Data stream statistics

Filippo Geraci, CNR, Pisa

Cache and Bloom filters

* Consider you have a proxy that caches web
pages. You may want not to cache a page that
will be visited only once
— Solution: use a bloom filter. Once you have a

request first check whether it has already be seen.

If YES cache the page, otherwise NO. ANYWAY add
the page to the Bloom filter.

value

Estimation of the number of
occurrences

hi(value)

h2(value)

hy(value)

N

A 4

+1

+1

+1

What about computing distributions?

* Given highly skewed data | want to measure
the frequency at least of the top elements

* Facts:

— Counters are expected to be higher because of
the contribution of other elements

— CM returns the counter with less noise
 |dea

— Estimate the contribution of noise for a specific
counter

CMM — Count Mean-Min sketch

class CountMeanMinSketch {
// initialization and addition procedures as in CountMinSketch
// n is total number of added elements

long estimateFrequency(value) {
long e[] = new long[d]
for(i = 9; 1 < d; i++) {
sketchCounter = estimators[i][hash(value, i)]
noisetEstimation = (n - sketchCounter) / (w - 1)
e[i] = sketchCounter - noiseEstimator

}

return median(e)

Heavy hitters

e All the above data structures allow counting
or membership evaluation.

* How to know the most represented keys in a
stream?

e Until now:

— | can count how many keys exist,

— | can check if a particular key is present

— | can count the number of its occurrences
— ...but | can’t do anything if | don’t know it

Bad news

 Naive solution:
— Sort data

 There is no algorithm that solves the Heavy
Hitters problems in one pass while using a
sublinear amount of auxiliary space

A simple algorithm

* Problem: find the elements that occur more than

N/k times (N is the stream length, k is a free
parameter)

e Solution:

— Maintain a CM and a max-heap (with k elements) of
the top elements

* Process:

1. Add the elementin the CM and estimate its
frequency

2. If frequency >= N/k insert the element in the heap

3. Note: the number of elements in the heap must be
at most k

The Space saving algorithm - build

Algorithm: Space-Saving(m counters, stream S)
begin
for each element, e, in S{
If e is monitored,
increment the counter of e;
else{
let e,, be the element with least hits, min
Replace e,, with e;
Increment count, ;
Assign ¢,, the value min;

}

}// end for
end;

The Space saving algorithm - query

Algorithm: QueryFrequent(m counters, support ¢)
begin
Bool guaranteed = true;
Integer i = 1;
while (count; > ¢ N AND i < m){
output e;;
If ((count; —e;) < ¢N)
guaranteed = false;
1++;
}// end while
return(guaranteed)
end;

Note that counts are sorted in descending order in this implementation

References

* New Estimation Algorithms for Streaming Data: Count-
min Can Do More

— http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.420.449&rep=repl&type=pdf

e Efficient Computation of Frequent and Top-k Elements
In Data Streams

— http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.94.8360&rep=repl&type=pdf

* PROBABILISTIC DATA STRUCTURES FOR WEB
ANALYTICS AND DATA MINING

— https://highlyscalable.wordpress.com/2012/05/01/
probabilistic-structures-web-analytics-data-mining/

Datasets

* Free Twitter datasets
— http://followthehashtag.com/datasets/

e Stackexchange Q&A website
— https://archive.org/download/stackexchange

