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A S

A set of problems on twitter data

How many different users accessed the
server this week?

Was john among them?
How many times john accessed the server?
What is the usage trend on the server?

Who are the most active users on this
server?



Cardinality Estimation

Easy when | want to count all

Counting the distinct elements of a stream:
— Sort data and find unique keys
— Use hash tables

Sorting takes O(n log n) time
Both require O(n) space



Cardinality Estimation: Linear Counting

class LinearCounter {
BitSet mask = new BitSet(m) // m is a design parameter

void add(value) {
int position = hash(value) // map the value to the range 0..m
mask.set(position) // sets a bit in the mask to 1

}
}

e Estimation of ¢’ can be adjusted according to the the
number n of bits and the number c of bits setto 1
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How big should be the bit vector?

Number of elements in the stream

Size for an error rate of 1%

100

5034

1000 5329
7000 7132
8000 7412
10000 7960
100000 26729
1000000 154171
10000000 1096582
100000000 8571013

* http://dblab.kaist.ac.kr/Publication/pdf/

ACM90 TODS v15n2.pdf




Cardinality Estimation: Linear Counting
— Complex queries

* Case study: | have tweets tagged with country
and language

— Question: how many tweets from ltaly are in
English?

* | can keep two counters one for country and
one for language

— Answer: OR of the two counters



Loglog counters

* Assuming each element is hashed as a H bit
vector

— Let p(y) the rank (i.e. the position of the leftmost
bit set to 1) of the hash of the element y
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Loglog counters

e Given a hash function where the bits are
uniformly distributed we can estimate that:
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Loglog counters

class LogLogCounter {
int H // H is a design parameter

int m = 27k // k is a design parameter
etype[] estimators = new etype[m] // etype is a design parameter

void add(value) {
hashedValue = hash(value)
bucket = getBits(hashedvalue, 0, k)

estimators[bucket] =
max (estimators[bucket], rank( getBits(hashedvValue, k, H) );

)
}

int count (void) {
int sum = 0;
for (i=0; i < m; i ++) sum += estimators[i];
returnm * 2 * (1/m * sum);



Loglog counters - performance

* Given m=256 (k=8) H=16 -> max rank () stored
in 4 bits
— The data structure is 256 * 4bit = 128 bytes

— Count the number of distinct words in
Shakespeare’s writings with an error rate of 9.4%

— 30,897 instead of 28,239

* The HyperLoglLog algorithm can count > 10°
elements using 1.5kB of memory with error
rate less than 2%



Resources

* Python Imlementation of Loglogcounters
— https://github.com/svpcom/hyperloglog

* Original work:

— http://algo.inria.fr/flajolet/Publications/DuFIl03-
LNCS.pdf

e Several references can be found in the
Wikipedia article
— https://en.wikipedia.org/wiki/HyperLoglLog



A step further

* Now | know how many different elements in a
multiset.

* | want to know if an element belongs to the
set

* Bloom filters answer:
— | strongly think the element is in set
— Definitely not in set



Bloom filters
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The bloom filter version of the spell
checker

from pybloom import BloomFilter
import sys

bf = BloomFilter(capacity=466544, error rate=0.01)

f = open ("english.txt")
for line in f:
line = line[:-1)
bf.add (line)
f.close ()

Number of words in the dictionary

f = open (sys.argv[1l])
for line in f:
line = line[:-1]
line = line.split (" ")
for elem in line:
if elem in bf:
print elem, "True"
else:
print elem, "False"
f.close ()




Practical usage

* A python implementation:
— https://github.com/jaybaird/python-bloomfilter
* Two parameters:

— Capacity (i.e. expected number of elements to
insert)

— Error rate (>0, < 1)

 Compare speed versus space of bloom filters
and hash sets



Cache and Bloom filters

* Consider you have a proxy that caches web
pages. You may want not to cache a page that
will be visited only once
— Solution: use a bloom filter. Once you have a

request first check whether it has already be seen.

If YES cache the page, otherwise NO. ANYWAY add
the page to the Bloom filter.



value

Estimation of the number of
occurrences
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What about computing distributions?

* Given highly skewed data | want to measure
the frequency at least of the top elements

* Facts:

— Counters are expected to be higher because of
the contribution of other elements

— CM returns the counter with less noise
 |dea

— Estimate the contribution of noise for a specific
counter



CMM — Count Mean-Min sketch

class CountMeanMinSketch {
// initialization and addition procedures as in CountMinSketch
// n is total number of added elements

long estimateFrequency(value) {
long e[] = new long[d]
for(i = 9; 1 < d; i++) {
sketchCounter = estimators[i][ hash(value, i) ]
noisetEstimation = (n - sketchCounter) / (w - 1)
e[i] = sketchCounter - noiseEstimator

}

return median(e)



Heavy hitters

e All the above data structures allow counting
or membership evaluation.

* How to know the most represented keys in a
stream?

e Until now:

— | can count how many keys exist,

— | can check if a particular key is present

— | can count the number of its occurrences
— ...but | can’t do anything if | don’t know it



Bad news

 Naive solution:
— Sort data

 There is no algorithm that solves the Heavy
Hitters problems in one pass while using a
sublinear amount of auxiliary space



A simple algorithm

* Problem: find the elements that occur more than

N/k times (N is the stream length, k is a free
parameter)

e Solution:

— Maintain a CM and a max-heap (with k elements) of
the top elements

* Process:

1. Add the elementin the CM and estimate its
frequency

2. If frequency >= N/k insert the element in the heap

3. Note: the number of elements in the heap must be
at most k



The Space saving algorithm - build

Algorithm: Space-Saving(m counters, stream S)
begin
for each element, e, in S{
If e is monitored,
increment the counter of e;
else{
let e,, be the element with least hits, min
Replace e,, with e;
Increment count, ;
Assign ¢,, the value min;

}

}// end for
end;



The Space saving algorithm - query

Algorithm: QueryFrequent(m counters, support ¢)
begin
Bool guaranteed = true;
Integer i = 1;
while (count; > ¢ N AND i < m){
output e;;
If ((count; —e;) < ¢N)
guaranteed = false;
1++;
}// end while
return( guaranteed )
end;

Note that counts are sorted in descending order in this implementation
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Datasets

* Free Twitter datasets
— http://followthehashtag.com/datasets/

e Stackexchange Q&A website
— https://archive.org/download/stackexchange



