and still have strong theoretic guarantees for the

resemblance estimator.

The result can be viewed as a theoretical argument for

using bottom-k sketches, however, we do not argue that

the better theoretical guarantees matter in practice. Given

enough randomness in the training data, loosely speaking,

even simple hash functions work as well as a truly random

hash function [12], and thus the bias vanishes in both

approaches.

C. Minwise hashing and linear kernels

A big advantage of k×minwise sketches over bottom-

k sketches is that they give rise to a Mercer kernel

29



function. This implies, for example, that we can use the

k×minwise sketches in conjunction with support vector

machines (SVMs, [13]).

The estimate of the Jaccard index by k×minwise sketches

is a Mercer kernel on the power set P(U) of U . Using

it as a kernel in a nonlinear SVM, however, exhibited too

slow training times according to [5]. Instead they suggest

using b-bit k×minwise sketches to create a linear kernel,

which can be used with the very efficient linear SVM such

as LIBLINEAR [14] on very large scale data sets.

Theorem 5 (Li, Shrivastava, Moore, & C. König [5]):

Let us consider � sets A1, . . . , A� ⊂ U and k hash functions

h1, . . . , hk. The � × � kernel (Gram) matrix �M defined by

b-bit minwise hashing with components

Mij =
k∑

l=1

(
b∏

t=1

[min(hl(Ai))t = min(hl(Aj))t]

)
,

where min(h(Ai))t is the t-th least significant bit of

min(h(Ai)), is positive semidefinite.

This theorem also shows how to integrate b-bit

k×minwise hashing with the linear SVM. This is done by

letting each minhash correspond to a vector of size 2b, which

is all 0s except having a 1 in the position of the b least

significant bits (i.e., at the position indexed by the integer

representation of the b bits) of the minhash. All these vectors

are then concatenated to form a final vector of size 2bk with

exactly k 1s. As an example using k = 3 and b = 2 the

k×minwise sketch (12, 34, 51) would be represented by the

vector

(0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0)T ,

because the two lowest bits of 12, 34, and 51 are 00, 10,

and 11, respectively. This approach was successfully used in

[5] and serves the baseline for our comparison in the next

section.

IV. EXPERIMENTS

This section will investigate whether the differences be-

tween the two hashing schemes matter in practice. First, we

will validate that the computation of bottom-k sketches is

significantly faster compared to k×minwise sketches already

on a rather small data set. Second, we will compare the two

approaches in classification experiments.

In our experiments, we compared the performance of a

nearest neighbor (NN) classifier using bottom-k sketches

with the approach described in [5], which utilizes the b-bit

k×minwise sketch together with a linear soft-margin SVM.

From the theoretical discussion in section III, it is clear

that bottom-k sketches always perform better (timewise)

than k×minwise sketches if we can directly interchange

the two. Therefore, we did not perform experiments using

k×minwise sketches with an NN classifier. However, we

measured the sketch creation times to verify that such a

comparison would indeed be trivial.

The focus of this study is classification time, and the

goal is to increase speed for certain scenarios without a

deterioration of accuracy. The classification time of the NN

method scales linearly with the number of training data

points. In contrast, the number of training data points does

not affect the linear SVM. After the representation of the

input is computed as described in subsection III-C, the SVM

basically just needs to calculate the scalar product between

sparse k2b-dimensional binary vectors. Thus, it is clear that

the b-bit k×minwise linear SVM will always be faster than

the bottom-k NN if the size of the training set increases

beyond a certain threshold. However, we wanted to study if

the K-NN with bottom-k outperforms the b-bit k×minwise

SVM in relevant scenarios in which the training set is

small and the resulting classifier is applied to many large

input sets. This scenario occurs, for example, if a document

database is large and labels are expensive to obtain.

A. Data sets

We wanted to stay close to the experimental evaluation in

[5] and therefore considered the WEBSPAM binary classifica-

tion task. The data set has 350, 000 elements and is available

from the LibSVM homepage [15]. Each input describes a

web page by a set of 3-grams (we do not take into account if

a 3-gram occurs several times). Each 3-gram is also referred

to as a feature. The total number of different features is

D = 16, 609, 143. Thus, each input corresponds to a sparse

D-dimensional binary vector. The average number features

(i.e., the average set size) is as low as 3, 727.

In addition, we also tested on the NEWS20 binary clas-

sification task as described in [16]. The data set, which is

much smaller than WEBSPAM, is provided on the LibSVM

homepage [15] and consists of 3-gram representations of

postings to newsgroups. It only contains 19, 996 elements

with a total number of D = 1, 355, 191 different features.

The average number of features is only 454.

In our experiments comparing classifiers, we vary the

training data set size. In contrast to other studies, we con-

sider rather small training data set sizes. For large training

data sets, the classification time of exact NN, which scales

linearly with the number of training data points, will clearly

be worse compared to the linear SVM. The number of

training points was selected based on the average number

of features of the data set. Because the k×minwise sketch

creation is linear in the amount of features, we expect that

average number of features roughly determines the threshold

below which the NN classifier outperforms the linear SVM

in terms of time. The training set was selected at random.

We considered 750, 1000, and 1250 documents for training

in the case of the WEBSPAM data set, and 100, 150, and

200 documents in the case of the NEWS20 data set. The

remaining data points were used for testing. For linear SVM

experiments with larger training set sizes we refer to [5].
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Because the experiments were randomized (hash functions

as well as training points), each experiment was repeated 10
times.

B. Hash functions

The hash function used in all experiments was Dietzfel-

binger’s efficient multiply-shift hash function. He proves that

for the family of hash functions defined by

ha,b(x) =

⌊
((ax+ b) mod km)

k

⌋
,

where k > 1 is a power of 2 and a, b ∈ {0, 1, . . . , km− 1},
is 2-independent [11].

The usefulness of this family stems from the implemen-

tation details. Because k is power of 2, we can implement

the division by a shift operation. Also, if we assume 32-

bit integers, we can pick km = 232 and avoid an explicit

modulus operation. A C-implementation could look like

(x * a + b) >> lg(k)

and requires only few clock cycles.

C. Experimental setup

We used LIBLINEAR [14] for the linear SVM and a sim-

ple K-NN implementation in C++. All tests were run on a

computer with Intel(R) Core(TM) i7 CPU @ 2.13GHz with

4GB memory running Archlinux 3.4.4-3. Thus, memory was

sparse, demonstrating the power of using sketches as, for

instance, the original WEBSPAM data set requires 24GB of

space.

As in [5], the testing time measurements also included the

data loading, as designed by LIBLINEAR. This, however,

can be neglected compared to the sketch creation time.

Contrary to the times reported in [5], we also included the

time it took to create the sketches for the input. This is the

majority of the work and should not be neglected.

D. Model selection

Both the linear SVM and the K-NN algorithm have a

hyperparameter, C and K, respectively. Li and König [5]

performed an extensive comparison of various C values,

which helped us to narrow down the possible value for

the WEBSPAM experiments. We tested C ∈ {0.1, 1, 10}.
In accordance with [5], C = 1 gave the best results in

all our experiments. Therefore, we only report results for

C = 1 in the following. We did not tune K and set it to

K = 1. In the case of the NEWS20 data set, we selected

the regularization parameter C from {10−4, 10−3, . . . , 100}
using 5-fold cross-validation on the training data [17].

For k we used the typical values k = 100 and k = 200
which worked well in the experiments in [5] and in previous

studies [2], [1], [6]. For b we only used the value 3.

E. Results

Table I shows how long it took to compute the two

types of sketches for the two data sets depending on k.

Even these results on rather small data sets clearly show

that the sketch creation for bottom-k is much faster than

for k×minwise. For example, the average parsing time of

WEBSPAM with bottom-k sketches for k = 200 was around

70 seconds, while it was around 468 seconds for k×minwise.

Such a significant improvement would also be observed

when comparing NN classifiers using the different types

of sketches. As argued before, in this case our approach

is clearly superior.

Data set WEBSPAM NEWS20
Sketch Bot-k k×min Bot-k k×min

k = 100 60.56s 240.16s 0.44s 1.85s
k = 200 70.12s 468.53s 0.49s 3.59s

Table I
AVERAGE PARSING TIME FOR BOTTOM-k AND k×MINWISE ON THE

350, 000 ELEMENTS OF THE WEBSPAM DATA SET AND ON THE 19, 996
ELEMENTS OF THE NEWS20 DATA SET. THE RESULTS ARE AVERAGED

OVER 30 TRIALS.

We use box plots displaying the median as well as the

lower and upper quartile to visualize the results of our

classification experiments. Figure 1 provides the accuracies

for the WEBSPAM data set with k = 100 and k = 200,

respectively. The results were very close to those reported

in [5] even though we only used a fraction of the available

data for training – down to less than 1% of the available

data. The nearest neighbor classifier was consistently better

than the SVM for k = 100, for k = 200 the two methods

perform on par.

The classification accuracies show that employing 1-NN is

a reasonable approach to solving the considered benchmark

tasks. However, one has to keep in mind that using too few

bits in the b-bit k×minwise sketches may deteriorate the

classification performance, in particular if k is too small.

Thus, increasing b may improve the SVM accuracies, but

would also slow down the method – and in this study our

main concern is the comparison of classification times.

Figure 2 provides the testing time for the WEBSPAM data

set using k = 100 and k = 200 respectively. As expected,

there was a clear linear relation between the number of

training points and the testing times for K-NN.

As hypothesized, K-NN with bottom-k was faster than

the SVM relying on b-bit k×minwise sketches for small

training data set sizes. The two methods were close to each

other at 1000 training points, which is about 1/4 of the

average feature count. For larger training data set sizes, the

linear SVM classifier was faster than K-NN.

Classifying the NEWS20 yielded similar results. Here the

linear SVM had problems learning a good hypotheses given
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Figure 1. Classification accuracies for the WEBSPAM data set using k = 100 and k = 200. The results for the SVM are for C = 1, which gave the best
results. The results are based on 10 repetitions. The dark boxes are for the 1-NN classifier and the light boxes are for the linear SVM.

the very few training samples (and b = 3). The NN classifier

performed significantly better, see Figure 3.

Figure 4 again shows the expected linear relation in the

NN testing times. The NN with bottom-k became faster

than the SVM when the training data set was reduced to

approx. 150 points, which is about 1/3 of the average feature

count.

V. CONCLUSIONS

This study considered bottom-k sketches as an alternative

to k×minwise sketches when using hashing to estimate the

Jaccard similarity of sets in large-scale machine learning.

Bottom-k sketches

• require only O(|A| · lg k) computations for a set of size

|A| in contrast to O(|A| · k) computations needed by

k×minwise sketches;

• provide an estimate of the Jaccard similarity with bias

and variance decreasing with the number of hashes

k if a 2-independent hash function is used, while

k×minwise sketches lead to a biased estimate for any

hash function with constant independence independent

of k.

While the latter point is mainly of theoretical interest, we

experimentally showed that bottom-k hashing can indeed

significantly speed-up classification algorithms in practice.

In particular, this is the case for applications where

• the classifier is applied to many data points with a lot

of features (i.e., large sets),

• a learning algorithm just requiring a metric space (and

no vector space) is a proper choice.

An example would be classifying a huge amount of web

pages using a nearest neighbor classifier trained with only a

few hand-labeled samples.

However, b-bit k×minwise hashing can be used to create

a fixed-length vector representation of the input sets that can

directly be used with a linear kernel function, which allows

using highly efficient linear classification methods. It is left

to future work to develop a similar representation based on

bottom-k hashing or to prove that this is not possible.
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Figure 3. Classification accuracies on the NEWS20 data set for k = 100 and k = 200. The results are base on 10 repetitions. The dark boxes are for
the 1-NN classifier and the light boxes are for the linear SVM.
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Figure 4. Testing times on the NEWS20 data set for k = 100 and k = 200. The results are base on 10 repetitions. The dark boxes are for the 1-NN
classifier and the light boxes are for the linear SVM.
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