
Data	stream	sta)s)cs	

Filippo	Geraci,	CNR,	Pisa	



A	set	of	problems	on	twi;er	data	

1.  How	many	different	users	accessed	the	
server	this	week?	

2.  Was	john	among	them?	
3.  How	many	)mes	john	accessed	the	server?	
4.  What	is	the	usage	trend	on	the	server?	
5.  Who	are	the	most	ac)ve	users	on	this	

server?	



Cardinality	Es)ma)on	

•  Easy	when	I	want	to	count	all	
•  Coun)ng	the	dis)nct	elements	of	a	stream:	
– Sort	data	and	find	unique	keys	
– Use	hash	tables	

•  Sor)ng	takes	O(n	log	n)	)me	
•  Both	require	O(n)	space	



Cardinality	Es)ma)on:	Linear	Coun)ng	

•  Es)ma)on	of	c’	can	be	adjusted	according	to	the	the	
number	n	of	bits	and	the	number	c	of	bits	set	to	1	

!! = !−!!!"! − !
! !



How	big	should	be	the	bit	vector?	

•  h;p://dblab.kaist.ac.kr/Publica)on/pdf/
ACM90_TODS_v15n2.pdf	

Number	of	elements	in	the	stream	 Size	for	an	error	rate	of	1%	

100	 5034	

1000	 5329	

7000	 7132	

8000	 7412	

10000	 7960	

100000	 26729	

1000000	 154171	

10000000	 1096582	

100000000	 8571013	



Cardinality	Es)ma)on:	Linear	Coun)ng	
–	Complex	queries	

•  Case	study:	I	have	tweets	tagged	with	country	
and	language	
– Ques)on:	how	many	tweets	from	Italy	are	in	
English?	

•  I	can	keep	two	counters	one	for	country	and	
one	for	language	
– Answer:	OR	of	the	two	counters	



Loglog	counters	

•  Assuming	each	element	is	hashed	as	a	H	bit	
vector	
– Let	ρ(y)	the	rank	(i.e.	the	posi)on	of	the	lehmost	
bit	set	to	1)	of	the	hash	of	the	element	y	

1…	
1…	

Rank	=1	

1…	
01…	

Rank	=	2	

1…	
00…01..	

Rank	=	r	

½	Elements	 ¼		Elements	 1/2r	~	1	Elements	



Loglog	counters	

•  Given	a	hash	func)on	where	the	bits	are	
uniformly	distributed	we	can	es)mate	that:	

	

Imply	

thus	
max!!(!) = !"#!!!

! = !!:!! !! = ! = ! 12! !≅ 1!



Loglog	counters	



Loglog	counters	-	performance	

•  Given	m=256	(k=8)	H=16	->	max	rank	()	stored	
in	4	bits	
– The	data	structure	is	256	*	4bit	=	128	bytes	
– Count	the	number	of	dis)nct	words	in	
Shakespeare’s	wri)ngs	with	an	error	rate	of	9.4%	

– 30,897	instead	of	28,239	
•  The	HyperLogLog	algorithm	can	count	>	109	
elements	using	1.5kB	of	memory	with	error	
rate	less	than	2%	



Resources	

•  Python	Imlementa)on	of	Loglogcounters	
– h;ps://github.com/svpcom/hyperloglog	

•  Original	work:	
– h;p://algo.inria.fr/flajolet/Publica)ons/DuFl03-
LNCS.pdf	

•  Several	references	can	be	found	in	the	
Wikipedia	ar)cle	
– h;ps://en.wikipedia.org/wiki/HyperLogLog	



A	step	further	

•  Now	I	know	how	many	different	elements	in	a	
mul)set.	

•  I	want	to	know	if	an	element	belongs	to	the	
set	

•  Bloom	filters	answer:	
–  I	strongly	think	the	element	is	in	set	
– Definitely	not	in	set	



Bloom	filters	



The	bloom	filter	version	of	the	spell	
checker	

Number	of	words	in	the	dic)onary	



Prac)cal	usage	

•  A	python	implementa)on:	
– h;ps://github.com/jaybaird/python-bloomfilter	

•  Two	parameters:	
– Capacity	(i.e.	expected	number	of	elements	to	
insert)	

– Error	rate	(>	0,	<	1)	
•  Compare	speed	versus	space	of	bloom	filters	
and	hash	sets	



Cache	and	Bloom	filters	

•  Consider	you	have	a	proxy	that	caches	web	
pages.	You	may	want	not	to	cache	a	page	that	
will	be	visited	only	once	
– Solu)on:	use	a	bloom	filter.	Once	you	have	a	
request	first	check	whether	it	has	already	be	seen.	
If	YES	cache	the	page,	otherwise	NO.	ANYWAY	add	
the	page	to	the	Bloom	filter.	



Es)ma)on	of	the	number	of	
occurrences	



What	about	compu)ng	distribu)ons?	

•  Given	highly	skewed	data	I	want	to	measure	
the	frequency	at	least	of	the	top	elements	

•  Facts:	
– Counters	are	expected	to	be	higher	because	of	
the	contribu)on	of	other	elements	

– CM	returns	the	counter	with	less	noise	
•  Idea	
– Es)mate	the	contribu)on	of	noise	for	a	specific	
counter	



CMM	–	Count	Mean-Min	sketch	



Heavy	hi;ers	

•  All	the	above	data	structures	allow	coun)ng	
or	membership	evalua)on.	

•  How	to	know	the	most	represented	keys	in	a	
stream?	

•  Un)l	now:	
–  I	can	count	how	many	keys	exist,	
–  I	can	check	if	a	par)cular	key	is	present	
–  I	can	count	the	number	of	its	occurrences	
– …but	I	can’t	do	anything	if	I	don’t	know	it	



Bad	news	

•  Naïve	solu)on:	
– Sort	data		

•  There	is	no	algorithm	that	solves	the	Heavy	
Hi;ers	problems	in	one	pass	while	using	a	
sublinear	amount	of	auxiliary	space	



A	simple	algorithm	
•  Problem:	find	the	elements	that	occur	more	than	
N/k	)mes	(N	is	the	stream	length,	k	is	a	free	
parameter)	

•  Solu)on:	
– Maintain	a	CM	and	a	max-heap	(with	k	elements)	of	
the	top	elements	

•  Process:	
1.  Add	the	element	in	the	CM	and	es)mate	its	

frequency	
2.  If	frequency	>=	N/k	insert	the	element	in	the	heap	
3.  Note:	the	number	of	elements	in	the	heap	must	be	

at	most	k	



The	Space	saving	algorithm	-	build	



The	Space	saving	algorithm	-	query	

Note	that	counts	are	sorted	in	descending	order	in	this	implementa)on	



References	
•  New	Es)ma)on	Algorithms	for	Streaming	Data:	Count-
min	Can	Do	More	
–  h;p://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.420.449&rep=rep1&type=pdf	

•  Efficient	Computa)on	of	Frequent	and	Top-k	Elements	
in	Data	Streams	
–  h;p://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.94.8360&rep=rep1&type=pdf	

•  PROBABILISTIC	DATA	STRUCTURES	FOR	WEB	
ANALYTICS	AND	DATA	MINING	
–  h;ps://highlyscalable.wordpress.com/2012/05/01/
probabilis)c-structures-web-analy)cs-data-mining/	



Datasets	

•  Free	Twi;er	datasets	
– h;p://followthehashtag.com/datasets/	

•  Stackexchange	Q&A	website	
– h;ps://archive.org/download/stackexchange	


