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Cache and Bloom filters

* Consider you have a proxy that caches web
pages. You may want not to cache a page that
will be visited only once
— Solution: use a bloom filter. Once you have a

request first check whether it has already be seen.

If YES cache the page, otherwise NO. ANYWAY add
the page to the Bloom filter.
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What about computing distributions?

* Given highly skewed data | want to measure
the frequency at least of the top elements

* Facts:

— Counters are expected to be higher because of
the contribution of other elements

— CM returns the counter with less noise
 |dea

— Estimate the contribution of noise for a specific
counter



CMM — Count Mean-Min sketch

class CountMeanMinSketch {
// initialization and addition procedures as in CountMinSketch
// n is total number of added elements

long estimateFrequency(value) {
long e[] = new long[d]
for(i = 9; 1 < d; i++) {
sketchCounter = estimators[i][ hash(value, i) ]
noisetEstimation = (n - sketchCounter) / (w - 1)
e[i] = sketchCounter - noiseEstimator

}

return median(e)



Heavy hitters

e All the above data structures allow counting
or membership evaluation.

* How to know the most represented keys in a
stream?

e Until now:

— | can count how many keys exist,

— | can check if a particular key is present

— | can count the number of its occurrences
— ...but | can’t do anything if | don’t know it



Bad news

 Naive solution:
— Sort data

 There is no algorithm that solves the Heavy
Hitters problems in one pass while using a
sublinear amount of auxiliary space



A simple algorithm

* Problem: find the elements that occur more than

N/k times (N is the stream length, k is a free
parameter)

e Solution:

— Maintain a CM and a max-heap (with k elements) of
the top elements

* Process:

1. Add the elementin the CM and estimate its
frequency

2. If frequency >= N/k insert the element in the heap

3. Note: the number of elements in the heap must be
at most k



The Space saving algorithm - build

Algorithm: Space-Saving(m counters, stream S)
begin
for each element, e, in S{
If e is monitored,
increment the counter of e;
else{
let e,, be the element with least hits, min
Replace e,, with e;
Increment count, ;
Assign ¢,, the value min;

}

}// end for
end;



The Space saving algorithm - query

Algorithm: QueryFrequent(m counters, support ¢)
begin
Bool guaranteed = true;
Integer i = 1;
while (count; > ¢ N AND i < m){
output e;;
If ((count; —e;) < ¢N)
guaranteed = false;
1++;
}// end while
return( guaranteed )
end;

Note that counts are sorted in descending order in this implementation
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Datasets

* Free Twitter datasets
— http://followthehashtag.com/datasets/
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— https://archive.org/download/stackexchange



