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D. M. Blei, Probabilistic Topic Models, Communications of the ACM, Vol. 55 No. 4, Pages 77-84



Introduction
Probability and Learning Refresher

Bayesian Networks

Generative Machine Learning Models
Module Outline

Image Understanding



Introduction
Probability and Learning Refresher

Bayesian Networks

Generative Machine Learning Models
Module Outline

Probabilistic Learning Models

Learning models that represent knowledge inferred from
data under the form of probabilities

Supervised, unsupervised, weakly supervised learning
tasks
Describes how data is generated (interpretation)
Allow to incorporate prior knowledge on the data and on the
task

The majority of the modern task comprises large numbers
of variables

Modeling the joint distribution of all variables can become
impractical
Exponential size of the parameter space
Computationally impractical to train and predict
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The Graphical Models Framework

Representation
Graphical models are a compact way to represent
exponentially large probability distributions
Encode conditional independence assumptions
Different classes of graph structures imply different
assumptions/capabilities

Inference
How to query (predict with) a graphical model?
Probability of unknown X given observations d, P(X |d)

Most likely hypothesis
Learning

Find the right model parameter (Parameter Learning)
Find the right model structure (Structure Learning)
An inference problem after all
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Graphical Model Representation

A graph whose nodes (vertices) are random variables whose
edges (links) represent probabilistic relationships between the
variables

Different classes of graphs

Directed Models

Directed edges
express causal
relationships

Undirected Models

Undirected edges
express soft
constraints

Dynamic Models

Structure changes
to reflet dynamic
processes
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Graphical Models in this Module

Representation
Directed graphical models: Bayesian Networks
Undirected graphical models: Markov random fields
Dynamic graphical models: Hidden Markov Models

Inference
Exact inference: message passing, junction tree algorithms
Approximate Inference: loopy belief propagation, sampling,
variational inference

Learning
Parameter learning: Expectation-Maximization algorithm
Structure learning: PC algorithm, search-and-score
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Generative Models Module
Plan of the Lectures

Lesson 1 Introduction to Probabilistic and Graphical Models
Lesson 2 Directed and Undirected Graphical Models
Lesson 3 Inference in Graphical Models
Lesson 4 Dynamic Approaches: The Hidden Markov Model
Lesson 5 Graphical models for Structured Data
Lesson 6 Exact and Approximate Learning: Latent Variable

Models
Lesson 7 Bridging Probabilistic and Neural: Deep Learning
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Introduction
A probabilistic refresher

Probability theory
Conditional independence
Learning in probabilistic models

Directed graphical models
Bayesian Networks
Representation
Conditional independence
Inference and Learning

Applications and conclusions
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Random Variables

A Random Variable (RV) is a function describing the
outcome of a random process by assigning unique values
to all possible outcomes of the experiment
A RV models an attribute of our data (e.g. age, speech
sample,...)
Use uppercase to denote a RV, e.g. X , and lowercase to
denote a value (observation), e.g. x
A discrete (categorical) RV is defined on a finite or
countable list of values Ω

A continuous RV can take infinitely many values
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Probability Functions

Discrete Random Variables
A probability function P(X = x) ∈ [0,1] measures the
probability of a RV X attaining the value x
Subject to sum-rule

∑
x∈Ω

P(X = x) = 1

Continuous Random Variables
A density function p(t) describes the relative likelihood of a
RV to take on a value t
Subject to sum-rule

∫
Ω

p(t)dt = 1

Defines a probability distribution, e.g.

P(X ≤ x) =

∫ x

−∞
p(t)dt

Shorthand P(x) for P(X = x) or P(X ≤ x)
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Joint and Conditional Probabilities

If a discrete random process is described by a set of RVs
X1, . . . ,XN , then the joint probability writes

P(X1 = x1, . . . ,XN = xn) = P(x1 ∧ · · · ∧ xn)

The joint conditional probability of x1, . . . , xn given y

P(x1, . . . , xn|y)

measures the effect of the realization of an event y on the
occurrence of x1, . . . , xn

A conditional distribution P(x |y) is actually a family of
distributions

For each y , there is a distribution P(x |y)
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Chain Rule

Definition (Product Rule a.k.a. Chain Rule)

P(x1, . . . , xi , . . . , xn|y) =
N∏

i=1

P(xi |x1, . . . , xi−1, y)

Definition (Marginalization)
Using the sum and product rules together yield to the complete
probability

P(X1 = x1) =
∑
x2

P(X1 = x1|X2 = x2)P(X2 = x2)
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Bayes Rule

Given hypothesis hi ∈ H and observations d

P(hi |d) =
P(d|hi)P(hi)

P(d)
=

P(d|hi)P(hi)∑
j P(d|hj)P(hj)

P(hi) is the prior probability of hi

P(d|hi) is the conditional probability of observing d given
that hypothesis hi is true (likelihood).
P(d) is the marginal probability of d
P(hi |d) is the posterior probability that hypothesis is true
given the data and the previous belief about the
hypothesis.
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Independence and Conditional Independence

Two RV X and Y are independent if knowledge about X
does not change the uncertainty about Y and vice versa

I(X ,Y )⇔ P(X ,Y ) = P(X |Y )P(Y )

= P(Y |X )P(X ) = P(X )P(Y )

Two RV X and Y are conditionally independent given Z if
the realization of X and Y is an independent event of their
conditional probability distribution given Z

I(X ,Y |Z )⇔ P(X ,Y |Z ) = P(X |Y ,Z )P(Y |Z )

= P(Y |X ,Z )P(X |Z ) = P(X |Z )P(Y |Z )

Shorthand X⊥Y for I(X ,Y ) and X⊥Y |Z for I(X ,Y |Z )
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Inference and Learning in Probabilistic Models

Inference - How can one determine the distribution of the
values of one/several RV, given the observed values of others?

P(graduate|exam1, . . . ,examn)

Machine Learning view - Given a set of observations (data) d
and a set of hypotheses {hi}Ki=1, how can I use them to predict
the distribution of a RV X?

Learning - A very specific inference problem!
Given a set of observations d and a probabilistic model of
a given structure, how do I find the parameters θ of its
distribution?
Amounts to determining the best hypothesis hθ regulated
by a (set of) parameters θ
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3 Approaches to Inference

Bayesian Consider all hypotheses weighted by their
probabilities

P(X |d) =
∑

i

P(X |hi)P(hi |d)

MAP Infer X from P(X |hMAP) where hMAP is the
Maximum a-Posteriori hypothesis given d

hMAP = arg max
h∈H

P(h|d) = arg max
h∈H

P(d|h)P(h)

ML Assuming uniform priors P(hi) = P(hj), yields the
Maximum Likelihood (ML) estimate P(X |hML)

hML = arg max
h∈H

P(d|h)
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Considerations About Bayesian Inference

The Bayesian approach is optimal but poses computational
and analytical tractability issues

P(X |d) =

∫
H

P(X |h)P(h|d)dh

ML and MAP are point estimates of the Bayesian since
they infer based only on one most likely hypothesis
MAP and Bayesian predictions become closer as more
data gets available
MAP is a regularization of the ML estimation

Hypothesis prior P(h) embodies trade-off between
complexity and degree of fit
Well-suited to working with small datasets and/or large
parameter spaces
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Maximum-Likelihood (ML) Learning

Find the model θ that is most likely to have generated the data d

θML = arg max
θ∈Θ

P(d|θ)

from a family of parameterized distributions P(x |θ).

Optimization problem that considers the Likelihood function

L(θ|x) = P(x |θ)

to be a function of θ.

Can be addressed by solving

∂L(θ|x)

∂θ
= 0
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ML Learning with Hidden Variables

What if my probabilistic models contains both
Observed random variables X (i.e. for which we have
training data)
Unobserved (hidden/latent) variables Z (e.g. data clusters)

ML learning can still be used to estimate model parameters
The Expectation-Maximization algorithm which optimizes
the complete likelihood

Lc(θ|X,Z) = P(X,Z|θ) = P(Z|X, θ)P(X|θ)

A 2-step iterative process

θ(k+1) = arg max
θ

∑
z

P(Z = z|X, θ(k)) logLc(θ|X,Z = z)
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Joint Probabilities and Exponential Complexity

Discrete Joint Probability Distribution as a Table

X1 . . . Xi . . . Xn P(X1, . . . ,Xn)

x
′

1 . . . x
′

i . . . x
′
n P(x

′

1, . . . , x
′
n)

x l
1 . . . x l

i . . . x l
n P(x l

1, . . . , x
l
n)

Describes P(X1, . . . ,Xn) for all the RV instantiations
For n binary RV Xi the table has 2n entries!

Any probability can be obtained from the Joint Probability
Distribution P(X1, . . . ,Xn) by marginalization but again at an
exponential cost (e.g. 2n−1 for a marginal distribution from

binary RV).
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Directed Graphical Models

Compact graphical representation for exponentially large
joint distributions
Simplifies marginalization and inference algorithms
Allow to incorporate prior knowledge concerning causal
relationships between RV

Directed Graphical Models a.k.a.
Bayesian Networks
Describe conditional independence
between subsets of RV by a graphical
model

P(H|P,S,E) = P(H|P,S)
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Bayesian Network

Directed Acyclic Graph (DAG)
G = (V, E)

Nodes v ∈ V represent random
variables

Shaded⇒ observed
Empty⇒ un-observed

Edges e ∈ E describe the
conditional independence
relationships

Conditional Probability Tables (CPT) local to each node
describe the probability distribution given its parents

P(Y1, . . . ,YN) =
N∏

i=1

P(Yi |pa(Yi))
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A Simple Example

Assume N discrete RV Yi who can take k distinct values
How many parameters in the joint probability distribution?
kN − 1 independent parameters

How many independent
parameters if all N variables are
independent? N ∗ (k − 1)

P(Y1, . . . ,YN) =
N∏

i=1

P(YI)

What if only part of the variables
are (conditionally) independent?

If the N nodes have a maximum of L children⇒ (k − 1)L × N
independent parameters
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A Compact Representation of Replication

If the same causal relationship is replicated for a number of
variables, we can compactly represent it by plate notation

The Naive Bayes
Classifier Replication for L

attributes
Replication for N
data samples



Introduction
Probability and Learning Refresher

Bayesian Networks

Representation
Conditional Independence
Concluding Remarks

Full Plate Notation

Gaussian Mixture Model

Boxes denote replication for a
number of times denoted by the
letter in the corner
Shaded nodes are observed
variables
Empty nodes denote un-observed
latent variables
Black seeds (optional) identify
model parameters

π → multinomial prior distribution
µ→ means of the C Gaussians
σ → std of the C Gaussians
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Local Markov Property

Definition (Local Markov property)
Each node / random variable is conditionally independent of all
its non-descendants given a joint state of its parents

Yv ⊥ YV\ch(v)|Ypa(v) for all v ∈ V

P(Y1,Y3,Y5,Y6|Y2,Y4) =

P(Y6|Y2,Y4)×
P(Y1,Y3,Y5|Y2,Y4)
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Markov Blanket

The Markov Blanket Mb(A) of a node A is
the minimal set of vertices that shield the
node from the rest of Bayesian Network
The behavior of a node can be completely
determined and predicted from the
knowledge of its Markov blanket

P(A|Mb(A),Z ) = P(A|Mb(A)) ∀Z /∈ Mb(A)

The Markov blanket of A contains
Its parents pa(A)
Its children ch(A)
Its children’s parents pa(ch(A))
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Why Using Bayesian Network?

Compacting parameter space

Reducing inference costs

Variable elimination: e.g.
compute P(Y4|Y3)

Inference algorithms exploiting
sparse graph structure
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Learning in Bayesian Networks

Parameter learning

Infer the θ parameters of each
conditional probability from data

Includes hidden random
variables (e.g. Y2)

Learning network structure

Y1 Y2 Y3 Y4 Y5
1 2 1 0 3
4 0 0 0 1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 0 1 3 2

Determine edge presence and
orientation from data

Infer causal relationships
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Learning to Segment Image Parts

Latent Topics Network

Yuan et al, A novel topic-level random walk framework for scene image co-segmentation, ECCV 2014
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Discovering Gene Interaction Networks

Gene Expression Data
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Assessing Influenza Virulence

Inferred Gene Bayesian Graphical Model for H5N1 Virulence

http://hiv.bio.ed.ac.uk/samLycett/research.html

http://hiv.bio.ed.ac.uk/samLycett/research.html
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Take Home Messages

Graphical models provide a compact representation for
probabilistic models with a large number of variables

Use conditional independence to simplyfy joint probability
Efficient inference methods that exploit the sparse graph
structure
Learning is a special-case of inference performed on the
parameters of the probability functions in the graphical
model

Directed graphical models (Bayesian Networks)
Directed edges - Provide a representation of the causal
relationships between variables
Parameter learning - Estimate the conditional probabilities
associated with the nodes (visible or unobserved)
Structure learning - Use data to determine edge presence
and orientation
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Next Lecture

Directed graphical models
Bayesian Networks
Determining conditional independence (d-separation)
Structure learning

Undirected graphical models
Markov Random Fields
Joint probability factorization
Ising model
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