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Minimum Complexity Echo State Network

Ali Rodan, Student Member, IEEE, and Peter Tino

Abstract—Reservoir computing (RC) refers to a new class
of state-space models with a fixed state transition structure
(the reservoir) and an adaptable readout form the state space.
The reservoir is supposed to be sufficiently complex so as to
capture a large number of features of the input stream that
can be exploited by the reservoir-to-output readout mapping.
The field of RC has been growing rapidly with many successful
applications. However, RC has been criticized for not being
principled enough. Reservoir construction is largely driven by a
series of randomized model-building stages, with both researchers
and practitioners having to rely on a series of trials and errors.
To initialize a systematic study of the field, we concentrate
on one of the most popular classes of RC methods, namely
echo state network, and ask: What is the minimal complexity
of reservoir construction for obtaining competitive models and
what is the memory capacity (MC) of such simplified reser-
voirs? On a number of widely used time series benchmarks of
different origin and characteristics, as well as by conducting
a theoretical analysis we show that a simple deterministically
constructed cycle reservoir is comparable to the standard echo
state network methodology. The (short-term) MC of linear cyclic
reservoirs can be made arbitrarily close to the proved optimal
value.

Index Terms— Echo state networks, memory capability, neural
networks, reservoir computing, simple recurrent time-series pre-
diction.

I. INTRODUCTION

ECENTLY, there has been an outburst of research ac-

tivity in the field of reservoir computing (RC) [1]. RC
models are dynamical models for processing time series that
make a conceptual separation of the temporal data processing
into two parts: 1) representation of temporal structure in the
input stream through a nonadaptable dynamic reservoir, and
2) a memoryless easy-to-adapt readout from the reservoir. For
a comprehensive recent review of RC see [2]. Perhaps the
simplest form of the RC model is the echo state network
(ESN) [3]-[6]. Roughly speaking, ESN is a recurrent neural
network with a nontrainable sparse recurrent part (reservoir)
and a simple linear readout. Connection weights in the ESN
reservoir, as well as the input weights, are randomly generated.
The reservoir weights are scaled so as to ensure the echo
state property (ESP): the reservoir state is an “echo” of the
entire input history. Typically, spectral radius of the reservoir’s
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weight matrix W is made <1.! ESN has been successfully
applied in time-series prediction tasks [6], speech recognition
[7], noise modeling [6], dynamic pattern classification [5],
reinforcement learning [8], and language modeling [9].

Many extensions of the classical ESN have been suggested
in the literature, e.g., intrinsic plasticity [10], [11], decoupled
reservoirs [12], refined training algorithms [6], leaky-integrator
reservoir units [13], support vector machine [14], filter neurons
with delay and sum readout [15], etc. However, there are
still serious problems preventing ESN becoming a widely
accepted tool. 1) There are properties of the reservoir that are
poorly understood [12]. 2) Specification of the reservoir and
input connections requires numerous trails and even luck [12].
3) Strategies to select different reservoirs for different appli-
cations have not been devised [16]. 4) Imposing a constraint
on spectral radius of the reservoir matrix is a weak tool to
properly set the reservoir parameters [16]. 5) The random
connectivity and weight structure of the reservoir is unlikely to
be optimal and does not give a clear insight into the reservoir
dynamics organization [16]. Indeed, it is not surprising that
part of the scientific community is skeptical about ESNs being
used for practical applications [17].

Typical model construction decisions that an ESN user must
make include the following: setting the reservoir size; setting
the sparsity of the reservoir and input connections; setting the
ranges for random input and reservoir weights; and setting
the reservoir matrix scaling parameter o. The dynamical part
of the ESN responsible for input stream coding is treated as a
black box, which is unsatisfactory from both theoretical and
empirical standpoints. First, it is difficult to put a finger on
what it actually is in the reservoir’s dynamical organization
that makes ESN so successful. Second, the user is required to
tune parameters whose function is not well understood. In this
paper, we would like to clarify by systematic investigation the
reservoir construction: namely, we show that in fact a very
simple ESN organization is sufficient to obtain performances
comparable to those of the classical ESN. We argue that for
a variety of tasks it is sufficient to consider: 1) a simple fixed
nonrandom reservoir topology with full connectivity from
inputs to the reservoir; 2) a single fixed absolute weight value
r for all reservoir connections; and 3) a single weight value
v for input connections, with (deterministically generated)
aperiodic pattern of input signs.

In contrast to the complex trial-and-error ESN construction,
our approach leaves the user with only two free parameters to

INote that this is not the necessary and sufficient condition for ESP.

1045-9227/$26.00 © 2010 IEEE



132

Dynamical Reservoir
N internal units

x(1)

K Input units
s(1)

@

L output units

()

{7

Q 1

'. I
d

o 10

Fig. 1. ESN architecture.

be set, i.e., » and o. This not only considerably simplifies
the ESN construction, but also enables a more thorough
theoretical analysis of the reservoir properties. The doors can
be open for a wider acceptance of the ESN methodology
among both practitioners and theoreticians working in the field
of time-series modeling/prediction. In addition, our simple
deterministically constructed reservoir models can serve as
useful baselines in future RC studies. This paper is organized
as follows. Section II gives an overview of ESN design and
training. In Section III, we present our simplified reservoir
topologies. Experimental results are presented in Section IV.
We analyze both theoretically and empirically the short-term
memory capacity (MC) of our simple reservoir in Section V.
Finally, our work is discussed and concluded in Sections VI
and VII, respectively.

II. ESNs

ESN is a recurrent discrete-time neural network with K
input units, N internal (reservoir) units, and L output units.
The activation of the input, internal, and output units at time
step ¢ are denoted by s(t) = (s1(r),...,sx ()T, x(t) =
(x1(0), ..., xy(@)", and y(t) = (y1(1), ..., yr(1))", respec-
tively. The connections between the input units and the internal
units are given by an N x K weight matrix V, connections
between the internal units are collected in an N x N weight
matrix W, and connections from internal units to output units
are given in L x N weight matrix U.

The internal units are updated according to®

xt+1)=f(Vs@+ 1)+ Wx(1)) (1)

where f is the reservoir activation function (typically tanh
or some other sigmoidal function). The linear readout is
computed as’

yt+1)=Ux(t+1). )

Elements of W and V are fixed prior to training with random
values drawn from a uniform distribution over a (typically)

2There are no feedback connections from the output to the reservoir and no
direct connections from the input to the output.

3The reservoir activation vector is extended with a fixed element accounting
for the bias term.
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symmetric interval. To account for ESP, the reservoir connec-
tion matrix W is typically scaled as W <« a W/|A;uq4x |, Where
| Amax| is the spectral radius* of W and 0 < a < 1 is a scaling
parameter [5].

ESN memoryless readout can be trained both offline (batch)
and online by minimizing any suitable loss function. We
use the normalized mean square error (NMSE) to train and
evaluate the models

IR(OESIO]!
NMSE = (ly(®) — (@) 12)

where y(¢) is the readout output, y(¢) is the desired output
(target), ||.|| denotes the Euclidean norm, and < - > denotes
the empirical mean. To train the model in offline mode, we:
1) initialize W with a scaling parameter o < 1 and run the
ESN on the training set; 2) dismiss data from initial washout
period and collect remaining network states x (¢) row-wise into
a matrix X;° and 3) calculate the readout weights using, e.g.,
ridge regression [18]

3)

U=xXTx+22n""xTy )

where [ is the identity matrix, y a vector of the target values,
and 4 > 0 is a regularization factor.

III. SIMPLE ESN RESERVOIRS

To simplify the reservoir construction, we propose several
easily structured topology templates and compare them with
those of the classical ESN. We consider both linear reservoirs
that consist of neurons with identity activation function, as
well as nonlinear reservoirs consisting of neurons with the
commonly used tangent hyperbolic (tanh) activation function.
Linear reservoirs are fast to simulate but often lead to inferior
performance when compared to nonlinear ones [19].

A. Reservoir Topology

Besides the classical ESN reservoir introduced in the last
section (Fig. 1), we consider the following three reservoir
templates (model classes) with fixed topologies (Fig. 2).

1) Delay line reservoir (DLR), which is composed of
units organized in a line. Only elements on the lower
subdiagonal of the reservoir matrix W have nonzero
values Wiy, = r fori = 1...N — 1, where r is the
weight of all the feedforward connections.

2) DLR with feedback connections (DLRB), which has the
same structure as DLR but each reservoir unit is also
connected to the preceding neuron. Nonzero elements of

W are on the lower W;1; = r and upper W, ;11 = b
sub-diagonals, where b is the weight of all the feedback
connections.

3) Simple cycle reservoir (SCR), in which units are orga-
nized in a cycle. Nonzero elements of W are on the
lower subdiagonal W;1; = r and at the upper-right
corner Wiy =r.

4The largest among the absolute values of the eigenvalues of W.
SIn case of direct input-output connections, the matrix X collects inputs
s(t) as well.
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B. Input Weight Structure

The input layer is fully connected to the reservoir. For ESN
the input weights are (as usual) generated randomly from a
uniform distribution over an interval [—a, a]. In case of simple
reservoirs (DLR, DLRB, and SCR), all input connections have
the same absolute weight value » > 0, the sign of each
input weight is determined randomly by a random draw from
Bernoulli distribution of mean 1/2 (unbiased coin). The values
v and a are chosen on the validation set.

IV. EXPERIMENTS

A. Datasets

We use a range of time series covering a wide spectrum of
memory structure and widely used in the ESN literature [3],
[4], [6], [10], [11], [19]-[21]. For each dataset, we denote the
length of the training, validation, and test sequences by L;y,,
Lya1, and Ly, respectively. The first L, values from training,
validation, and test sequences are used as the initial washout
period.

1) NARMA System: The nonlinear autoregressive moving
average (NARMA) system is a discrete time system. This
system was introduced in [22]. The current output depends on
both the input and the previous output. In general, modeling
this system is difficult, due to the nonlinearity and possibly
long memory.

a) Fixed-order NARMA time series: NARMA systems
of order O = 10, 20 given by (5) and (6), respectively

y(+1) =03y()+0.05y() iy(t —1i)

+ 1.55( — 9)s(1) f(;).l )
y(t + 1) = tanh(0.3y(r) +O.05y(t)129y(t — i)

+ 1.5s(r — 19)s(r) + 0.(;3) (6)

where y(¢) is the system output at time ¢, and s(¢) is the system
input at time ¢ (an i.i.d stream of values generated uniformly
from an interval [0, 0.5]) [21], [22].
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b) Random 10th order NARMA time series: This system
is generated by

9
y(t+1) = tanh(ay(t)+ By () D y(t—i)+ys(t—=9)s(t)+9)

i=0

(N
where a, 8, y, and ¢ are assigned random values taken from
+50% interval around their original values in [21, eq. (5)].
Since the system is not stable, we used a nonlinear saturation
function tanh [21]. The input s(¢) and target data y(r) are
shifted by —0.5 and scaled by 2 as in [10]. The networks
were trained on system identification task to output y(¢) based
on s(t), with L, = 2000, L,q = 3000, L;;; = 3000, and
L, = 200.

2) Laser Dataset: The Santa Fe Laser dataset [13] is a
crosscut through periodic to chaotic intensity pulsations of
a real laser. The task is to predict the next laser activation
y(t + 1), given the values up to time ¢: L;, = 2000,
Lyq = 3000, Lss; = 3000, and L, = 200.

3) Hénon Map: Hénon Map dataset [23] is generated by

y(t)=1—14y¢ — 1> +03y(t —2)+z()  (8)

where y(¢) is the system output at time ¢ and z() is a normal
white noise with standard deviation of 0.05 [24]. We used
Lt = 2000, Lyq = 3000, L;s; = 3000, and L, = 200. The
dataset is shifted by —0.5 and scaled by 2. Again, the task
is to predict the next value y(t 4+ 1), given the values up to
time ¢.

4) Nonlinear Communication Channel: The dataset was
created as follows [6]. First, an i.i.d. sequence d(¢) of symbols
transmitted through the channel is generated by randomly
choosing values from {—3, —1, 1,3} (uniform distribution).
Then, d(t) values are used to form a sequence ¢ (¢) through a
linear filter

q(t) =0.08d(t+2)—0.12d(t +1)+d()+0.18d( — 1)
—0.1d(t —2) +0.09d(t — 3) — 0.05d(r — 4)
4+0.04d(t — 5) +0.03d( — 6) + 0.01d(t — 7). (9)

Finally, a nonlinear transformation is applied to g(n) to
produce the signal s(n)

s(t) = q (1) + 0.00364(1)> — 0.11¢(¢)>. (10)
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Following [6], the input s(¢) signal was shifted +30. The
task is to output d(t —2) when s(¢) is presented at the network
input. L;, = 2000, Ly = 3000, L;s; = 3000, and L, = 200.

5) IPIX Radar: The sequence (used in [12]) contains 2000
values with L;, = 800, L,y = 500, L,;; = 700, and
L, = 100. The target signal is the sea clutter data (the radar
backscatter from an ocean surface). The task was to predict
y(t + 1) and y(t +5) (1 and 5 step ahead prediction) when
y(t) is presented at the network input.

6) Sunspot Series: The dataset (obtained from [25]) con-
tains 3100 sunspots numbers from January 1749 to April 2007,
where L, = 1600, L4 = 500, L;s; = 1000, and L, = 100.
The task was to predict the next value y(¢ + 1) based on the
history of y up to time .

7) Nonlinear System with Observational Noise: This system
was studied in [26] in the context of Bayesian sequential state
estimation. The data is generated by

sit—1)
s() =055 —1)+ 25m
+ 8cos(1.2(r — 1)) + w(r) (11)
y(@) = @ +o(r) (12)
20

where the initial condition is s(0) = 0.1; w(¢) and v(¢) are
zero-mean Gaussian noise terms with variances taken from
{1,10}, ice., (62,02) € {1,10}%. Ly = 2000, L,q = 3000,
L;s; = 3000, and L, = 200. The task was to predict the value
y(t +5), given the values from ¢t — 5 up to time ¢ presented
at the network input.

8) Isolated Digits: This dataset® is a subset of the TI46
dataset which contains 500 spoken isolated digits (0 — 9),
where each digit is spoken 10 times by five female speakers.
These 500 digits are randomly split into training (N, = 250)
and test (Ny; = 250) sets. Because of the limited amount
of data, model selection was performed using 10-fold cross
validation on the training set. The Lyon passive ear model
[27] is used to convert the spoken digits into 86 frequency
channels. Following the ESN literature using this dataset, the
model performance will be evaluated using the word error rate
(WER), which is the number of incorrectly classified words
divided by the total number of presented words. The 10 output
classifiers are trained to output 1 if the corresponding digit is
uttered and —1 otherwise. Following [28], the temporal mean
over complete sample of each spoken digit is calculated for
the 10 output classifiers. The winner-take-all methodology is
then applied to estimate the spoken digit’s identity. We use this
dataset to demonstrate the modeling capabilities of different
reservoir models on high-dimensional (86 input channels) time
series.

B. Training

We trained a classical ESN as well as SCR, DLR, and
DLRB models (with linear and tanh reservoir nodes) on the
time series described above with the NMSE to be minimized.

60btained from http://snn.elis.ugent.be/rctoolbox.
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The model fitting was done using ridge regression,” where
the regularization factor A was tuned per reservoir and per
dataset on the validation set. For each, we calculate the
average NMSE® over 10 simulation runs. Our experiments
are organized along four degrees of freedom: 1) reservoir
topology; 2) reservoir activation function; 3) input weight
structure; and 4) reservoir size.

C. Results

For each dataset and each model class (ESN, DLR, DLRB,
and SCR), we picked on the validation set a model repre-
sentative to be evaluated on the test set. Ten randomizations
of each model representative were then tested on the test
set. For the DLR, DLRB, and SCR architectures, the model
representatives are defined by the input weight value v and the
reservoir weight r (for DLRB network we also need to specify
the value b of the feedback connection). The randomization
was performed solely by randomly generating the signs for
individual input weights,” the reservoir itself was intact. For
the ESN architecture, the model representative is specified by
input weight scaling, reservoir sparsity, and spectral radius
of the weight matrix. For each model setting (e.g., for ESN,
input weight scaling, reservoir sparsity, and spectral radius),
we generate 10 randomized models and calculate their average
validation set performance. The best performing model setting
on the validation set is then used to generate another set of
10 randomized models that are fitted on the training set and
subsequently tested on the test set.

For some datasets, the performance of linear reservoirs was
consistently inferior to that of nonlinear ones. Due to space
limitations, in such cases the performance of linear reservoirs
is not reported. Linear reservoirs are explicitly mentioned only
when they achieve competitive (or even better) results than
their nonlinear counterparts.

Figs. 3, 4, and 5(a) show the average test set NMSE
(across ten randomizations) achieved by the selected model
representatives. Fig. 3 presents results for the four model
classes using nonlinear reservoir on the Laser, Hénon Map,
and Nonlinear Communication Channel datasets. On those
time series, the test NMSE for linear reservoirs were of an
order of magnitude worse than the NMSE achieved by the
nonlinear ones. While the ESN architecture slightly outper-
forms the simplified reservoirs on the Laser and Hénon Map
time series, for the Nonlinear Communication Channel the
best performing architecture is the simple delay line network
(DLR). The SCR reservoir is consistently the second-best
performing architecture. Even though the differences between
NMSE are in most cases statistically significant, from the

TWe also tried other forms of offline and online readout training, such
as Wiener—Hopf methodology (e.g., [16]), pseudoinverse solution (e.g., [3]),
singular value decomposition (e.g., [20]), and recursive least square (e.g.,
[21]). Ridge regression led to the best results. We are thankful to the
anonymous referee for suggesting the inclusion of ridge regression in our
repertoire of batch training methods.

8WER in the case of Isolated Digits dataset.

9Strictly speaking, we randomly generated the signs for input weights and
input biases. However, as usual in the neural network literature, the bias terms
can be represented as input weights from a constant input +1.
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function f were used.

TABLE I
MEAN NMSE FOR ESN, DLR, DLRB, AND SCR ACROSS 10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESIS) AND SCR TOPOLOGIES

WITH DETERMINISTIC INPUT SIGN GENERATION ON THE IPIX Radar AND Sunspot SERIES. THE RESULTS ARE REPORTED FOR PREDICTION HORIZON v
AND MODELS WITH NONLINEAR RESERVOIRS OF S1ZE N = 80 (/PIX Radar) AND LINEAR RESERVOIRS WITH N = 200 NODES (Sunspot Series)

Dataset | v | ESN | DLR | DLRB | SCR | SCR-PI | SCR-EX | SCR-Log
1 ] 0.00115 (2.48E-05) | 0.00112 (2.03E-05) | 0.00110 (2.74E-05) | 0.00109 (1.59E-05) | 0.00109 | 0.00109 [ 0.00108
IPIX Radar | 5 | 0.0301 (8.11E-04) | 0.0293 (3.50E-04) | 0.0296 (5.63E-04) | 0.0291 (3.20E-04) | 0.0299 | 0.0299 | 0.0297
Sunspot | 1 [ 0.1042 (8.33E-5) | 0.1039 (9.19E-05) | 0.1040 (7.68E-05) | 0.1039 (S.91E-05) | 0.1063 | 0.1065 0.1059

practical point of view they are minute. Note that the Non-
linear Communication Channel can be modeled rather well
with a simple Markovian DLR and no complex ESN reservoir
structure is needed. Nonlinearity in the reservoir activation
and the reservoir size seem to be two important factors for
successful learning on those three datasets.

Fig. 4 presents results for the four model classes on the
three NARMA time series, namely fixed NARMA of order
10, 20 and random NARMA of order 10. The performance
of linear reservoirs does not improve with increasing reser-
voir size. Interestingly, within the studied reservoir range
(50-200), linear reservoirs beat the nonlinear ones on 20th
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TABLE 1T
NMSE For ESN, DLR, DLRB, AND SCR ACROSS 10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESIS) AND SCR
TOPOLOGIES WITH DETERMINISTIC INPUT SIGN GENERATION ON THE Nonlinear System with Observational Noise DATASET.

RESERVOIRS HAD N = 100 INTERNAL NODES WITH tanh TRANSFER FUNCTION f

var w | varv | ESN | DLR | DLRB | SCR | SCR-PI | SCR-EX | SCR-Log
1 1 0.4910 (0.0208) [ 0.4959 (0.0202) [ 0.4998 (0.0210) [ 0.4867 (0.0201) [ 0.5011 | 05094 [ 0.5087
10 1| 07815 (0.00873) | 0.7782 (0.00822) | 0.7797 (0.00631) | 0.7757 (0.00582) | 0.7910 | 0.7902 | 0.7940
1 10 | 0.7940 (0.0121) | 0.7671 (0.00945) | 0.7789 (0.00732) | 0.7655 (0.00548) | 0.7671 | 0.7612 | 0.7615
10 10 | 0.9243 (0.00931) | 0.9047 (0.00863) | 0.9112 (0.00918) | 0.9034 (0.00722) | 0.8986 | 0.8969 | 0.8965

order NARMA.'9 For all NARMA series, the SCR network is
either the best performing architecture or is not worse than
the best performing architecture in a statistically significant
manner. Note that NARMA time series constitute one of the
most important and widely used benchmark datasets used in
the ESN literature (e.g., [3], [4], [6], [10], [11], [19]-[21]).

The results for the high-dimensional dataset Isolated Digits
are presented in Fig. 5(a). Except for the reservoir size 50, the
performances of all studied reservoir models are statistically
the same (see Table IV in Appendix A). When compared to
ESN, the simplified reservoir models seem to work equally
well on this high-dimensional input series.

For IPIX Radar, Sunspot Series, and Nonlinear System with
Observational Noise, the results are presented in Tables I
and II, respectively. On these datasets, the ESN performance
did not always monotonically improve with the increasing
reservoir size. That is why for each dataset we determined
the best performing ESN reservoir size on the validation set
(N =80, N =200, N = 100 for IPIX Radar, Sunspot series,
and Nonlinear System with Observational Noise, respectively).
The performance of the other model classes (DLR, DLRB, and
SCR) with those reservoir sizes was then compared to that of
ESN. In line with most RC studies using the Sunspot dataset
(e.g., [29]), we found that linear reservoirs were on par11 with
the nonlinear ones. For all three datasets, the SCR architecture
performs slightly better than standard ESN, even though the
differences are in most cases not statistically significant.

Ganguli, Huh, and Sompolinsky [30] quantified and the-
oretically analyzed MC of nonautonomous linear dynamical
systems (corrupted by a Gaussian state noise) using Fisher
information between the state distributions at distant times.
They found out that the optimal Fisher memory is achieved for
so-called nonnormal networks with DLR or DLRB topologies
and derived the optimal input weight vector for those linear
reservoir architectures. We tried setting the input weights to
the theoretically derived values, but the performance did not
improve over our simple strategy of randomly picked signs of
input weights followed by model selection on the validation
set. Of course, the optimal input weight considerations of [30]
hold for linear reservoir models only. Furthermore, according
to [30], the linear SCR belongs to the class of so-called
normal networks, which are shown to be inferior to the

10The situation changes for larger reservoir sizes. For example, nonlinear
ESN and SCR reservoirs of size 800 lead to the average NMSE of 0.0468
(std 0.0087) and 0.0926 (std 0.0039), respectively.

11They were sometimes better (within the range of reservoir sizes consid-
ered in our experiments).

nonnormal ones. Interestingly enough, in our experiments
the performance of linear SCR was not worse than that of
nonnormal networks.

D. Further Simplifications of Input Weight Structure

The only random element of the SCR architecture is the
distribution of the input weight signs. We found out that any
attempt to impose a regular pattern on the input weight signs
(e.g., a periodic structure of the form +——+——.. ., or +—
—+——.. ., etc.) led to performance deterioration. Interestingly
enough, it appears to be sufficient to relate the sign pattern to
a single deterministically generated aperiodic sequence. Any
simple pseudo-random generation of signs with a fixed seed
is fine. Such sign patterns worked universally well across all
benchmark datasets used in this paper. For demonstration, we
generated the universal input sign patterns in two ways.

1) The input signs are determined from decimal expansion
do.d1dads . .. of irrational numbers [in our case 7 (PI)
and e (EX)]. The first N decimal digits di,d>, ..., dn
are thresholded at 4.5: e.g.,if 0 <d, <4 and 5 <d, <
9, then the nth input connection sign (linking the input
to the nth reservoir unit) will be —— and +, respectively.

2) (Log): The input signs are determined by the first N
iterates in binary symbolic dynamics of the logistic map
f(x) =4x(1 — x) in a chaotic regime (initial condition
was 0.33, generating partition for symbolic dynamics
with cut-value at 1/2).

The results shown in Figs. 6 (NARMA, Laser, Hénon Map,
and Nonlinear Communication Channel datasets) and 5(b)
(Isolated Digits) as well as Tables I and II (IPIX Radar,
Sunspot, and Nonlinear System with Observational Noise)
indicate that comparable performances of our SCR topology
can be obtained without any stochasticity in the input weight
generation by consistent use of the same sign generating
algorithm across a variety of datasets. Detailed results are
presented in Table V (Appendix A).

We tried to use these simple deterministic input sign gener-
ation strategy for the other simplified reservoir models (DLR
and DLRB). The results were consistent with our findings
for the SCR. We also tried to simplify the input weight
structure by connecting the input to a single reservoir unit
only. However, this simplification either did not improve, or
deteriorated the model performance.

E. Sensitivity Analysis

We tested sensitivity of the model performance on five-step
ahead prediction with respect to variations in the (construction)
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Test set performance of SCR topology using four different ways of generating pseudo-randomized sign patterns using initial digits of # and Exp;

logistic map trajectory; and random generation (i.i.d. Bernoulli distribution with mean 1/2). The results are reported for 20th NARMA, Laser, Hénon Map,
and Nonlinear Communication Channel datasets. Reservoir nodes with tranh transfer function f were used.

parameters.'?> The reservoir size is N = 100 for 10th order
NARMA dataset. In the case of ESN, we varied the input
scaling as well as the spectral radius and connectivity of
the reservoir matrix. In Fig. 7(a), we show how the perfor-
mance depends on the spectral radius and connectivity of
the reservoir matrix. The input scaling is kept fixed at the
optimal value determined on the validation set. Performance
variation with respect to changes in input scaling (while
connectivity and spectral radius are kept fixed at their optimal
values) are reported in Table III. For the SCR and DLR
models, Fig. 7(c) and (d) illustrates the performance sensitivity
with respect to changes in the only two free parameters—
the input and reservoir weights » and r, respectively. In the
case of DLRB model, Fig. 7(b) presents the performance
sensitivity with respect to changes in the reservoir weights
r and b, while keeping the input weight fixed to the optimal
value.!3

We performed the same analysis on Laser and IPIX Radar
datasets and obtained similar stability patterns. In general, all
the studied reservoir models show robustness with respect to
small (construction) parameter fluctuations around the optimal
parameter setting.

12We are thankful to the anonymous reviewer for making the suggestion.

3Note that Fig. 7(a) and (c) or (d) is not directly comparable since
the model parameters that get varied are different for each model (e.g.,
connectivity and spectral radius for ESN versus input and reservoir weights
for SCR). In this sense, only Fig. 7(c) and (d) can be compared directly.

TABLE III
BEST CONNECTIVITY AND SPECTRAL RADIUS FOR ESN WITH
DIFFERENT INPUT SCALING FOR 10th Order NARMA DATASET

Dataset | Inp. | Con. | Spec. | NMSE
10th 0.05 | 0.18 0.85 | 0.1387 (0.0101)
order 0.1 0.18 0.85 | 0.1075 (0.0093)

NARMA | 0.5 0.18 0.85 | 0.2315 (0.0239)

1 0.18 0.85 | 0.6072 (0.0459)

V. SHORT-TERM MC OF SCR ARCHITECTURE

In his report, Jaeger [4] quantified the inherent capacity
of recurrent network architectures to represent past events
through a measure correlating the past events in an i.i.d. input
stream with the network output. In particular, assume that the
network is driven by a univariate stationary input signal s ().
For a given delay k, we consider the network with optimal
parameters for the task of outputting s(r — k) after seeing the
input stream ...s(t — 1)s(¢) up to time ¢t. The goodness of
fit is measured in terms of the squared correlation coefficient
between the desired output (input signal delayed by k time
steps) and the observed network output y(z)

B Cov?(s(t — k), y(1))
T Var(s(0) Var(y(0))

where Cov denotes the covariance and Var the variance
operators. The short-term memory (STM) capacity is then

MC 13)
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DLRB nonlinear reservoirs were generated using initial digits of x.

given by [4]

MC = ZMCk. (14)

k=1

Jaeger [4] proved that, for any recurrent neural network
with N recurrent neurons, under the assumption of i.i.d. input
stream, the STM capacity cannot exceed N. We prove (under
the assumption of zero-mean i.i.d. input stream) that the STM
capacity of linear SCR architecture with N reservoir units can
be made arbitrarily close to N.

Since there is a single input (univariate time series),
the input matrix V is an N-dimensional vector V =
V1, Vo, ..., VN)T. Consider a vector rotation operator rot;
that cyclically rotates vectors by 1 place to the right: e.g.,
roti (V) = (Vn, Vi, Vo, ..., Vy_1)T. For k > 1, the k-fold
application of rot; is denoted by roty. The N x N matrix
with kth column equal to rotx(V) is denoted by Q, e.g.,
Q = (rot{(V), rot2(V), ..., roty (V)).

Theorem 1: Consider a linear SCR network with reservoir
weight 0 < r < 1 and an input weight vector V such that the
matrix € is regular. Then the SCR network MC is equal to

MC =N —(1-r™).

The proof can be found in Appendixes B and C.

We empirically evaluated the short-term MC of ESN and
our three simplified topologies. The networks were trained to
memorize the inputs delayed by k = 1,2, ...,40. We used 1
input node, 20 linear reservoir nodes, and 40 output nodes (one
for each k). The input consisted of random values sampled
from a uniform distribution in the range [—0.5, 0.5]. The input
weights for ESN and our simplified topologies have the same
absolute value 0.5 with randomly selected signs. The elements
of the recurrent weight matrix are set to 0 (80% of weights),
0.47 (10% of weights), or —0.47 (10% of weights), with
0.2 reservoir weights connection fraction and spectral radius
A =0.9 [16]. DLR and SCR weight r was fixed and set to the

IEEE TRANSACTION ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

(b)

NMSE
COooooo
O—whLan

(d

0.6 0.4

02 o8 ,

Sensitivity of (a) ESN, (b) DLRB, (c) DLR, and (d) SCR topologies on the /0th order NARMA dataset. The input sign patterns for SCR, DLR, and

value r = 0.5. For DLRB, r = 0.5 and b = 0.05. The output
weights were computed using pseudo-inverse solution. The
empirically determined MC values for ESN, DLR, DLRB, and
SCR models were (averaged over 10 simulation runs, std. dev.
in parenthesis) 18.25 (1.46), 19.44 (0.89), 18.42 (0.96), and
19.48 (1.29), respectively. Note that the empirical MC values
for linear SCR are in good agreement with the theoretical value
of 20 — (1 — 0.5%0) &~ 19.

VI. DISCUSSION

A large number of models designed for time-series process-
ing, forecasting, or modeling follows a state-space formula-
tion. At each time step ¢, all relevant information in the driving
stream processed by the model up to time ¢ is represented in
the form of a state (at time t). The model output depends
on the past values of the driving series and is implemented
as a function of the state—the so-called readout function.
The state space can take many different forms, e.g., a finite
set, a countably infinite set, an interval, etc. A crucial aspect
of state-space model formulations is an imposition that the
state at time ¢ 4+ 1 can be determined in a recursive manner
from the state at time ¢ and the current element in the driving
series (state transition function). Depending on the application
domain, numerous variations on the state space structure, as
well as the state-transition/readout function formulations, have
been proposed.

One direction of research into a data-driven state-space
model construction imposes a state-space structure (e.g., an
N-dimensional interval) and a semiparametric formulation of
both the state-transition and readout functions. The parameter-
fitting is then driven by a cost functional £ measuring the
appropriateness of alternative parameter settings for the given
task. Recurrent neural networks are examples of this type
of approach [22]. If £ is differentiable, one can employ the
gradient of £ in the parameter-fitting process. However, there
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is a well-known problem associated with parameter fitting in
the state-transition function [31]: briefly, in order to “latch”
an important piece of past information for the future use,
the state-transition dynamics should have an attractive set. In
the neighborhood of such a set, the derivatives vanish and
hence cannot be propagated through time in order to reliably
bifurcate into a useful latching set.

A class of approaches referred to as reservoir comput-
ing tries to avoid this problem by fixing the state-transition
function—only the readout is fitted to the data [2], [32].
The state-space with the associated state-transition structure
is called the reservoir. The reservoir is supposed to be suffi-
ciently complex so as to capture a large number of features
of the input stream that can potentially be exploited by the
readout.

The RC models differ in how the fixed reservoir is con-
structed and what form the readout takes. For example, ESNs
[3] typically have a linear readout and a reservoir formed
by a fixed recurrent neural network type dynamics. Liguid
state machines (LSMs) [33] also mostly have a linear readout
and the reservoirs are driven by the dynamics of a set of
coupled spiking neuron models. Fractal prediction machines
(FPM) [34] have been suggested for processing symbolic
sequences. Their reservoir dynamics is driven by fixed affine
state transitions over an N-dimensional interval. The readout
is constructed as a collection of multinomial distributions over
next symbols. Many other (sometimes quite exotic) reservoir
formulations have been suggested (e.g., [11], [35]-[37]).

The field of RC has been growing rapidly with dedicated
special sessions at conferences and special issues of journals
[38]. RC has been successfully applied in many practical appli-
cations [3]-[6], [9], [39]. However, it is sometimes criticized
for not being principled enough [17]. There have been several
attempts to address the question of what exactly is a “good”
reservoir for a given application [16], [40], but no coherent
theory has yet emerged. The largely black-box character of
reservoirs prevents us from performing a deeper theoretical
investigation of the dynamical properties of successful reser-
voirs. Reservoir construction is often driven by a series of
(more or less) randomized model building stages, with both
the researchers and practitioners having to rely on a series
of trials and errors. Sometimes, reservoirs have been evolved
in a costly and difficult-to-analyze evolutionary computation
setting [8], [14], [41], [42].

In an attempt to initialize a systematic study of the field,
we have concentrated on three research questions. 1) What
is the minimal complexity of the reservoir topology and
parameterization so that performance levels comparable to
those of standard RC models, such as ESN, can be recovered?
2) What degree of randomness (if any) is needed to construct
competitive reservoirs? 3) If simple competitive reservoirs
constructed in a completely deterministic manner exist, how
do they compare in terms of MC with established models such
as recurrent neural networks?

On a number of widely used time-series benchmarks of
different origin and characteristics, as well as by conducting
a theoretical analysis we have shown the following. 1) A
very simple cycle topology of reservoir is often sufficient for
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obtaining performances comparable to those of ESN. Except
for the NARMA datasets, nonlinear reservoirs were needed.
2) Competitive reservoirs can be constructed in a completely
deterministic manner. The reservoir connections all have the
same weight value. The input connections have the same
absolute value with sign distribution following one of the
universal deterministic aperiodic patterns. 3) The memory
capacity of linear cyclic reservoirs with a single reservoir
weight value r can be made to differ arbitrarily close from
the proved optimal value of N, where N is the reservoir size.
In particular, given an arbitrarily small € € (0, 1), for

r:(l—e)ﬁ

the MC of the cyclic reservoir is N — €.

Even though the theoretical analysis of the SCR has been
done for the linear reservoir case, the requirement that all
cyclic rotations of the input vector need to be linearly in-
dependent seems to apply to the nonlinear case as well.
Indeed, under the restriction that all input connections have
the same absolute weight value, the linear independence con-
dition translates to the requirement that the input sign vector
follows an aperiodic pattern. Of course, from this point of
view, a simple standard basis pattern (+1,—1,—1,...,—1)
is sufficient. Interestingly enough, we found out that the best
performance levels were obtained when the input sign pattern
contained roughly equal number of positive and negative signs.
At the moment, we have no satisfactory explanation for this
phenomenon and we leave it as an open question for future
research.

Jaeger [4] argues that if the vectors wWiv,i=1,2,...,N,
are linearly independent, then the MC of linear reservoir with
N units is N. Note that for the SCR reservoir

wky
rotg (V) = > k=1,2,....N
r
and so the condition that WiV, i = 1,2,..., N, are linearly

independent directly translates into the requirement that the
matrix Q is regular. As r — 1, the MC of SCR indeed
approaches the optimal MC N. According to Theorem 1, the
MC measure depends on the spectral radius of W (in our
case, r). Interestingly enough, in the verification experiments
of [4] with a reservoir of size N = 20 and reservoir matrix
of spectral radius 0.98, the empirically obtained M C value
was 19.2. Jaeger commented that a conclusive analysis of
the disproportion between the theoretical and empirical values
of MC was not possible, however, he suggested that the
disproportion may be due to numerical errors, as the condition
number of the reservoir weight matrix W was about 50.
Using our result, MC = N — (1 — r*N) with N = 20
and r = 0.98 yields MC = 19.4. It is certainly true that,
for smaller spectral radius values, the empirically estimated
M C values of linear reservoirs decrease, as verified in several
studies (e.g., [19]), and this may indeed be at least partially
due to numerical problems in calculating higher powers of W.
Moreover, empirical estimates of MC tend to fluctuate rather
strongly, depending on the actual i.i.d. driving stream used in
the estimation (see [16]). Even though Theorem 1 suggests that
the spectral radius of W should have an influence on the M C
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value for linear reservoirs, its influence becomes negligible for
large reservoirs since (provided Q is regular) the M C of SCR
is provably bounded within the interval (N — 1, N).

MC of areservoir is a representative member from the class
of reservoir measures that quantify the amount of informa-
tion that can be preserved in the reservoir about the past.
For example, Ganguli, Huh, and Sompolinsky [30] proposed
a different (but related) quantification of memory capacity
for linear reservoirs (corrupted by a Gaussian state noise).
They evaluated the Fisher information between the reservoir
activation distributions at distant times. Their analysis shows
that the optimal Fisher memory is achieved for the reservoir
topologies corresponding, e.g., to our DLR or DLRB reservoir
organizations. Based on the Fisher memory theory, the optimal
input weight vector for those linear reservoir architectures was
derived. Interestingly enough, when we tried setting the input
weights to the theoretically derived values, the performance
in our experiments did not improve over our simple strategy
for obtaining the input weights. While in the setting of [30]
the memory measure does not depend on the distribution of
the source generating the input stream, the M C measure of
[4] is heavily dependent on the generating source. For the
case of an i.i.d. source (where no dependences between the
time-series elements can be exploited by the reservoir), the
MC = N — 1 can be achieved by a very simple model: DLR
reservoir with unit weight » = 1, one input connection with
weight 1 connecting the input with the 1st reservoir unit, and
for k = 1,2,..., N — 1 one output connection of weight 1
connecting the (k + 1)-th reservoir unit with the output. The
linear SCR, on the other hand, can get arbitrarily close to the
theoretical limit MC = N. In cases of non-i.i.d. sources, the
temporal dependences in the input stream can increase the MC
beyond the reservoir size N [4]. The simple nature of our SCR
reservoir can enable a systematic study of the MC measure
for different kinds of input stream sources and this is a matter
for our future research.

Compared to traditional ESN, recent extensions and re-
formulations of reservoir models often achieved improved
performances [11], [12], [36] at the price of even less transpar-
ent models and less interpretable dynamical organization. We
stress that the main purpose of this paper is not a construction
of yet another reservoir model achieving an (incremental or
more substantial) improvement over the competitors on the
benchmark datasets. Instead, we would like to propose as
simplified a reservoir construction as possible, without any
stochastic component, which, while competitive with stan-
dard ESN, vyields transparent models and more amenable
to theoretical analysis than the reservoir models proposed
in the literature so far. Such reservoir models can poten-
tially help us to answer the question: just what is it in the
organization of the nonautonomous reservoir dynamics that
leads to often impressive performances of reservoir compu-
tation. Our simple deterministic SCR model can be used as
a useful baseline in future reservoir computation studies. It
is the level of improvement over the SCR baseline that has
a potential to truly unveil the performance gains achieved
by the more (and sometimes much more) complex model
constructions.
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VII. CONCLUSION

RC learning machines are state-space models with fixed
state-transition structure (the “reservoir”) and an adaptable
readout form the state-space. The reservoir is supposed to be
sufficiently complex so as to capture a large number of features
of the input stream that can be exploited by the reservoir-
to-output readout mapping. Even though the field of RC has
been growing rapidly with many successful applications, both
researchers and practitioners have to rely on a series of trials
and errors.

To initialize a systematic study of the field, we have
concentrated on three research issues.

1) What is the minimal complexity of the reservoir topol-
ogy and parametrization so that performance levels
comparable to those of standard RC models, such as
ESN, can be recovered?

2) What degree of randomness (if any) is needed to con-
struct competitive reservoirs?

3) If simple competitive reservoirs constructed in a com-
pletely deterministic manner exist, how do they compare
in terms of MC with established models such as recur-
rent neural networks?

On a number of widely used time-series benchmarks of
different origins and characteristics, as well as by conducting
a theoretical analysis, we have shown the following.

1) A simple cycle reservoir topology is often sufficient for
obtaining performances comparable to those of ESN.

2) Competitive reservoirs can be constructed in a com-
pletely deterministic manner.

3) The MC of simple linear cyclic reservoirs can be made
to be arbitrarily close to the proved optimal MC value.

APPENDIX A
DETAILED RESULTS

Detailed results including standard deviations across
repeated experiments (as described in Section IV) are shown
in Tables IV and V.

APPENDIX B
NOTATION AND AUXILIARY RESULTS

We consider an ESN with linear reservoir endowed with
cycle topology (SCR). The reservoir weight is denoted by
r. Since we consider a single input, the input matrix V is
an N-dimensional vector Vi ny = (Vl,Vz,...,VN)T. By
Vn..1 we denote the “reverse” of Vi _n, eg, Vn.1 =
VN, VN=1,..., V2, Vl)T. Consider a vector rotation oper-
ator rot; that cyclically rotates vectors by 1 place to the
right, e.g., given a vector a = (a1, az, ...,a,)", rotj(a) =
(an,ai,az,...,an—1)". For k > 0, the k-fold application of
rot; is denoted by14 roty.

The N x N matrix with kth column equal to roty(Vy..1) is
denoted by Q

Q = (rot; (Vy._.1),roto(Vn_1), ..., toty (V. 1)).

l4roto is the identity mapping.
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TABLE IV
TEST SET PERFORMANCE OF ESN, SCR, DLR, AND DLRB TOPOLOGIES ON DIFFERENT DATASETS FOR INTERNAL NODES WITH
tanh TRANSFER FUNCTION
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Dataset Reservoir size | ESN | DLR DLRB | SCR
10th 50 0.166 (0.0171) 0.163 (0.0138) 0.158 (0.0152) 0.160 (0.0134)
order 100 0.0956 (0.0159) 0.112(0.0116) 0.105 (0.0131) 0.0983 (0.0156)
NARMA 150 0.0514 (0.00818) 0.0618 (0.00771) 0.0609 (0.00787) 0.0544 (0.00793)
200 0.0425 (0.0166) 0.0476 (0.0104) 0.0402 (0.0110) 0.0411 (0.0148)
10th 50 0.131 (0.0165) 0.133 (0.0132) 0.130 (0.00743) 0.129 (0.0111)
order 100 0.0645 (0.0107) 0.0822 (0.00536) 0.0837 (0.00881) 0.0719 (0.00501)
random 150 0.0260 (0.0105) 0.0423 (0.00872) 0.0432 (0.00933) 0.0286 (0.00752)
NARMA 200 0.0128 (0.00518) 0.0203 (0.00536) 0.0201 (0.00334) 0.0164 (0.00412)
20th 50 0.297 (0.0563) 0.232 (0.0577) 0.238 (0.0507) 0.221 (0.0456)
order 100 0.235 (0.0416) 0.184 (0.0283) 0.183 (0.0196) 0.174 (0.0407)
NARMA 150 0.178 (0.0169) 0.171 (0.0152) 0.175 (0.0137) 0.163 (0.0127)
200 0.167 (0.0164) 0.165 (0.0158) 0.160 (0.0153) 0.158 (0.0121)
50 0.0184 (0.00231) 0.0210 (0.00229) 0.0215 (0.00428) 0.0196 (0.00219)
laser 100 0.0125 (0.00117) 0.0132 (0.00116) 0.0139 (0.00121) 0.0131 (0.00105)
150 0.00945 (0.00101) 0.0107 (0.00114) 0.0112 (0.00100) 0.0101 (0.00109)
200 0.00819 (5.237E-04) | 0.00921 (9.122E-04) | 0.00913 (9.367E-04) | 0.00902 (6.153E-04))
50 0.00975 (0.000110) | 0.0116 (0.000214) | 0.0110 (0.000341) 0.0106 (0.000185)
Hénon 100 0.00894 (0.000122) | 0.00982 (0.000143) | 0.00951 (0.000120) | 0.00960 (0.000124)
Map 150 0.00871 (4.988E-05) | 0.00929 (6.260E-05) | 0.00893 (6.191E-05) | 0.00921 (5.101E-05)
200 0.00868 (8.704E-05) | 0.00908 (9.115E-05) | 0.00881 (9.151E-05) | 0.00904 (9.250E-05)
50 0.0038 (4.06E-4) 0.0034 (2.27E-4) 0.0036 (2.26E-4) 0.0035 (2.55E-4)
Nonlinear 100 0.0021 (4.42E-4) 0.0015 (1.09E-4) 0.0016 (1.07E-4) 0.0015 (1.23E-4)
communication 150 0.0015 (4.01E-4) 0.0011 (1.12E-4) 0.0011 (1.08E-4) 0.0012 (1.23E-4)
channel 200 0.0013 (1.71E-4) 0.00099 (6.42E-5) 0.0010 (7.41E-5) 0.0010 (7.28E-5)
50 0.0732 (0.0193) 0.0928 (0.0177) 0.1021 (0.0204) 0.0937 (0.0175)
Isolated 100 0.0296 (0.0063) 0.0318 (0.0037) 0.0338 (0.0085) 0.0327 (0.0058)
Digits 150 0.0182 (0.0062) 0.0216 (0.0052) 0.0236 (0.0050) 0.0192 (0.0037)
200 0.0138 (0.0042) 0.0124 (0.0042) 0.0152 (0.0038) 0.0148 (0.0050)

TABLE V

TEST SET PERFORMANCE OF SCR TOPOLOGY ON DIFFERENT DATASETS USING THREE DIFFERENT WAYS OF GENERATING PSEUDO-RANDOMIZED
INPUT SIGN PATTERNS: INITIAL DIGITS OF 7 AND Exp; SYMBOLIC DYNAMICS OF LOGISTIC MAP

Dataset Reservoir size ESN | SCR-PI | SCR-Ex | SCR-Log
20th 50 0.297 (0.0563) 0.233 (0.0153) 0.232 (0.0175) 0.196 (0.0138)
order 100 0.235 (0.0416) 0.186 (0.0166) 0.175 (0.0136) 0.169 (0.0172)

NARMA 150 0.178 (0.0169) 0.175 (0.00855) 0.158 (0.0103) 0.156 (0.00892)

200 0.167 (0.0164) 0.166 (0.00792) 0.157 (0.00695) 0.155 (0.00837)

50 0.0184 (0.00231) 0.0204 0.0187 0.0181
laser 100 0.0125 (0.00117) 0.0137 0.0153 0.0140

150 0.00945 (0.00101) 0.0115 0.0111 0.0126

200 0.00819 (5.237E-04) 0.00962 0.00988 0.0107

50 0.00975 (0.000110) 0.00986 0.00992 0.00998

Hénon 100 0.00894 (0.000122) 0.00956 0.00985 0.00961

Map 150 0.00871 (4.988E-05) 0.00917 0.00915 0.00920
200 0.00868 (8.704E-05) 0.00892 0.00883 0.00898
50 0.0038 (4.06E-4) 0.0036 (1.82E-04) 0.0026 (6.23E-05) 0.0033 (1.09E-04)
Nonlinear 100 0.0021 (4.42E-4) 0.0016 (7.96E-05) 0.0017 (1.04E-04) 0.0015 (8.85E-5)
communication 150 0.0015 (4.01E-4) 0.0012 (7.12E-05) 0.0011 (6.10E-05) 0.0012 (4.56E-05)
channel 200 0.0013 (1.71E-4) 0.00088 (2.55E-05) | 0.00090 (3.05E-05) | 0.00093 (3.33E-05)

We will need a diagonal matrix with diagonal elements

1,r",r2,...,rN_l

F:diag(l,r,rz,...,rN_l).

Furthermore, we will denote the matrix Q7 T'2 Q by A

A=0TT120Q

and (provided A is invertible)

(ot (Vi)' A7 rou(Viin), k=0,
= (10t modyn (Vi.8))" A7 10t modyn (Vi)

by (k-

Lemma 1: If Q is a regular matrix, then {y =1 and ¢} =
r~, k=1,2,...,N — 1.
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Proof: Denote the standard basis vector (1,0,0,..., O)T
in WY by ey. The following holds:

roty (Vi.n) = QTrotk(el), k=1,2,...,N —1.

This can be easily shown, as QT roty (eq) selects the (k+1)st
column of QT ((k 4+ 1)th row of Q), which is formed by
(k + 1)st elements of vectors rot;(Vy..1), rot2(Vn..1),...,
roty (Vy...1). This vector is equal to the k-th rotation of Vi .

It follows that for k =1,2,...,N — 1

(rotx (Vi n)' Q7 = (rote(er))”

and so

G = (ote (Vi y))T A7 rote (Vi w)
= (ot (Vi_n)T Q7' 172 (@7 HT rote(Vi._n)

(rote (e1))” T2 roty(er)
= riZk.

APPENDIX C
PROOF OF THEOREM 1

Given an i.i.d. zero-mean real-valued input stream s(...7) =
...s5(t —2)s(t — 1)s(z) emitted by a source P, the activations
of the reservoir units at time ¢ are given by

x1(1) = Vis(t) + rVys@t — 1) + r2Vy_1s(t —2)
+ 3V as(t =3) -+ Vst — (N = 1))
+ rNV1S(t —N) +rN+1VNS(f -(N+1)+---
+ N Was(t — @N = 1)) + 2V Vis(t — 2N)
+ P2V lyys(t — QN + 1) + - -

x2(t) = Vas(t) +rVis(t — 1) + r’Vys(t — 2)
+ PVy_ist=3) + -+ as(t — (N — 1))
+ r"Vas(t — N) +r" Vst = (N + 1) + - -
+ Va5t — N = 1)) + 2NV Vas(t — 2N)
+ Nt lyise — 2N + 1))
+ N 2yys(t — (2N +2))

xn(@) = Vy s(t) +r Vn_1 st —1)

+r2 Vy g s(t—2)+---
+ VP Vi st = (N =1) 4+ Vy st = N)
+ VN vy st = (N4 1)+ -

2N—1 . - 2N .
+r Vist— Q2N —=1)+r"" Vy s(t —2N)
+ Nt yy st — N + 1))
+ V2 Yy o st — QN +2) + - - -

For the task of recalling the input from k time steps back,

the optimal least-squares readout vector U is given by
U=R"p (15)

where
R = Ep(s(nylx(®)x” (0)]

is the covariance matrix of reservoir activations and

Pk = Epis(oylx@®)s(t —k)].
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The covariance matrix R can be obtained in an analytical
form. For example, because of the zero-mean and i.i.d. nature
of the source P, the element R; > can be evaluated as follows:

Rin = Ep(aplx@)x” ()]
= E[ViVas?(t) + rPVy Vis?(t — 1)
+ r4VN_1VNs2(t —2) 4
+ P2V =Dyvas?(t — (N — 1))
+ r2YViVas?(t = N) + 2NV Dy vis?( — (N +1))
4+ 2N DY v (r — 2N — 1))
+ r*NViVas?(t — 2N) + -+ -]
= ViVaVar[s()] + r2VyViVar[s(t — 1)]
+ r*Vy_ 1 VyVarls@t = 2)1 + - - -
v+ 2N VivaVar[s(t — N)] + - - -
a2(ViVa 4+ r2Vy Vi + 1y Vy + - -
A A A YR TR
c?(ViVa +r2Vn Vi +r*Vy_ Vy + - -

(.¢]
e 2Dy Zrzzvj
j=0

(16)

where o2 is the variance of P. The expression (16) for Rj»
can be written in a compact form as

2

o
Rip=1—0y (roty (Vy..1))" T? rota(Vy..1). (17
—r
In general
o? T -2
R;; = T—, 28 (rot;(Vn..1))" T rot;(Vy..1),
i,j=12,...,N (18)
and
o’ T 2
R = Y Q T Q
2
o
T 12N (19
By analogous arguments
i =r* a2 rot (Vi_n). (20)
Hence, the optimal readout vector reads [see (15)]
U=(0-rYyr* A7 rote (Vi n). 21)

The ESN output at time ¢ is
yo)y=x@)" U
=1 =r™) rF x)7 A7 rote(Vi_y).

Covariance of the ESN output with the target can be
evaluated as

Cov(y(t),s(t —k)) = (1 — rZN) rk Coo(x(1)T, s(t — k))

x A7 roty (Vi..N)

= (1 =r?) o2 (ot (Vi)'
x A" rote (Vi)

=r% 1 - er) o’ Ck-
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Variance of the ESN output is determined as

Var(y(t)) = UT Elx(t) x@®)T1 U
=UTRU
=pl R7' px
=% (6%)? (roe(Vi_n))" R™" rote(Vi_n)
= Cov(y(), s(t —k)).

We can now calculate the squared correlation coefficient
between the desired output (input signal delayed by k time

steps) and the network output y(n)

Cov?(s(t — k), y(1))
Var(s(t)) Var(y(t))

Var(y(1))
2

MCy =

g

=%k a1- r2N) Ck-
The MC of the ESN is given by
MC =MCso— MCy

where

o
MCso=> MCy

k=0
N—-1 2N—1 3N—1
== D rFa+ D rFa+ D rFa+
k=0 k=N k=2N
N—-1 00
— (1 . rZN) I"Zk(k Zer
k=0 k=0
N—-1
=2
k=
Hence
N—-1
MC = | > [ -1 =r)
k=0
N-1
=l = 1=+ D r¥g
k=1
N-1
— oV + Z P2k
k=1
N—-1
_ CN”ZN + Z erCk
k=1
N
=2
k=1

By Lemma 1, VZka =1fork =12,...,N —1, and

r2N ey = r2N Tt follows that MC = N — 1 4 12V,
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