CHAPTER 2

GRAMMARS

21 MOTIVATION

There is one class of generating systems of primary interest to us—systems
known as grammars. The concept of a grammar was originally formalized
by linguists in their study of natural languages. Linguists were concerned
not only with defining precisely what is or is not a valid sentence of a lan-
guage, but also with providing structural descriptions of the sentences. One
of their goals was to develop a formal grammar capable of describing
English.

It was hoped that if, for example, one had a formal grammar to describe
the English language, one could use the computer in ways that require it to
“understand” English. Such a use might be language translation or the
computer solution of word problems.

To date, this goal is for the most part unrealized. We still do not have a
definitive grammar for English, and there is even disagreement as to what
types of formal grammar are capable of describing English. However, in
describing computer languages, better results have been achieved. For

<Sentence>
<Noun phrase>
/\
<Noun phrase> <Verb phrase>
/\ /\
<Adjective> <Adjective> <Singular noun> <Singular verb> <Adverb>
The little boy ran quickly.

Fig. 2.1. A diagram of the sentence “The little boy ran quickly.”
8

2.1 MOTIVATION 9

example, the Backus Normal Form used to describe ALGOL is a “context-
free grammar,” a type of grammar with which we shall deal.

We are all familiar with the idea of diagramming or parsing an English
sentence. For example, the sentence “The little boy ran quickly” is parsed
by noting that the sentence consists of the noun phrase “The little boy” fol-
lowed by the verb phrase “ran quickly.” The noun phrase is then broken
down into the singular noun “boy” modified by the two adjectives “The”
and “little.” The verb phrase is broken down into the singular verb “ran”
modified by the adverb “quickly.” This sentence structure is indicated in
the diagram of Fig. 2.1. We recognize the sentence structure as being gram-
matically correct. If we had a complete set of rules for parsing all English
sentences, then we would have a technique for determining whether or not a
sentence is grammatically correct. However, such a set does not exist. Part
of the reason for this stems from the fact that there are no clear rules for
determining precisely what constitutes a sentence.

The rules we applied to parsing the above sentence can be written in the
following form:

{sentence) — {noun phrase) {verb phrase)
{(noun phrase) — {adjective) {noun phrase)
{noun phrase) — <{adjective) {singular noun)
{verb phrase) — {singular verb) <adverb)

<adjective) — The

{adjective) —> little

{singular noun) — boy
(singular verb) — ran
<adverb) — quickly

The arrow in the above rules indicates that the item to the left of the
arrow can generate the items to the right of the arrow. Note that we have
enclosed the names of the parts of the sentence such as noun, verb, verb
phrase, etc., in brackets to avoid confusion with the English words and
phrases “noun,” “verb,” *“verb phrase,” etc.

One should note that we cannot only test sentences for their grammatical
correctness, but can also generate grammatically correct sentences by starting
with the quantity {(sentence) and replacing (sentence)> by <{noun phrase)
followed by (verb phrase>. Next we select one of the two rules for {(noun
phrase) and apply it, and so on, until no further application of the rules is
possible., In this way any one of an infinite number of sentences can
be derived—that is, any sentence consisting of a string of occurrences of
“the” and “little” followed by “boy ran quickly” such as “little the the boy
ran quickly” can be generated. Most of the sentences do not make sense but,
nevertheless, are grammatically correct in a broad sense.

10 GRAMMARS 2.2

2.2 THE FORMAL NOTION OF A GRAMMAR

Let us formalize the partial grammar for English which was mentioned in
Section 2.1. Four concepts were present. First, there were certain syntactic
categories—{singular noun), {verb phrase), {(sentence), etc., from which
strings of words could be derived. The objects corresponding to syntactic
categories we call “nonterminals” or “variables.” Second, there were the
words themselves. The objects which play the role of words we shall call
“terminals.”

The third concept is the relation that exists between various strings
of variables and terminals. These relationships we call “productions.”
Examples of productions are {<noun phrase)> — <{adjective) {noun phrase) or
{singular noun) <singular predicate) — {singular noun) <adverb) {singular
verb). Finally, one nonterminal is distinguished, in that it generates exactly
those strings of terminals that are deemed in the language. In our example,
{sentence) is distinguished. We call the distinguished nonterminal the *“sen-
tence” or “start” symbol.

Formally, we denote a grammar G by (Vy, V¢, P, S). The symbols Vy,
Vr, P, and § are, respectively, the variables, terminals, productions, and start
symbol. Vy, Vr, and P are finite sets. We assume that V) and V', contain no
elements in common; that is,

Ve 0 Vr = of.

We conventionally denote Vyy U V; by V.

The set of productions P consists of expressions of the form « — B,
where « is a string in V'* and B is a string in ¥*. Finally, S is always a
symbol in V.

Customarily, we shall use capital Latin-alphabet letters for variables.
Lower case letters at the beginning of the Latin alphabet are used for termi-
nals. Strings of terminals are denoted by lower case letters near the end of
the Latin alphabet, and strings of variables and terminals are denoted by
lower case Greek letters.

We have presented a grammar, G = (Vy, Vi, P, S), but have not yet
defined the language it generates. To do so, we need the relations = and

%)» between strings in V'*. Specifically, if « — B is a production of P and y
and & are any strings in V*, then yud = vB8%. We say that the production
« — B is applied to the string y«d to obtain y388. Thus e relates two strings

exactly when the second is obtained from the first by the application of a
single production.

1 @ denotes the empty set.
1 Say yad directly derives yB838 in grammar G.

2.2 THE FORMAL NOTION OF A GRAMMAR 11

Suppose that a;, g, ..., o, are strings in ¥*, and o = ¢, 0 > 0,

* .
C Ol > e Then we say «; e ap,.t In simple terms, we say for two

strings « and j that o % B if we can obtain 8 from « by application of some

number of productions of P. By convention, « %— o for each string e.
We define the language generated by G [denoted L(G)] to be {w|w is in V3#
and S %> whi That is, a string is in L(G) if:

1. The string consists solely of terminals.
2. The string can be derived from S.

A string of terminals and nonterminals « is called a sentential form if
S (Usually, if it is clear which grammar G is involved, we use = for
g and 2> for %—.)

We define grammars G, and G, to be equivalent if L(G,) = L(Gy).

Example 2.1, Let us consider a grammar G = (Vy, V7, P, S), where Vy =
{8}, Vo = {0, 1}, P = {S— 051, S — 01}. Here, S is the only variable, 0
and 1 are terminals. There are two productions, S — 0S1 and S — 01. By
applying the first production n — 1 times, followed by an application of the
second production, we have

S =051 = 00511 = 0351% = ... = 0"~1S1*" 1 = 01" §

Furthermore, these are the only strings in L(G). After using the second
production, we find that the number of Ss in the sentential form decreases
by one. Each time the first production is used, the number of S’s remains
the same. Thus, after using S — 01, no S’s remain in the resulting string.
Since both productions have an S on the left, the only order in which the
productions can be applied is S —> 051 some number of times followed by
one application of § — 01. Thus, L(G) = {0"1"|n = 1}.

Example 2.1 was a simple example of a grammar. It was relatively easy
to determine which words were derivable and which were not. In general, it
may be exceedingly hard to determine what is generated by the grammar.
Here is another, more difficult, example.

t Say o derives o, in grammar G.

1 We shall often use the notation L = {x]g(x)}, where ¢(x) is some statement
about x, to define languages. It stands for “the set of all x such that ¢(x) is true.”
Sometimes, x itself will have some special form. For example, {ww|w is in V'*} is
the set of words of ¥* whose first half and second half are the same.

§ If w is any string, w* will stand for w repeated 7 times. So 0° = 000. Note:
wl = e.

12 GRAMMARS 2.2

Example 2.2. Let G = (Vy, Vp, P, S), Vy =4{S,B,C}, Vo = {a,b,¢c}. P
consists of the following productions:

1. § —aSBC 5. bB— bb

2. 8§ —aBC 6. bC — bc

3. CB— BC 7. ¢cC—cc

4, aB— ab

The language L(G) contains the word a™"c¢" for each n = 1, since we
can use production (1) n — 1 times to get S X - 1S(BC)"~1. Then, we use

production (2) to get S X a"(BC)". Production (3) enables us to arrange the
B’s and C’s so that all B’s precede all C’s. For example, if n = 3,

aaaBCBCBC = aaaBBCCBC = aaaBBCBCC = aaaBBBCCC.
Thus, S &> a"B"C™.
Next we use production (4) once to get S 2, a"bB*~'C". Then use pro-
duction (5) n — 1 times to get S s apren. Finally, use production (6) once

and production (7) n — 1 times to get S X5 abren.

Now, let us show that the words a"b"c" for n = 1 are the only terminal
strings in Z(G). In any derivation beginning with S, until we use production
(2), we cannot use (4), (5), (6), or (7), for each of productions (4) through (7)
requires a terminal immediately to the left of a B or C. Until production (2)
is used, all strings derived consist of a’s followed by an S, followed by B’s
and C’s.

After (2) is used, the string consists of n a’s, for some n = 1, followed
by n B’s and n C’s in some order. Now no S’s appear in the string, so pro-
ductions (1) and (2) may no longer be used. Note that the form of the string
is all terminals followed by all variables. After applying any of productions
(3) through (7), we see that the string will still have that property. Note that
(4) through (7) are only applicable at the boundary between terminals and
variables. Each has the effect of converting one B to b or one C to ¢. Pro-
duction (3) causes B’s to migrate to the left, and C’s to the right.

Suppose that a C is converted to ¢ before all B’s are converted to b’s.
Then the string can be written as a"b'co, where i < »r and « is a string of B’s
and C’s, but not all C’s. Now, only productions (3) and (7) may be applied;
(7) at the interface between terminals and variables, and (3) among the vari-
ables. We may use (3) to reorder the B’s and C’s of «, but not to remove any
B’s. Production (7) can convert C’s to ¢’s at the interface, but eventually, a
B will be the leftmost variable. There is no production that can change the
B, so this string can never result in a string with no variables.

We conclude that all B’s must be converted to 4’s at the interface between
terminals and variables before any C’s are converted to ¢’s. Thus, from g
followed by n B’s and n C’s in any order, a"b"c" is the only derivable terminal
string. Therefore, L(G) = {a"b"c"|n = 1}.

2.3 THE TYPES OF GRAMMARS 13

2.3 THE TYPES OF GRAMMARS

We call the type of grammar we have defined a type 0 grammar. Certain
restrictions can be made on the nature of the productions of a grammar to
give three other types of grammars, sometimes called types 1, 2, and 3.

Let G = (Vy, Vi, P, S) be a grammar. Suppose that for every produc-
tion « — B in P, || Z |e[.t Then the grammar G is type I or context sensi-
tive. We shall use the latter name more often than the former.

As an example, consider the grammar discussed in Example 2.2. Each
of the seven productions of the grammar has at least as many symbols on
the right as on the left. So, this grammar is context sensitive. Likewise the
grammar in Example 2.1 is also context sensitive.

Some authors require that the productions of a context-sensitive grammar
be of the form o; Aoy — a;Bey, With ¢y, ay and Bin V*, B # e and 4 in V.
It can be shown that this restriction does not change the class of languages
generated. However, it does motivate the name context sensitive since the
production «; Aoy —> «,Ba, allows A4 to be replaced by f whenever A4 appears
in the context of «; and .

Let G = (Vy, Vr, P, S). Suppose that for every production « — 8 in P,

1. «is a single variable. 2. B is any string other than e,

Then the grammar is called fype 2 or context free. Note that a production
of the form 4 — B allows the variable 4 to be replaced by the string 8 inde-
pendent of the context in which the 4 appears. Hence the name context free.

Example 2.3. Let us consider an interesting context-free grammar. It is
G = (Vy, Vi, P, S), where Vy = {S, 4, B}, V7 = {a, b} and P consists of
the following.

S—~aB A—bAA

S — bA4 B—b

A—>a B — bS

A —aS B — aBB

The grammar G is context free since for each production, the left-hand
side is a single variable and the right-hand side is a nonempty string of
terminals and variables.

The language L(G) is the set of all words in ¥# consisting of an equal
number of &’s and b’s. We shall prove this statement by induction on the
length of a word.

Inductive Hypothesis. For win V;,
1. S%s wifand only if w consists of an equal number of a’s and &’s.
2. A% wif and only if w has one more a than it has &’s.

3. BE wifand only if w has one more b than it has a’s.

t We use |x] to stand for the length, or number of symbols in the string x.

14 GRAMMARS 23

The inductive hypothesis is certainly true if |w| = 1, since 4 La,

BLs b, and no terminal string of length one is derivable from S. Also,
no strings of length one, other than ¢ and b are derivable from 4 and B,
respectively.

Suppose that the inductive hypothesis is true for all w of length & — 1

or less. We shall show that it is true for |w| = k. First, if s s w, then
the derivation must begin with either S — aB or S — b4. In the first case,

w is of the form aw,, where |w;| = k — 1 and BXs w;. By the inductive
hypothesis, the number of b’s in w, is one more than the number of @’s, so w
consists of an equal number of a’s and b’s. A similar argument prevails
if the derivation begins with S — b4.

We must now prove the “only if”” of part (1), that is, if [w| = kand w

consists of an equal number of &’s and &’s, then S 2> w. Either the first
symbol of wis @ or it is b. Assume that w = aw;. Now |w,| = &k — 1, and

w; has one more b than . By the inductive hypothesis, B X w;. Butthen

S— aBZ> aw; = w. A similar argument prevails if the first symbol of w
is b.

Our task is not done. To complete the proof, we must show parts (2)
and (3) of the inductive hypothesis for w of length &. These parts are proved
in a manner similar to our method of proof for part (1). They will be left
to the reader.

Let G = (Vy, Vr, P, S) be a grammar. Suppose that every production
in P is of the form A — aB or A — a, where 4 and B are variables and ¢ is
a terminal. Then G is called a type 3 or regular grammar. In Chapter 3, we
shall introduce the finite state machine and see that the languages generated
by type 3 grammars are precisely the sets accepted by finite-state machines.

Example 2.4. Consider the grammar G = ({S, 4, B}, {0, 1}, P, S), where P
consists of the following:

S — 04 B— 1B
S— 1B B—1

A — 04 B—0

A— 0S8 S—0

A— 1B

Clearly G is a regular grammar. We shall not describe L(G), but rather
leave it to the reader to determine what is generated and prove his conclusion.

It should be clear that every regular grammar is context free; every
context-free grammar is context sensitive; every context-sensitive grammar
is type 0. We shall call a language that can be generated by a type 0 grammar

2.4 THE EMPTY SENTENCE 15

a type 0 language. A language generated by a context-sensitive, context-free,
or regular grammar is a context-sensitive, context-free, or regular language,
respectively.

We shall abbreviate context-sensitive, context-free, and regular grammar
by csg, cfg, and rg,} respectively. Context-sensitive and context-free lan-
guages are abbreviated csl and cfl, respectively. In line with current practice,
a type 3 or regular language will often be called a regular set. A type 0
language is abbreviated r.e. set, for recursively enumerable set. It shall be
seen later that the languages generated by type O grammars correspond,
intuitively to the languages which can be enumerated by finitely described
procedures.

2.4 THE EMPTY SENTENCE

We might note that, as defined here, € can be in no csl, cfl, or regular set.
Recalling that our motivation for thinking of grammars was to find finite
descriptions for languages, we would have to agree that if L had a finite
description, L; = L U {e} would likewise have a finite description. We could
add “e is also in L,” to the description of L to get a finite description of L;.

We shall extend our definition of csg, cfg, and rg to allow productions
of the form S — ¢, where S is the start symbol, provided that S does not
appear on the right-hand side of any production. In this case, it is clear that
the production S — € can only be used as the first step in a derivation. We
shall use the following lemma.

Lemma 2.1. If G = (Vy, Vp, P, S) is a context-sensitive grammar, then
there is another csg G; generating the same language as G, for which the
start symbol of G; does not appear on the right of any production of G.
Also, if G is a cfg, then such a cfg G, can be found. If G is an rg, then
such an rg G; can be found.

Proof. LetS;beasymbolnotin Vyor Vr. Let G, = (Vy Y {81}, Vi, Py, S1).
P, consists of all the productions of P, plus all productions of the form
S, — a where S — « is a production of P. Note that S, is not a symbol of
¥y or Vy, so it does not appear on the right of any production of P;.

We claim that L(G) = L(G,). For suppose that S %> w. Let the first

production used be S — «. Then we can write § —- « %> w. By definition
of P, S; — aisin Py, 50 S} = o Also, since P; contains all productions of
1

P, o« %» w. Thus S; %» w. We can conclude that L(G) < L(G,).

+ In most cases, we shall abbreviate the names of commonly used devices without
periods to conform to current convention.

16 GRAMMARS 25

If we show that L(G,) < L(G), we prove that L(G) = L(G,). Suppose
that S, G%)- w. The first production used is S; — «, for some «. Then,

S — « is a production of P, so S = o Now, « cif' w, but « cannot have S,
among its symbols. Since S; does not appear on the right of any production
of P,, no sentential form in the derivation « ci1> w can involve S;. Thus the
derivation is also a derivation in grammar G; that is, « % w. We conclude
that § > w, and L(G) = L(G).

It is easy to see that if G is a csg, cfg, or rg, G; will be likewise.

Theorem 2.1. If L is context sensitive, context free, or regular, then
L U {e} and L — {e} are csl’s, cfP’s, or regular sets, respectively.

Proof. Given a csg, we can find by Lemma 2.1 an equivalent csg G, whose
start symbol does not appear on the right of any production. Let G = (Vy,
Ve, P, S). Define G, = (Vy, Vi, Py, S), where P, is P plus the production
S — . Note that S does not appear on the right of any production of P;.
Thus S —> € cannot be used, except as the first and only production in a
derivation. Any derivation of G, not involving S — ¢ is a derivation in G,
so L(Gy) = L(G) U {e}.

If the csg G = (Vy, Vr, P, S) generates L, and e is in L, then P must
contain the production S — €. Also § does not appear on the right of any
production in P. Form grammar G; = (Vy, Vr, Py, S) where P; is P —
{S — €}. Since S — € cannot be used in the derivation of any word but e,
L(Gy) = L — {e}.

If L is context free or regular, the proof is analogous.

Example 2.5. Consider the grammar G of Example 2.2. We can find a
grammar G; = ({S, Sy, B, C}, {a, b, ¢}, P,, S;) generating L(G) by defining
P, to have the seven productions of P (see Example 2.2) plus the productions
Sy = aSBC and S; — aBC. L(G;) = L(G) = {a®b"c"|n 2 1}. We can add
€ to L(G,) by defining grammar G, = (S, S;, B, C}, {a, b, ¢}, Ps, S;), where
P, = P, U{S; - ¢}. Then

L(Gs) = L(GY) U {e} = {@"b"c|n = O).

2,5 RECURSIVENESS OF CONTEXT-SENSITIVE GRAMMARS

We say that a grammar G is recursive if there is an algorithm which will
determine for any word w, whether w is generated by G. To say that a
grammar is recursive is a stronger statement than to say that there is a pro-
cedure for enumerating sentences in the language generated by the grammar.}

+ There is, of course, always such a procedure for any grammar.

2.5 RECURSIVENESS OF CONTEXT-SENSITIVE GRAMMARS 17

Let G = (Vy, Vi, P, S) be a csg. The sentence ¢ is in L(G) if and only
if P contains the production S — e. Thus we have a test to see if € is in L(G).
By removing S — e from P if it is there, we can form a new csg

Gl = (VNs VT, Pl, S)

generating L(G) — {e}. Every production of P; satisfies the original restriction
on acsg. That is, the right-hand side is at least as long as the left-hand side.
As a consequence, in every derivation in G, the successive sentential forms
are nondecreasing in length.

Let ¥V = Vy U Vy have k symbols. Suppose that w # ¢, and that there

. . . £ . . .
is a derivation S =W Let this derivation be S => oy = g+« => ap,
1

where «, = w. We have observed that |e;| < || £ -+ £ |a,|. Suppose
that a;, oy 41,. . . » 04, are all of the same length, say length p. Also, suppose
that j = k?. Then two of &, ;4 1,. .., %4; Must be the same, for there are
only k? strings of length p in ¥*. In this case, we can omit at least one step
in the derivation. For, let o, = o, where r < 5. Then S = a; = .- =
0, => @ 4 —> -+« => &, = W is a shorter derivation of w in grammar G;.

Intuitively, then, if there is a derivation of w, there is one which is “not
too long.” We shall give an algorithm in the next theorem which essentially
incorporates this idea.

Theorem 2.2. If G = (Vy, Vz, P, S) is a context-sensitive grammar, then
G is recursive.

Proof. In the preceding paragraphs we saw that one could determine by
inspection if € was in L(G) and then remove S — € from the productions if «
was there. We assume that P does not contain S — « and(let w be a string
in V7. Suppose that |w| = n. Define the set T, as the set of strings « in

v+, of length at most n, such that S LA by a derivation of at most m steps.
Clearly, T, = {S}.

It is easy to see that we can calculate T, from T,.; by seeing what
strings of length less than or equal to n can be derived from strings in T, _;
by a single application of a production. Formally,

T, = Tp_y Y {e| for some Bin Tp—1, B —> ¢ and || < n}.

Also, if S X «, and |&| £ n, then « will be in T}, for some m; if S does not
derive o, or |e| > n, then « will not be in T, for any m.

It should also be evident that T, = T, -, for all m = 1. Since T, de-
pends only on Ty _y, if Ty = Ty, then Ty, = Tpyy = Tyyp =+ Our
algorithm will be to calculate T, Ty, T, . .. until for some m, T, = Tip-1.
If w is not in T}, then it is not in L(G), because for j > m, T; = T,. Of

course, if w is in T, then S — w.

18 GRAMMARS 286

We have now to show that for some m T, = T,_;. Recall that for
eachi= 1,T, =2 T,_,. If T, # T,_,, then the number of elements in 7 is at
least one greater than the number in 7;_,. But, let V" have &k elements. Then
the number of strings in ¥ * of length less than orequaltonisk + k%2 + ---
+ k", which is less than or equal to (k + 1)**1. These are the only strings
that may be in any T;. Thus 7, = T, _, for some m = (k + 1)**1. Our
procedure, which is to calculate T; for all i = 1 until two equal sets are
found, is thus guaranteed to halt. Therefore, it is an algorithm.

It should need no mention that the algorithm of Theorem 2.2 also applies
to context-free and regular grammars.

Example 2.6. Consider the grammar G of Example 2.2, with productions:

1. S —aSBC 5. bB— bb
2. § —aBC 6. bC — be

3. CB— BC 7. ¢C—cc
4, aB— ab
We determine if w = abac is in L(G), using the algorithm of Theorem 2.2.
To = {S}-

T, = {S, aSBC, aBC}.

The first of these strings is in 7, the second comes from S by application of
production (1), the third, by application of (2).

T, = {S, aSBC, aBC, abC}.

The first three sentences of 7, come from T7, the fourth comes from aBC by
application of (4). Note that although qaSBCBC and aaBCBC can be
derived from aSBC by productions (1) and (2), they are not in 7%, since their
lengths are greater than |w|, which is 4. Similarly,

Ty = {S, aSBC, aBC, abC, abc}.

We can easily see that T, = T5. Since abac is not in Ty, it is not in L(G).

2.6 DERIVATION TREES FOR CONTEXT-FREE GRAMMARS

We now consider a visual method of describing any derivation in a context-
free grammar. A free is a finite set of nodes connected by directed edges,
which satisfy the following three conditions (if an edge is directed from node
1 to node 2, we say the edge Jeaves node 1 and enters node 2):

1. There is exactly one node which no edge enters. This node is called the
root.

2. For each node in the tree there exists a sequence of directed edges from
the root to the node. Thus the tree is connected.

26 DERIVATION TREES FOR CONTEXT-FREE GRAMMARS 19

3. Exactly one edge enters every node except the root. As a consequence,
there are no loops in the tree.

The set of all nodes #n, such that there is an edge leaving a given node m
and entering #, is called the set of direct descendants of m. A node n is called
a descendant of node m if there is a sequence of nodes ny, n, . . ., 1, SUCh
that n, = n, n, = m, and for each i, n;,, is a direct descendant of . We
shall, by convention, say a node is a descendant of itself.

For each node in the tree, we can order its direct descendants. Let s,
and 7, be direct descendants of node n, with n, appearing earlier in the
ordering than n,. Then we say that », and all the descendants of n; are to
the Jeft of n, and all the descendants of n,. Note that every node is a descend-
ant of the root. If n; and s, are nodes, and neither is a descendant of the
other, then they must both be descendants of some node. (This may not be
obvious, but a little thought should suffice to make it clear.) Thus, one of
n; and n, is to the left of the other.

Let G = (Vy, Vi, P, S) be acfg. A tree is a derivation tree for G if:

—

Every node has a label, which is a symbol of V.

. The label of the root is S.

. If 2 node » has at least one descendant other than itself, and has label 4,
then A4 must be in Vy.

4. If nodes ny, n,, . .., 1y, are the direct descendants of node »n, in order

from the left, with labels 41, 4o, . . ., Ay, respectively, then

A— A1 A, .. As

W N

must be a production in P.
These ideas may be confusing, but an example should clarify things.

Example 2.7. Consider the grammar G = ({S, 4}, {a, b}, P, S), where P
consists of:

S — adS S—>a

A — SbA A— ba

A—> SS

We draw a tree, just this once with circles instead of points for the nodes.
The nodes will be numbered for reference. The labels will be adjacent to the
nodes. Edges are assumed to be directed downwards. See Fig. 2.2.

Some general comments will illustrate the definitions we have made.
The Iabel of node 1 is S. Node 1 is the root of the tree. Nodes 2, 3, and 4
are the direct descendants of node 1. Node 2 is to the left of nodes 3 and 4.
Node 3 is to the left of node 4. Node 10 is a descendant of node 3, although
not a direct descendant. Node 5 is to the left of node 10. Node 11 is to the
left of node 4, for surely node 3 is to the left of node 4, and 11 is a descendant
of node 3.

20 GRAMMARS 26

The nodes with direct descendants are 1, 3, 4, 5, and 7. Node 1 has
label S, and its direct descendants, from the left, have labels a, 4, and S.
Note that S — aAS is a production. Likewise, node 3 has label 4, and the
labels of its direct descendants are S, b, and 4 from the left. 4 — Sb4 is
also a production. Nodes 4 and 5 each have label S. Their only direct
descendants each have label a, and S — a is a production. Lastly, node 7
has label A4 and its direct descendants, from the left, have labels » and
a. A — ba is also a production. Thus, the conditions that Fig. 2.2 represent
a derivation tree for G' have been met.

Fig. 2.2. Example of a derivation tree.

We shall see that a derivation tree is a very natural description of the
derivation of a particular sentential form of the grammar G. Some of the
nodes in any tree have no descendants. These nodes we shall call Jeaves.
Given any two leaves, one is to the left of the other, and it is easy to tell
which is which. Simply backtrack along the edges of the tree, toward the
root, from each of the two leaves, until the first node of which both leaves
are descendants is found.

If we read the labels of the leaves from left to right, we have a sentential
form. We call this string the result of the derivation tree. Later, we shall see
that if « is the result of some derivation tree for grammar G = (Vy, Vi, P, S),

then § %> a.

We need one additional concept, that of a subtree. A subtree of a deri-
vation tree is a particular node of the tree together with all its descendants,
the edges connecting them, and their labels. It looks just like a derivation
tree, except that the label of the root may not be the start symbol of the
grammar.

26 DERIVATION TREES FOR CONTEXT-FREE GRAMMARS 21

Example 2.8. Let us consider the grammar and derivation tree of Example
2.7. The derivation tree of Fig. 2.2 is reproduced without numbered nodes
as Fig. 2.3(a). The result of the tree in Fig. 2.3(a) is aabbaa. Referring to
Fig. 2.2 again, we see that the leaves are the nodes numbered 2, 9, 6, 10, 11,
and 8, in that order, from the left. These nodes have labels a, g, b, b, a, a,
respectively. Note that in this case all leaves had terminals for labels, but

there is no reason why this should always be so. Note that S %> aabbaa by
the derivation

S = aAS — aSbAS = aabAS — aabbaS = aabbaa.

S
a A S
N b A a

A
| bA
a b a
(a) {b}

Fig. 2.3. Derivation trees and subtrees.

L
o
o

In part (b) of Fig. 2.3 is a subtree of the tree illustrated in part (a). It is
node 3 of Fig. 2.2, together with its descendants. The result of the subtree is

abba. The label of the root of the subtree is 4, and 4 X, abba. The deriva-
tion in this case is:
A = SbA = abA = abba.

We shall now prove a useful theorem about derivation trees for context-

free grammars and, since every regular grammar is context free, for regular
grammars also.

Theorem 2.3. Let G = (Vy, Vi, P, S) be a context-free grammar. Then,

fore # ¢, S X, «ifand only if there is a derivation tree in grammar G
with result a.

Proof. We shall find it easier to prove something in excess of the theorem.
What we shall prove is that if we define G, to be the grammar (Vy, Vi, P, 4)
(i.e., G with the variable 4 chosen as the start symbol), then for any 4 in

22 GRAMMARS 26

Vy, A %, «ifand only if there is a tree in grammar G4 with « as the result.}
Note that for all grammars mentioned, the productions are the same. There-

fore A4 —>ais equivalent to saying A = a, for any B in V. Also, since
A B

Gs = G, it is the same as saying 4 %> o

Suppose, first, that « is the result of a derivation tree for grammar G,.
We prove, by induction on the number of nodes in the tree that are not leaves,

that 4 2=A> «. If there is only one node that is not a leaf of the tree, the tree

A

Fig. 2.4. Tree with one nonleaf.
Al A2 PN An

must look like the one in Fig. 2.4. In that case, 4,4, ... 4, must be «, and
A — « must be a production of P by definition of a derivation tree.

Now, suppose that the result is true for trees with up to & — 1 nodes
which are not leaves. Also, suppose that « is the result of a tree with root
labeled A, and suppose that that tree has k& nodes which are not leaves,
k > 1. Consider the direct descendants of the root. These could not all be
leaves. Let the labels of the direct descendants be A4, A, ..., 4, in order
from the left. Number thesenodes 1,2,...,n. Then,surely, S— 4,4,...4,
is a production in P. Note that n may be any integer greater than or equal
to one in the argument that follows.

If the node i is not a leaf, it is the root of a subtree. Also, 4, must be a
variable. The subtree is a tree in grammar G,,, and has some result «, If
node i is a leaf, let 4, = «. It is easy to see that if j < i, node j and all of
its descendants are to the left of node i and all of its descendants. Thus
o« = a;¢5...0, A subtree must have fewer nodes that are not leaves
than its tree does, unless the subtree is the entire tree. By the inductive

hypothesis, for each node i which is not a leaf, 4, %i- o, Thus A4, Gi> o
i A

If A; = «;, then surely 4; G%- 0. We‘can put all these partial derivations
together, to see that

* * * *
A= A1Ay.. 4, = 0, As. .. A, = ayagAs. .. Ay = -+ = ay0s. . .0, = o
Ga 1442 nGA 1412 nGA 122443 nGA Ga 1%2 n

Thus 4 = «.
Ga

t The introduction of these grammars is necessary only because a tree in grammar
G always has a root labeled S.

2.6 DERIVATION TREES FOR CONTEXT-FREE GRAMMARS 23

A A

Ay Ay e Ay

A 1 A 2 A 3 e An—l A,,
(@) {terminal) (terminal}
Fig. 2.5 b)

Now, suppose that 4 % «. We must show that there is a derivation

tree with result « in grammar G,. If 4 G%) o by a single step, then 4 — « is

a production in P, and there is a tree with result «, of the form shown in
Fig. 2.4.

Now, assume that if 4 Gi: « by a derivation of less than & steps, then

there is a derivation tree in grammar G, with result «. Suppose that 4 G%:» o

by a derivation of k steps. Let the first step be 4 = A;4,...4,. Now, it
should be clear that any symbol in « must either be one of 4, 4,,..., 4,
or be derived from one of these. Also, that portion of « derived from 4,
must lie to the left of the symbols derived from A4,, if { < j. Thus, we can

. . *
write o as oa,. . .a,, where for each i between 1 and n, 4, = o
Aq

By the inductive hypothesis, there is a derivation tree for each variable
A;, in grammar G, with result «;. Let this tree be 7;.. We begin by con-
structing a derivation tree in grammar G, with root labeled 4, and » leaves
labeled 4;, As, . . ., Ay, and no other nodes. This tree is shown in Fig. 2.5(a).
Each node with label 4;, where 4; is not a terminal, is replaced by the tree
T.. If A, is a terminal, no replacement is made. An example appears in
Fig. 2.5(b). In a straightforward manner, it can be shown that the result of

this tree is a.
) S

Fig. 2.6 {a) a (b) a A

Example 2.9. Consider the derivation § %> aabbaa of Example 2.8. The
first step is S — aAS. If we follow the derivation, we see that 4 eventually
is replaced by SbA, then by abA, and finally, by abba. Part (b) of Fig. 2.3
is a derivation tree for this derivation. The only symbol derived from S in
aAS is a. (This replacement is the last step.) Part (a) of Fig. 2.6 is a tree for
the latter derivation.

24

GRAMMARS

Part (b) of Fig. 2.6 is the derivation tree for S = a4S. If we replace

the node with label 4 in Fig. 2.6(b) by the tree of Fig. 2.3(b), and the node
with label § in Fig. 2.6(b) with the tree of Fig. 2.6(a), we get the tree of
Fig. 2.3(a), whose result is aabbaa.

PROBLEMS
2.1 Give a regular grammar generating
L = {w|wis in {0, 1}*, and w does not contain two consecutive 1’s}.
2.2 Give a context-free grammar generating
L = {w|w is in {a, b}* and w consists of twice as many a’s as &’s}.
2.3 Give a context-free grammar generating the FORTRAN arithmetic state-
ments.
2.4 Give a context-sensitive grammar generating
L = {w|win{a, b, ¢}*, and w consists of equal numbers of a’s, &’s, and ¢’s}.
2.5 Give a context-sensitive grammar generating
L = {ww|w is in {0, 1}*}.
That is, L is all words in {0, 1}* whose first and last halves are equal.
2.6 Informally describe the words generated by the grammar G of Example 2.7.
2.7 Use the algorithm of Theorem 2.2 to determine if the following words are
in L(G), where G is as in Example 2.7.
a) abaa b) abbb <) baaba
2.8 If G is context free, can you improve upon the bound on m in Theorem 2.2?
What if G is regular?
2.9 Consider the grammar G of Example 2.3. Draw a derivation tree in G for
the following words.
a) ababab b) bbbaabaa ¢) aabbaabb
210 Let G = (Vy, V7, P, S), where Vy = {4, B, S} and V; = {0,1}. P con-
sists of the productions:
S — 04B B — 01
1B—0 Al — SB1
B— S4 A0 — SOB
Can you prove that L(G) is empty?
2.11 In Fig. 2.7 is a derivation tree of some context-free grammar,

G =y Vr, P, S),

for which the productions and symbols are not known. What is the
result of the tree? What symbols are necessarily in ¥y? What symbols
might be in V7 ? Disregarding our convention that lower case italic letters
denote terminals, do we find that b and ¢ must be in ¥y, or could they be in
Vx? What productions must be in P? Is the word bcbbebb in L(G)?

REFERENCES 25

N

A/\B
S/\s b/\
| B

A
l/\s
Fig. 2.7) c/\b

2.12 Let G be a grammar where all productions are of the form 4 — xB and
A — x, where A and B are single variables and x is a string of terminals.
Show that L(G) can be generated by a regular grammar.

REFERENCES

Early works on generating systems are found in Chomsky [1956], Chomsky and
Miller [1958], Chomsky [1959], and Bar-Hillel, Gaifman, and Shamir [1960].
The notation of grammar used here and the classification by type is due to
Chomsky [1959].

For references on regular, context-free, recursively enumerable, and context-
sensitive sets, check the references given at the end of Chapters 3, 4, 6, and 8,
respectively. Two survey papers with additional references are Chomsky [1963]
and Floyd [1964c].

CHAPTER 3

FINITE AUTOMATA
AND REGULAR GRAMMARS

3.1 THE FINITE AUTOMATON

In Chapter 2, we were introduced to a generating scheme-—the grammar.
Grammars are finite specifications for languages. In this chapter we shall
see another method of finitely specifying infinite languages—the recognizer.
We shall consider what is undoubtedly the simplest recognizer, called a finite
automaton. The finite automaton (fa) cannot define all languages defined
by grammars, but we shall show that the languages defined are exactly
the type 3 languages. In later chapters, the reader will be introduced to
recognizers for type 0, 1, and 2 languages. Here we shall define a finite auto-
maton as a formal system, then give the physical meaning of the definition.

A finite automaton M over an alphabet X is a system (X, Z, 8, g, F),
where K is a finite, nonempty set of states, % is a finite input alphabet, 8 is a
mapping of K x Z into K, g, in K is the initial state, and F < K is the set
of final states.

Our model in Fig. 3.1 represents a finite control which reads symbols
from a linear input tape in a sequential manner from left to right. The set of
states K consists of the states of the finite control. Initially, the finite control
is in state g, and is scanning the leftmost symbol of a string of symbols in X
which appear on the input tape. The interpretation of &(q, a) = p, for ¢
and p in K and g in %, is that M, in state ¢ and scanning the input symbol q,
moves its input head one cell to the right and goes to state p.

The mapping 8 is from K x X to K. We can extend 8 to domaint
K x T* by defining a mapping § as follows:

S(‘b € = q
8(q, xa) = 8(8(q, x),a) for each x in =* and ¢ in =.

Thus the interpretation of 8(g, x) = p is that M, starting in state ¢ with the
string x written on the input tape, will be in state p when the input head
moves right from the portion of the input tape containing x. Since 8 and 8

+ The domain of a mapping is the set of valid arguments for the mapping. The
set of values which the mapping could take is called the range.

26

3.1 THE FINITE AUTOMATON 27

o(1jof1f1f1y0;14{040

Finite
Fig. 3.1. A finite automaton. control

agree wherever 8 is defined, no confusion will arise if we fail to distinguish
between & and §. Thus, for the remainder of the book, we shall use & for
both 8§ and §.

A sentence x is said to be accepted by M if 8(g,, x) = p for some p in F.
The set of all x accepted by M is designated T(M). That is,

T(M) = {x|8(g, x) is in F}.
Any set of strings accepted by a finite automaton is said to be regular.

Example 3.1. The specifications for a finite automaton are given in Fig.
3.2(a). A state diagram for the automaton is shown in Fig. 3.2(b). The state
diagram consists of a node for every state and a directed line from state g to
state p with label @ (in X) if the finite automaton, in state g, scanning the
input symbol a, would go to state p. Final states, i.e., states in F, are indi-
cated by a double circle. The initial state is marked by an arrow labeled
start.

Consider the state diagram of Fig. 3.2(b). Suppose that 110101 is the
input to M. Since &(go, 1) = ¢, and gy, 1) = g0, (go, 11) = go. We
might comment that thus, 11 is in T(M), but we are interested in 110101.
Now 8(go, 0) = g3, 50 8(gq, 110} = g5. Next 8(gs, 1) = g3, s0 8(go, 1101) =
gs. Finally, 8(¢s, 0) = ¢, and 8(gqy, 1) = g0, so 8(q,, 110101) = g, and thus
110101 is in T(M). It is easily shown that 7(M) is the sét of all sentences
in {0, 1}* containing both an even number of 0’s and an even number of 1’s.

Start
M=(K92,8’q09F) o
z:

K = {q0, 91, 92, 93} 1
8(g0, 0) = g2 8go, 1) = 1

8(q1,0) = qa 8q1,1) = qo
8(g2, 0) = go 3(g2, 1) = qs
8(g3, 0) = a1 8gs, 1) = g2 0

0
(a)
Fig. 3.2. A finite automaton accepting -
the set of strings with an even number
of 0’s and an even number of I’s. (a) A 1

finite automaton. (b) State diagram of
the finite automaton. (b}

28 FINITE AUTOMATA AND REGULAR GRAMMARS 3.2

3.2 EQUIVALENCE RELATIONS AND FINITE AUTOMATA

A binary relation R on a set S is a set of pairs of elements in S. If (q, b) is in
R, then we are accustomed to seeing this fact written as aRb.

Example 3.2. For a familiar example, consider the relation “less than”
usually denoted by the symbol < on the set of integers. In the formal sense,
this relation is the set: {(/, j) | i is less than j}. Thus 3 < 4,2 < 17, etc.
We are going to be concerned with some relations on sets of strings over
a finite alphabet.
A binary relation R over a set S is said to be:

reflexive if for each s in S, sRs,
. symmetric if for s and ¢ in S, sR¢ implies ¢Rs,
3. transitive if for s, t, and u in S, sRt and tRu imply sRu.

N o=

A relation which is reflexive, symmetric, and transitive is called an
equivalence relation. An example of an equivalence relation over the set of
positive integers is the relation E, given by: {Ej if and only if |i — j| is
divisible by 3.

An important property of equivalence relations is that if R is an equiva-
lence relation on the set S then we can divide S into k disjoint subsets, called
equivalence classes, for some k between 1 and infinity, inclusive, such that
aRb if and only if @ and b are in the same subset.

The proof is simple. Define [a] to be {b|aRb}. For any a and b in S,
either [a] = [&], or [a] and [b] are disjoint. Otherwise, let ¢ be in [4] and [b],
and d be in [b] but not [a]. That is, aRc, bRc, and bRd, but not aRd. By
symmetry, we have cRb. By transitivity, we can show c¢Rd and aRd. The
latter statement is a contradiction. The distinct sets that are [a] for some a
in S are the equivalence classes. Clearly, a and b are in the same set if and
only if they are equivalent.

Example 3.3. The relation E given by iEj if and only if |i — j| is divisible
by 3 divides the set of positive integers into three classes {1, 4, 7, 10, ...},
{2,5,8,11,...},and {3, 6,9, 12,...}. Any two elements from the same class
are equivalent (1E4, 3E6, etc.), and any two elements from different classes
fail to satisfy the equivalence relation (not 7E9, 1E3, etc.).

The index of an equivalence relation is the number of equivalence
classes generated. Thus the equivalence relation F has index 3.

Consider the finite automaton of Example 3.1. For x and y in {0, 1}¥,
let (x, y) be in R if and only if 8(g,, x) = 8(go,). The relation R is reflexive,
symmetric, and transitive, since ‘="’ has these properties, and thus, R is an
equivalence relation. R divides the set {0, 1}* into four equivalence classes
corresponding to the four states. In addition, if xRy, then xz R yz for all z
in {0, 1}*, since

8(qo, x2) = 8(8(¢o» X), 2) = 8(3(g0 ¥), 2) = 3(q0, y2).

3.2 EQUIVALENCE RELATIONS AND FINITE AUTOMATA 29

Such an equivalence relation is said to be right invariant. We see that every
finite automaton induces a right invariant equivalence relation defined as R
was defined, on its set of input strings. This result is formalized in the fol-
lowing theorem.

Theorem 3.1. The following three statements are equivalent:

1. The set L < X* is accepted by some finite automaton.

2. L is the union of some of the equivalence classes of a right invariant
equivalence relation of finite index.

3. Let equivalence relation R be defined by: xRy if and only if for all z
in X*, xz is in L exactly when yz is in L. Then R is of finite index.

Proof. (1) = (2). Assume that L is accepted by some fa M = (KX, %, §,
dos F). Let R’ be the equivalence relation xR’y if and only if 8(go, x) =
8(g0, ¥). R’ is right invariant since, for any z, if 8(go, X) = 8(¢o, ¥), then

8(qo, x2) = 3(qo, ¥2).

The index of R’ is finite since the index is at most the number of states in X.
Furthermore, L is the union of those equivalence classes which include an
element x such that 8(g,, x) is in F.

(2) = (3). We show that any equivalence relation R’ satisfying (2) is a
refinement of R; that is, every equivalence class of R’ is entirely contained
in some equivalence class of R. Thus the index of R cannot be greater than
the index of R’ and so is finite. Assume that xR’y. Then since R’ is right
invariant, for each z in Z*, xzR'yz, and thus yz is in L if and only if xz is in
L. Thus xRy, and hence, the equivalence class of x in R’ is contained in the
equivalence class of x in R. We conclude that each equivalence class of R’ is
contained within some equivalence class of R.
~ (3) => (1). Assume that xRy. Then for each w and z in ¥ xwzisin L
if and only if ywz is in L. Thus xwRyw, and R is right invariant. Now let K’
be the finite set of equivalence classes of R and [x] the element of K’ containing
x. Define 8'([x], @) = [xa]. The definition is consistent, since R is right in-
variant. Let g5 = [¢] and let F' = {{x] | x € L}. The finite automaton
M = (K, Z, &, qp F') accepts L since §'(gg, x) = [x], and thus x is in
T(M’) if and only if [x] is in F'.

Theorem 3.2. The minimum state automaton accepting L is unique up
to an isomorphism (i.e., a renaming of the states) and is given by M’ of
Theorem 3.1.

Proof. In the proof of Theorem 3.1 we saw that any fa M = (X, Z, 8, g, F)
accepting L defines an equivalence relation which is a refinement of R. Thus
the number of states of M is greater than or equal to the number of states of
M’ of Theorem 3.1. If equality holds, then each of the states of M can be
identified with one of the states of M. That is, let g be a state of M. There

30 FINITE AUTOMATA AND REGULAR GRAMMARS 3.3

must be some x in Z*, such that 5(g,, xX) = ¢, otherwise g could be removed
from K, and a smaller automaton found. Identify ¢ with the state 8'(go, X),
of M’. This identification will be consistent. If 8(go, X) = 8(g0, ¥) = g,
then, by Theorem 3.1, x and y are in the same equivalence class of R. Thus

(g0, X) = &'(q0, ¥)-

3.3 NONDETERMINISTIC FINITE AUTOMATA

We now introduce the notion of a nondeterministic finite automaton. It will
turn out that any set accepted by a nondeterministic finite automaton can
also be accepted by a deterministic finite automaton.

However, the nondeterministic finite automaton is a useful concept in
proving theorems. Also, the concept of a nondeterministic device is not an
easy one to grasp. It is well to begin with a simple device. Later we deal
with nondeterministic devices that are not equivalent to their deterministic
counterparts. It is hoped that the study of nondeterministic finite automata
will help in the understanding of those devices.

A nondeterministic finite automaton M is a system (K, Z, 8, q,, F), where
K is a finite nonempty set of states, X the finite input alphabet, 8 is a mapping
of K x X into subsets of K, g, in K is the initial state, and F £ K is the set
of final states.

The important difference between the deterministic and nondeterministic
case is that 8(g, a) is a (possibly empty) set of states rather than a single state.
The interpretation of 8(q, @) = {p1, ps, . - ., Px} is that M, in state g, scanning
a on its input tape, moves its head one cell to the right and chooses any one
of pi1, ps, - . ., D as the next state.

The mapping 8 can be extended to domain X x Z* by defining

8¢9 ={g and Sgxa)=_ LU 8p,a),

2 1in é(q,x)

for each x in £*, and ¢ in Z.
The mapping 8 can be further extended to domain 2% x Z*t by defining

5012 - Db D) =) (01, 9.

A sentence x is accepted by M if there is a state p in both F and 8(g,, x).
The set of all x accepted by M is denoted T(M).

Example 3.4. A nondeterministic fa which accepts the set of all sentences
with either two consecutive 0’s or two consecutive 1’s is given in Fig. 3.3.
The fa will make many choices upon reading an input string. Thus, suppose
that 010110 is the input. After reading the first 0, M may stay in state g, or
go to gs. Next, with a 1 input, M can go nowhere from g3, but from ¢, can

t 2%, for any set K, denotes the power set or set of all subsets of X.

33 NONDETERMINISTIC FINITE AUTOMATA 31

g0 to g, or g;. Similarly, by the time the fourth input symbol is read, M can
still be in only g, or ¢;. When the fifth symbol, a 1, is read, M can go from
g, 1o g5 and from ¢, to g, or g;. Thus M may be in state g, g,, or g5. Since
there is a sequence of states leading to ¢,, 01011 is accepted. Likewise,
after the sixth symbol is read, M can be in state g,, ¢3,0r gs. Thus 010110
is also accepted.

M = ({q()s q1, 92, 43, Q4},
{Oa 1}9 89 dos {42, 44})

8(qo, 0) = {go, gs};
a(ql, O) = ‘P;
8(gz, 0) i 1g2};

3(qs, 0) = {ga};
8(q4, 0) = {g4};

8(qo, 1) = {g0, q1}.
3(g1, 1) = {g2}.
8(gz, 1) = {g2}.

3(gs, 1) = .
8(gs, 1) = {q4}-)
(@) (b}

Fig. 3.3. A nondeterministic finite automaton which accepts the set of all sen-
tences containing either two consecutive 0’s or two consecutive 1’s. (a) Specifica-
tion. (b) State diagram.

Theorem 3.3. Let L be a set accepted by a nondeterministic finite auto-
maton. Then there exists a deterministic finite automaton that accepts L.

Proof. Let M = (K, Z, 8, qo, F) be a nondeterministic fa accepting L. Define
a deterministic fa, M’ = (K’, Z, &', g, F') as follows. The states of M" are
all the subsets of the set of states of M. That is, X' = 2%, M’ will keep
track of all the states M could be in at any given time. F’is the set of all
states in K’ containing a state of F. An element of X’ will be denoted by
{91, o5 - - ., q;], Where ¢y, 4o, . . ., q; are in K. Note that g5 = [go].

We define

8([91, 92 - - » @), @) = [p1, P2y - - -5 P5]
if and only if

({91, G2s - - -» 4i}» @) = {P1, P2y - - -5 D}
That is, 8" applied to an element Q of K’ is computed by applying 6 to each
state of K represented by @ = [¢1,¢s,...,4;). On applying & to each of
91, qs - - -» q; and taking the union, we get some new set of states, p;, po, . . .,
p;. This new set of states has a representative, [p;, ps, . . ., p;]in K’, and that
element is the value of &' ([¢1, 43, - - -» 4], @).

32 FINITE AUTOMATA AND REGULAR GRAMMARS 33

It is easy to show by induction on the length of the input string x that
Si(q(,)’ x) = [‘h, gos - o ql]
if and only if
8(q0, %) = {q1:92: - - -» G}

The result is trivial for |x| = 0, since go = [go]- Suppose that it is true for
|x| £ 1. Then, forainZ,

(g0, xa) = 8'(8'(q0, X), @).
By the inductive hypothesis,

(g0 X) = [p1, Pas - - -5 3]
if and only if

3o, X) = {P1, P2, - - -, P}
But by definition,

([p1sPos - s ps) @) = [ris ray .05 1i]
if and only if
O({P1sPas - - s P} @) = {r1s 72y s Tk
Thus,
8'(go, xa) = [ry, ray.. .5 Fel
if and only if
8(go, xa) = {ry, #gy ...y P}

To complete the proof, we have only to add that §(go, x) is in F’ exactly
when 6(g,, x) contains a state of X which is in F. Thus T(M) = T(M').

Since the deterministic and nondeterministic finite automata accept the
same sets, we shall not distinguish between them unless it becomes necessary,
but shall simply refer to both as finite automata.

Example 3.5. Let M = ({90, 91}, {0, 1}, 9, g0, {¢:}) be a nondeterministic fa,
where:

8(q0, 0) = {q0, 01} 3(q0, 1) = {g1} 8(q1,0) = ¢ 8(q1, 1) = {q0, 91}-

We can construct a deterministic fa, M’ = (X, {0, 1}, &', [g0], F), accepting
T(M) as follows. K consists of all subsets of {g,, ¢,}. We denote the elements
of K by [go], [4:], [90, 4:] and . Since 8(go, 0) = {g0, 41},

8,([q0]9 0) = [q09 ql]'
Likewise,

(o) D = [¢:). 8([9:). 0) = ¢ and &([g:], 1) = [g0, 0a]-

3.4 FINITE AUTOMATA AND TYPE 3 LANGUAGES 33

Naturally, §'(p, 0) = 8'(p, 1) = ¢. Lastly,
8’([q09 ‘h], O) = [‘Io, ‘h],

since
8({q0, 91}, 0) = 8(go, 0) U 8(q1,0) = {90, 91} Y @ = {q0, 91};
and
8'([90, 4,1, 1) = [0, 91],
since

3({g0, 41}, 1) = 8(g0,) Y 8(q1,) = {g:} Y {90, 91} = {q0> 91}-
The set F of final states is {[¢1], [go, 11}

3.4 FINITE AUTOMATA AND TYPE 3 LANGUAGES

We now turn to the relationship between the languages generated by type 3
grammars and the sets accepted by finite automata.

Theorem 3.4. Let G = (Vy, Vi, P, S) be a type 3 grammar. Then there
exists a finite automaton M = (K, V, 8, S, F) with T(M) = L(G).

Proof. M will be a nondeterministic fa. The states of M are the variables
of G, plus an additional state 4, not in Vy. Thus, K = Vy U {4}. The
initial state of M is S. If P contains the production S — ¢, then F = {S, A4}.
Otherwise, F = {4}. Recall that S will not appear on the right of any pro-
duction if § — € is in P. The state 4 is in 8(B, @) if B— a is in P. In addi-
tion, 8(B, a) contains all C such that B — aCis in P. 8(4, a) = ¢ for each
ain V.

The fa M, when accepting a sentence x, simulates a derivation of x by
the grammar G. We shall show that T(M) = L(G). Let x = @a,...a, be
in L(G),n = 1. Then

S=a,A; =+ = Aay. . .An_1An_1 = A1Qs. . .An_10,

for some sequence of variables 4, 4,,..., A,_;. From the definition of 3,
we can see that 8(S, a;) contains A;, that 6(4,, a;) contains 4, etc., and
that 6(4,_1, @,) contains A. Thus x is in T(M), since 8(S, x) contains 4,
and 4 is in F. If eis in L(G), then S is in F, so e is in T(M).

Likewise, if x is in T(M), |x] Z 1, then there exists a sequence of states
S, Ay, Ag, . .., An_1, A such that 8(S, a;) contains A4, 8(4;, a;) contains 4,,
and so forth. Thus, P contains rules S — a;4,, A; —> a4,,... and
A,_1—> a,. Therefore, S — a1 4; = a0, = -+ = a185. . Ay 1Ay 1 —>
a1a,. . .4, is a derivation in G and x is in L(G). If € is in 7(M), then Sis in
F, s0 § — ¢ is a production in P, and € is in L(G).

Theorem 3.5. Given a finite automaton M, there exists a type 3 gram-
mar G, such that L(G) = T(M).

34 FINITE AUTOMATA AND REGULAR GRAMMARS 34

Proof. Without loss of generality let M = (K, Z, 8, g,, F) be a deterministic
finite automaton. Define a type 3 grammar G = (X, Z, P, q,) as follows.

1. B—>aCisin Pif 8(B,a) = C.
2.B—aisinPif 8(B,a) = Cand Cisin F.

The proof that ¢, -”G‘—-> w if and only if 8(go, w) is in F, for |w| = 1, is

similar to the proof of Theorem 3.4, and will be left to the reader. If g, is
in F, then e is in T(M). In that case, L(G) = T(M) — {e}. By Theorem 2.1,
we can obtain from G, a new type 3 grammar G, where

L(Gy) = L(G) U {¢} = T(M).
If g, is not in F, then e is not in T(M), so L(G) = T(M).

Example 3.6. Consider the following regular grammar, G = ({S, B}, {0, 1},
P, S), where P consists of: S— 0B, B— 0B, B— 1S, B — 0.

We can construct a nondeterministic finite automaton M = ({S, B, 4},
{0, 1}, 6, S, {A}), where & is given by:

1. 8(S, 0) = {B}, since S — 0B is the only production in P with S on the
left and O on the right.

. 8(S, 1) = ¢, since no production has S on the left and 1 on the right.

. 8(B,0) = {B, A}, since B— 0B and B — 0 are in P.

. 8(B, 1) = {S}, since B— 1Sis in P.

. 8(4,0) = 8(4, 1) = ¢.

By Theorem 3.4, T(M) = L(G), as one can easily verify.

‘We now use the construction of Theorem 3.3 to find a deterministic
finite automaton M, equivalent to M. Then, we use the construction of
Theorem 3.5 to find a grammar G, generating L(G).

Let M; = (X, {0, 1}, &', [S], F).

K = {, [S], [4], [B], [4, S, [4, B), [B, S}, [4, B, S].
F= {[A]v [As S]) [A’ B], [Aa B, S]}

[VS N]

([, 0) = [B] S(ISL1D) = ¢
&'([B], 0) = [4, B] &([B], 1) = [S]
&'(l4, B], 0) = [4, B] 8([4, B], 1) = [S]

(g, 0) = 8'(p,) = ¢

There are other rules of 8’. However, no states other than ¢, [S], [B],
and [4, B] will ever be entered by M, and the other states can be removed
from K and F.

Now, let us construct grammar G, = (X, {0, 1}, Py, [S]) from M,. From
8([S],0) = [B] we get the production [S]— O[B]. From §([B],0) =
[4, B], we get [B] — O[A4, B] and, since [4, B] is a final state of A, we

3.5 PROPERTIES OF TYPE 3 LANGUAGES 35

place production [B] — 0 in Py, and so on. A complete list of the produc-
tions of P, is:

[S]1— 0[B] [S1— 1¢
[B] — 0[4, B] [B]— 1[S] [B]—>0
[4, B] — 0[4, B] [4, B] — 1[S] [4,B]—=0
¢ — Op ¢ —lo

The grammar G, is much more complicated than is G, but L(G,) =
L(G). The reader can simplify grammar G; so that its equivalence to G is
readily observable.

3.5 PROPERTIES OF TYPE 3 LANGUAGES

Since the class of languages generated by type 3 grammars is equivalent to
the class of sets accepted by finite automata, we shall use both formulations
in establishing the properties of the class of type 3 languages. First we in-
tend to show that the type 3 languages form a Boolean algebrat of sets.

Lemma 3.1. The class of type 3 languages is closed under union.

Proof. Two proofs are possible. One involves the use of nondeterministic
finite automata. We leave this proof to the reader. A proof using grammars
is also easy, and is given here.

Let L, and L, be type 3 languages generated by type 3 grammars

Gl = (ngl), V‘T”, Pla Sl) and G2 = (V;?), V(T2); P27 SZ):
respectively. By renaming symbols, if necessary, we can assume that V>

and ¥V contain no symbols in common, and that S is in neither. We con-
struct a new grammar,

s = (VP U VR U{SLVP UVP P, S),

where P, consists of the productions of P; and P, except for S;— ¢ or
Sy — ¢, plus all productions of the form § — « such that either S; — o is
in P; or Sy — «is in P,.

It should be obvious that .S o if and only if S; —>aor Sy = o In

¥ 1

the first case, only strings in alphabet VP’ U VP can be derived from «. In
the second case, only strings in V& U V¥ can be derived from «. Formally,

if S = «, then « = w if and onlyifai>w, and if S; = «, then « == w
G1 Ga G1 G2 Gs
if and only if « Gi> w. Putting the above together, S G;- w if and only if
2 3
either S, GL— wor Sy :=2> w. That is, L(G;) = L(Gy) Y L(Gy).
1
+ For our purposes a Boolean algebra of sets is a collection of sets closed under

union, complement, and intersection. By the complement L of a language L, we
mean X* — L, for a finite set of symbols %, such that L < Z*,

36 FINITE AUTOMATA AND REGULAR GRAMMARS 35

Lemma 3.2. The class of sets accepted by finite automata (generated by
type 3 grammars) is closed under complement.

Proof. Let M, = (X, %, 8,, g0, F) be a deterministic fa accepting a set S;.
Let X, be a finite alphabet containing X, and let d be a new state not in K.
We construct M, to accept ZF — S;. Let

M2 = (K |V {d}’ 22, 82: Gos (K - F) Y {d}),

where 85(g, a) = 8,(q, a) for each ¢ in K and a in X, §,(g, a) = d for each
gin Kand ain X, — X, and 8,(d, a) = d for each a in Z,. Intuitively, M,
is obtained by extending the input alphabet of M, to X,, adding the “trap”
state d and then interchanging final and nonfinal states. Clearly, M, accepts
¥ - 5.

Theorem 3.6. The class of sets accepted by finite automata forms a
Boolean algebra.

Proof. Immediate from Lemmas 3.1 and 3.2 and the fact that
Ll an = Zl Ul—:g.

We now give some additional theorems which will culminate in the
characterization of the type 3 languages.

Theorem 3.7. All finite sets are accepted by finite automata.

Proof. Consider the set containing only the sentence x = a;a,...a,. We
can design a finite automaton M with n + 2 states g, 4,93, - - -, ¢, and p.
The initial state is ¢o, and g, is the only final state. As M sees successive
symbols of x, it moves to successively higher-numbered states. If M sees a
symbol which is not the next symbol of x, M goes to state p which is a
“trap state’ with no exit. Formally,

8(gi-1, @) = g 12isn,

8(gi-1, @) = p, l=isn, ifa # a

and

(g, a) = 8(p,a) = p foralla.

The reader should be able to supply the steps necessary to show that M
accepts the sentence x. The set containing only the empty sentence is ac-
cepted by M = ({40, p}, Z, 8, 40, {90}) Where 8(qo,) = 8(p, @) = pforeacha
in Z. The empty set is accepted by M = ({go}, %, 8, q,,) where 8(g,, @) = ¢,
for each a in X.

The theorem follows immediately from the closure of type 3 languages
under union.

3.5 PROPERTIES OF TYPE 3 LANGUAGES 37

We now define the productt UV of two languages U and V by
UV = {x|x = uwo,uisin Uand vis in V}.

That is, each string in the set UV is formed by concatenating a string in U
with a string in V. As an example, if U = {01, 11} and V' = {1, 0, 101}, then
the set UV is {011, 010, 01101, 111, 110, 11101}.

Theorem 3.8. The class of sets accepted by finite automata (generated
by type 3 grammars) is closed under product.

Proof. Let M, = (K, 2y, 8,41, F1) and M, = (Ky, 2y, 85, g2, Fy) be deter-
ministic finite automata accepting languages L; and L,, respectively. Assume
that X; and K, are disjoint. Furthermore, without loss of generality, we can
assume that £, = ¥, = XZ. (Otherwise, we can add *““dead” states to X, and
K, as in the proof of Lemma 3.2.) We construct a nondeterministic finite
automaton M,, accepting L,L,, which operates as follows. If the input
string is x, M; behaves as M until some initial portion (possibly €) of x has
been scanned. At this point, if M, would accept, M guesses whether the
end of the string from L, has been reached, or whether a longer initial por-
tion is the string from L,. In the former case, M; acts subsequently as M,
and in the latter case, M, continues to behave as M.
Formally, let M3 = (K; Y Ky, 2, 83, g1, F). For each a in X let:

p—

. 83(q, @) = {8:(¢, @)} for each g in K; — F.
2. 85(g, a) = {8:(q, a), 8:(g., @)} for each g in F;.
3. 83(q, @) = {8x(g,@)} for each g in K,.

The purpose of Rule 1 is to allow Mj to act like M, for some initial
segment of the input (possibly €). Rule 2 allows M, to continue the simula-
tion of M, or to guess that a given symbol starts a word in L,, provided
that the previous symbol completed a word in L;. Rule 3 allows only the
simulation of M, after M; has guessed that the word from L, has been
started.

If eis not in L,, then F = F,. If eisin Ly, then F = F, U F,.

The closure of a language L, denoted by L*, is the set consisting of the
empty string and all finite-length strings formed by concatenating words in
L. Thus, if L ={01,11}, then L* = {¢ 01, 11, 0101, 0111, 1101, 1111,
010101, ...}. An alternative definition is L* = L° U L' U L2 U ..., where
L° = {e}and L' = L"'L, fori > 0.

Theorem 3.9. The class of sets accepted by finite automata is closed
under set closure.

+ Also known as concatenation of sets.

38 FINITE AUTOMATA AND REGULAR GRAMMARS 3.5

Proof. Let M = (K, Z, 8, qy, F) be a finite automaton accepting L. We
construct a nondeterministic finite automaton A4’, which behaves as M until
an initial portion of a sentence x takes M to a final state. At this time, M’
will guess whether or not this point corresponds to a point where a new
string from L starts. Formally,

M’ = (KU {go}, %, &, {q0}, F U {g0}),
where g; is a new state, and

(g0, @) = {8(q90, @), g}, if (g0, @) is in F,

= {8(q0, @)}, otherwise.
8(g, a) = {3(q, @), 90} if 8(g, @) is in F,
= {3(q, @)}, otherwise, for all ¢ in K.

The purpose of the new initial state g, is to accept the empty string. If
qo Is not in F, we cannot simply make g, a final state since M may come
back to g, for some input strings. Since the proof is somewhat more difficult
than that of the previous theorems, we give a formal proof.

Assume that x is in L*, Then either x = ¢, or x = x;X,...x,, wWhere
x; is in L for all i between 1 and n. Clearly M’ accepts e. Now x; in L im-
plies (o, x;) is in F. Thus 8'(go, x;) and 8(go, x;) each contain ¢, and some
p (possibly p = qo) in F. Hence, &'(go, X) contains some state in F, and x
is in T(M").

Now assume that x = a,a;...a, is in T(M’). Then there exists some
sequence of states ¢,,¢s,...,9, such that 8'(g¢, a;) contains g;, and
8'(g;, @;1) contains q; 41, 1 < i < m, and ¢, is in F. Thus, for each i, either
g1 = qo and 8(g;, @;+1) is in For 8(q,, @;.1) = ¢;.1. Thus x can be written
as X;X,. . .X,, 5O that 8(go, x,) isin Ffor 1 £ i £ n, implying that x; is in L.

Theorem 3.10. The class of sets accepted by finite automata is the
smallest class containing all finite sets and closed under union, product,
and closure.

Proof. That the class of sets accepted by finite automata contains the smallest
class containing all finite sets and closed under union, product, and closure,
is an immediate consequence of Lemma 3.1 and Theorems 3.7, 3.8, and 3.9.
It remains to show that the smallest class containing all finite sets and closed
under union, product, and closure contains the class of sets accepted by
finite automata.

Let L, be a set accepted by some finite automaton,

M = ({Ch, ey qn}y Ea 81 q1, F)

Let Rf; denote the set of all.strings x such that 8(g;, x) = ¢;, and if 8(g;, y) =
¢q;, for any y which is an initial segment of x other than x or ¢, then / £ k.

3.6 SOLVABLE PROBLEMS CONCERNING FINITE AUTOMATA 39

That is, RE is the set of all strings which take the finite automaton from state
¢; to state g; without going through any state ¢;, / > k. Note that by “going
through a state,” we mean both entering and leaving. Thus i or j may be
greater than k. We can define RY; recursively:

R = RETMREZDV*RET U R
R} = {a|d(g;, @) = qj}.

Informally, the definition of R}; above means that the inputs that cause
M to go from ¢, to g, without passing through a state higher than g, are
either:

1. in R};~1, that is, they never reach a state as high as g,.

2. composed of a string in RE~* (which takes M to g, for the first time)
followed by some number of strings in RY;* (which take 3/ from ¢, back
to ¢, without passing through g, otherwise) followed by a string in RE;*
(which takes M from state g, to g;).

within the smallest class containing all finite sets and closed under union,
complex product, and closure. The induction hypothesis is true for / = 0,
since all R; are finite sets. If true for all k < [, thenitistruefork =174 1
since we can express R in terms of union, concatenation, and closure of
various sets of the form R%,,, each of which is presumed to be in the smallest
class of sets containing the finite sets and closed under union, concatenation,
and closure. Now L; = {Jg, 1 r RY;. Thus L, i$ in the smallest class of sets
containing the finite sets, and closed under union, concatenation, and closure.

As a result of Theorem 3.10, we know that any expression made up of
finite subsets of Z* for some finite alphabet Z, and a finite number of the
operators U, -} and %, with parentheses to determine the order of operations,
denotes a set that is accepted by a finite automaton. Furthermore, every set
accepted by some fa can be so expressed. This provides us with a good
notation for describing regular sets. For example, {0, 1}*{000}{0, 1}* denotes
the set of all strings with three consecutive 0’s, and ({0, 1}{0, 1})* U ({0, 1}
{0,1}{0, 1})* denotes the set of all strings whose length is divisible by two
or three.

We can show, by induction on %, that R, 0 £ k < 1, is, for all { and j,

3.6 SOLVABLE PROBLEMS CONCERNING FINITE AUTOMATA

In this section we show that there are algorithms to answer many questions
concerning finite automata and type 3 languages. In Chapter 14 we shall
see that no such algorithms can possibly exist to answer some of these ques-
tions for the other types of languages discussed in Chapter 2.

+ 8:1-S;5 is the product S,.S5.

40 FINITE AUTOMATA AND REGULAR GRAMMARS 3.6

Theorem 3.11. The set of sentences accepted by a finite automaton with
n states is:

1. nonempty if and only if the finite automaton accepts a sentence of
length less than #.

2. infinite if and only if the automaton accepts a sentence of length /,
n=1l<2n

Thus, there is an algorithm to determine if a finite automaton accepts

zero, a finite number, or an infinite number of sentences.

Proof. (1) The “if” portion is obvious. Suppose that a finite automaton
M = (K, %, 8, qo, F), with n states accepts some word. Let w be a word as
short as any other word accepted. We might as well assume that |w| = n,
else the result is proven for M. Since there are but # states, M must pass
through the same state twice in accepting w. Formally, we can find g in X
such that we can write w = wywywg, with wy # €, 8(qq, w1) = ¢q, 8(g, ws) = ¢,
and 8(g, wg) in F. Then wyw;g is in T(M), since

8(qo, wiws) = 3(qo, wiWaWs).

But |wyws| < |wl|, contradicting the assumption that w is as short as any
word in T(M).

(2) We leave most of this part to the reader. We merely observe that if
wis in (M) and n £ |w| < 2, then we can write w = w,wawg, Wy # ¢,
and for all i, w,whws is in T(M). Next, if M accepts an infinity of words,
and none is of length between » and 2n — 1, then let w be of length at least
2n, but as short as any word in T(M) whose length is =2n. Then, we can
write w = wy,waws, with 1 < |ws] £ n, and wyw, in T(M), thus deriving a
contradiction.

In part (1), the algorithm to decide if T(M) is empty is: “See if any
word of length up to n is in T(M).” Clearly there is such a procedure which
is guaranteed to halt. In part (2), the algorithm to decide if 7(3/) is infinite
is: “See if any word of length between # and 2z — 1 is in 7(M).” Again,
clearly there is such a procedure which is guaranteed to halt.

We now show that there is an algorithm to determine if two type 3
grammars generate the same language. As we shall see later, no such algorithm
exists for type 0, 1, or 2 grammars.

Theorem 3.12. There is an algorithm to determine if two finite automata
are equivalent (i.e., if they accept the same language).

Proof. Let My and M, be fa, accepting L; and L,, respectively. By Theorem
3.6, (I N Ly) U (Ly N Ly) is accepted by some finite automaton, M;. It is
easy to see that M; accepts a word if and only if L; # L,. Hence, by
Theorem 3.11, there is an algorithm to determine if L, = L.

3.7 TWO-WAY FINITE AUTOMATA 41

3.7 TWO-WAY FINITE AUTOMATA

We now turn our attention to finite automata that can move two ways on
their input tapes. Our reason for studying these is twofold. First it is easier
to introduce the concept of moving two ways on the input with finite auto-
mata than with more complicated automata. Second, we wish to introduce
the concept of a finite table being stored in a finite control, a tool we shall
find useful later on.

A two-way finite automaton M will be represented by a S-tuple (X, X,
8, g0, F), where K is a set of states, X is the set of input symbols, 8 is a mapping
from K x Zto K x {L, R, S}, qo in K is the initial state, and F < K is the
set of final states. The interpretation of 8(g, a) = (p, D), p in K and D in
{L, R, S} is that M, in state g, scanning the input symbol a, will move its
input head one cell to the left, to the right, or not move its input head at all,
depending on whether D equals L, R, or S, respectively. The state of M will
also be changed to state p. Note that 8 cannot be extended from K x X to
K x Z* in the obvious manner, since one must keep track of the net change
in input position.

We define a configuration of M to be a state and a number (g, i), where
q is the present state of M and i is the location of the input head. That is,
i is the number of cells the input head is from the left end of the input.

A two-way finite automaton will start in state g, with its input head
scanning the leftmost cell on the input tape. Should M ever move off either
end of x, M halts. An input word will be accepted by M if and only if M
eventually moves off the right end of x at the same time it enters a final state.
M can reject a word x by:
moving off the left end of x.

. moving off the right end of x in a nonfinal state.

3. looping.
Theorem 3.13. The class of sets accepted by two-way finite automata is
the same as the class of sets accepted by one-way finite automata.

N

Proof. Let M = (K, %, 8, gy, F) be a two-way finite automaton and x =
a,a,. . .a, be the input to M. We can associate with each initial segment of
X, 4. . .a;, a mapping A; of K to KU {R}. We say that A, is associated
with a,a,...a;. The interpretation of A(g) = p, p in K, is that if M is
started in state ¢, scanning the ith cell, M will eventually move right to the
i + 1st cell. On the move which takes M to the i + Ist cell for the first
time, M enters state p. Note that before reaching the i + 1st cell M may
move its input head back and forth on cells 1 through / many times.

The interpretation of A(g) = R is that if M is started in state g scan-
ning the ith cell, M will reject x without ever having moved right from the
ith cell to the i + 1st cell. That is, M will either enter a loop or move off
the input tape to the left.

42 FINITE AUTOMATA AND REGULAR GRAMMARS 3.7

The number of distinct mappings of X to K U {R} is (s + 1)°, where
s is the number of elements in X. We can define a one-way finite automaton
M =(K', 2,8, qp, F'), whose states except one are ordered pairs [g, A]
where g is in X and A is a mapping of K to K U {R}.t Alsoin K’ is a “trap
state” ¢, having the property that 8'(z, a) = ¢ for all ¢ in 2. The interpreta-
tion of the state [g, A] is that the one-way fa M’ will be in state [g, A] after
reading an input x if and only if the two-way finite automaton M would
be in state ¢ the first time M moves right from string x and the mapping A
is the mapping associated with the string x. Thus M’ carries in its finite
control a table which contains the information as to the eventual outcome if
M moves left into x in any state.

We define the mapping &' as follows.

8'([q1, A1), @) = g2, A
exactly when we can compute g, and A, from ¢, and A; by:

1. Ay(p,) = p if there exists a sequence of states p,, pg, - . ., P, P, such that

either

pi, @) = (pis1, S)
or

3(pi, a) = (pi, L)
and

A(p) = Piss

for all 7, where 1 £ i < n. Finally, 8(p,,a) = (p, R).

2. Ay(p,) = R if there is no finite sequence satisfying (1). Note that if any
SequUence pi, P, . . ., Pn, p satisfies (1), then there is a sequence satisfying
(1) such that no state appears twice in the sequence.

3. g = Ay(q1). If Axg;) = R, however, there is no such g,, therefore
8'([q1, A1, @) is ¢, the trap state.

Informally, to compute Ay(p,), assume that A; is associated with the
first j — 1 symbols. We begin constructing a sequence of states py, p,, . ..
by adding to the sequence, each time A scans the jth cell, the state of M at
that time. Hopefully, from one of these states, M will move to the right and
enter some state p. Then we can end the sequence, since we have A,(p,) = p.
Suppose that we have constructed the sequence py, ps, ..., p;. Then the fa
M will be in configuration (p;, j), scanning an « on its input. Three cases
arise:

1. 8(pi, @) = (g, S). Here M will again scan cell j, this time in state ¢. So
Piv1 = 4.

1 Do not confuse R in the range of A, which means reject, with R in the range of
8 which means move right.

37 TWO-WAY FINITE AUTOMATA 43

2. 8(p,a) = (g, R). Here, we have our answer. M has moved to cell
j + 1 for the first time and entered state g. Thus, g has the role of p in
the sequence, i.e., Ay(p;) = ¢q.

3. 8(pi, @) = (g, L). Here, M next moves left to cell j — 1. We consult
A, to see what happens next. If A,(g) = R, then M will never again
scan cell j, so it cannot scan j + 1 either. We therefore let Ao(p;) = R.
If Ai(q) = ¢, then piyy = ¢’

The above process will produce a value for Ay(p,) in all cases, provided
that the sequence p, po, ... never repeats a state. If a state is repeated, M
is in a loop and will never reach cell j + 1. In this case, A,(p;) = R. We
have now covered all contingencies. We leave it to the reader to see that if
A, is the table associated with input x, then A, will be the table associated
with xa.

If M’ is to be a one-way finite automaton simulating M, we must let its
initial state, g5, be [go, Ao], Where A, is the table associated with e, i.e.,
A(g) = Rfor all g. Also,

F' = {{g, Allg is in F}.

We must now prove by induction on the length of input x that M’
moves right in state [g, A] (for some A) from x if and only if M moves right
from x ing. Thus M’ accepts x if and only if M does. If x is of length 1,
the result follows from the way 8'([¢o, Ao], X) is constructed. That is, if and
only if §([go, Do), X) = [g, Al, will M eventually move to the right from its
first input symbol and enter state g at that time. Note [g, A] is accepting if
and only if ¢ is accepting for M.

Suppose that the result is true for |x| < k, and let xa be an input of
length k. Then M will scan the final symbol, a, of xa for the first time in
state ¢ if and only if 8'([go, Aol, X) = [g, A4] for some A,;. But then M will
move to the right from xa and enter state p if and only if §([g, 4;], a) =
[p, A;], for the proper A,. This follows from the construction of A, from
A, just given. The acceptance of xa by M occurs if and only if p is in F.
But then [p, A,] is in F', so M’ accepts xa.

Example 3.7. Consider the two-way finite automaton.

M= ({q(b ‘]1}, {a> b}s 83 qos {91})
where § is defined by:

840, @) = (9o, B) 8(q0, b) = (41, S) 8(q1, @) = (g0, L) 8(g1, b) = (g0, L)

We can construct a one-way finite automaton M’ = (X, {a, b}, &', g0, F)
equivalent to M. Here K is the set of objects of the form [g, A], where
g = go or g, and A is a map from {g,, ¢:} to {g0, 91, R}, plus a trap state.
There are nine possible values of A. The set of all {g;, A] is F.

go = [g0, Aol, where Ag(go) = Ao(g1) = R.

44 FINITE AUTOMATA AND REGULAR GRAMMARS

Since M’ has 19 states, we shall not construct &’ for all of these, but
simply give one case. We compute

3'([90, AJ,@) and ([qo, A4l, D),
where A(go) = go and Ay(g;) = ¢;. Let

8'([90, A1), @) = [4e, Aa] and 8'([go, A1], B) = [gu, Al
To compute A(go), we note that 8(go, @) = (go, R). Thus M immediately
moves to the right from a and enters state g,. We have A,(q,) = g,. For
A(g1), we note that 8(g;, @) = (g0, L). Thus, we must consult A,(g,) to see
if M will ever return to the symbol a. We have A;(q,) = ¢o, S0 M does
return in state g,. From g, in state g,, M next moves to the right, remaining
in g, since 8(g,, @) = (qo, R). Hence

Ay(q1) = o and 9. = B8a(g0) = 9o
To compute Ay(g,), note that 8(qy, &) = (g1, S), so M would remain
scanning the b, but in state g;. Next, 8(gy, b) = (gq, L). Now, A(go) = go,
so M would return to a in state g,, where it started. A is in a loop, so
A(go) = R. Likewise, Ay(g:) = R. But Ay(ge) = R, so 6'([qo, AL, b) 1s
the trap state.

PROBLEMS

3.1 Find a one-way, deterministic finite automaton accepting all strings in
{0, 1}* such that every 0 has a 1 immediately to its right.

3.2 From the finite automaton of Problem 3.1, construct a type 3 grammar
generating the language of that problem.

3.3 Give an example of a relation which is:

a) reflexive and symmetric, but not transitive.
b) symmetric and transitive, but not reflexive.
¢) reflexive and transitive, but not symmetric.

3.4 Let
M= ({qO; qdi, qZ}’ {aa b}, 87 Go, {42})

be a nondeterministic finite automaton, with
8(qo, @) = {g1, g2} 3(q1, a) = {go, 91} 8(qz, @) = {go, g2}
3(qo, b) = {g0} g1, b) = ¢ 3(qz, b) = {q1}.
Find a deterministic finite automaton accepting 7(M).
3.5 Complete the specification of the one-way finite automaton in Example 3.7.

3.6 Use the notion of a nondeterministic finite automaton to show-that if L
is a type 3 language, then

L? = {w|w reversed is in L}
is a type 3 language.

REFERENCES 45

3.7 From Problem 3.6, show that grammars where all productions are of the
form A — Bb or A — b, A and B variables, b terminal, generate all and
only the type 3 languages.

3.8 A nondeterministic two-way finite automaton is denoted by M = (X, Z,
3, g0, F) as the two-way deterministic finite automaton, except that &(g, a),
for gin Kand ain Z, is a subset of K x {L, R, S}. Each (p, D) in &g, a)
represents a possible move of M when the automaton is in state g scanning
a on its input. If any sequence of choices of moves causes M to move
off the right end of its input in an accepting state, M accepts. Show that
only type 3 languages are accepted by nondeterministic, two-way finite
automata.

3.9 Let L be a type 3 language. Let Init (L) be the set of words x, such that for
some word y, xy is in L. Show that Init (L) is a type 3 language.

3.10 Let R be a type 3 language consisting only of words whose length is divisible
by 3. Consider the language formed by taking the first third of each
sentence in R. Is this language a type 3 language? What about the last
third? Middle third? What about the language formed by concatenating
the first and last third of each word in R?

3.11 Some people allow a two-way finite automaton to have an end marker, ¢,
at the left end of each tape. This finite automaton is said to accept w if it
moves off the right end of ¢w while entering a final state. Show that under
this definition, it is still only regular sets which are accepted.

REFERENCES

The notion of a finite state device is usually attributed to McCulloch and Pitts
[1943]. The formalism we have used was suggested in Moore [1956] and is found
in Rabin and Scott [1959].

Theorem 3.1 is from Nerode [1958] and was proven in a slightly weaker form
by Myhill. The minimization of finite automata (Theorem 3.2) appeared originally
in Huffman [1954] and Moore [1956]. Nondeterministic finite automata and
Theorem 3.3 are from Rabin and Scott [1959]; Theorem 3.13 and two-way
finite automata are found in Rabin and Scott [1959] and Shepherdson [1959].
Theorem 3.10 is from Kleene [1956]. The description of regular languages that
follows Theorem 3.10 is known as a “regular expression,” and is from Kleene
[1956]. Many results concerning regular expressions can be found in Brzozowski
[1962] and McNaughton and Yamada [1960]. The algorithms in Section 3.6 are
from Moore [1956], and the results of Section 3.4 relating type 3 grammars and
finite automata are from Chomsky and Miller [1958].

Many books have been written on the subject of finite automata. Among
them are Gill [1962] and Ginsburg [1962]. Finite automata are also covered
extensively by Harrison [1965], Booth [1967], and Minsky [1967].

CHAPTER 4

CONTEXT-FREE GRAMMARS

41 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS

In this chapter we describe some of the basic simplifications of context-free
grammars and prove several important normal-form theorems. One of these
will be the Chomsky Normal-Form Theorem, which states that every context-
free language is generated by a grammar for which all productions are of
the form 4 — BC or A — b.} Here A4, B, and C are variables, and b is a
terminal.

Another is the Greibach Normal-Form Theorem, which states that every
context-free language is generated by a grammar for which all productions
are of the form 4 — ba, where b is a terminal and « is a string of variables.

We also show that there exist algorithms to determine whether the lan-
guage generated by a context-free grammar is empty, finite, or infinite. We
define a property of certain context-free grammars, called the self-embedding
property, and show that a context-free language is nonregular if and only if
every type 2 grammar generating the language has the self-embedding prop-
erty. Finally we consider certain special types of restricted context-free
grammars such as sequential grammars and linear grammars.

The formal definition of a context-free grammar allows for certain
structures which are in a sense “wasteful.” For example, the vocabulary
could include variables that can never be used in the derivation of a terminal
string, or there might be a production of the form 4 —> A for some variable,
A. Thus we prove several theorems to show that every context-free language
can be generated by a context-free grammar of a specified form. Further-
more, we show that algorithms exist which, for any context-free grammar,
will find an equivalent context-free grammar in one of the specified forms.
First, we prove a result which is quite important in its own right.

Theorem 4.1. There is an algorithm for determining if the language
generated by a given context-free grammar is empty.

+ Until Section 4.6, we shall revert to the original definition of a cfg and not
allow ¢ to be in any cfl. The reader can easily supply the appropriate modification
to include the case where S — € can be a production.

46

4.1 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS 47

Proof. 1et G = (Vy, Vy, P, S) be a context-free grammar. Suppose that

S %5 w for some terminal string w. Consider a derivation tree of w in the
grammar G. Suppose that there is a path in the tree with two nodes, 7, and
ng, having the same label 4, with #; higher on the path than n,.1 Here we can
refer to Fig. 4.1. The subtree with root at n; represents the generation of a

word wy, such that 4 x wi. The subtree with root at n, likewise represents

the generation of a word w,, such that 4 X w,. (Note that w, must be a
subword of wy, perhaps all of w;.)

« J (a) (b)

G = ({S,A,8},{a,b},{S>Aa,A~aB,B~Aa,B-b),S).

Fig. 4.1. Obtaining the tree for the derivation of wswyw, = aba from the tree
for the derivation of w = aabaa.

Now the word w can be written in the form wyw,w, where w; or w,, or
both, may be . If we replace the subtree of »n, by that of n,, we have a new

word, wgwaw, (possibly the same word), such that S X wgwow,. In Fig.

4.1, wg = e and wy = a. A tree for S X wawow, is shown in Fig. 4.1(b).
However, we have eliminated at least one node, n,, from the tree. If the new
tree has a path with two identically labeled nodes, the process may be re-
peated with wew,w, instead of w. In fact, the process may be repeated until

1 A path is a connected sequence of directed edges. The lengrh of a path is the
number of edges in the path.

48 CONTEXT-FREE GRAMMARS 4.1

there are no paths in the tree with two nodes labeled identically. Since each
iteration eliminates one or more nodes, the process must eventually terminate.

Now consider the tree which is ultimately produced. If there are m
variables in the grammar G, then there can be no path of length greater than
m, lest some variable would be repeated in this path. We conclude that if G
generates any word at all, then there is a derivation of a word whose tree
contains no path of length greater than m. Thus the following algorithm
will determine if L(G) is empty.

Form a collection of trees corresponding to derivations in G as follows.
Start the collection with the tree containing the single node labeled S. Re-
peatedly add to the collection any tree that can be obtained from a tree
already in the collection by application of a single production and that:

1. is not already in the collection, and
2. does not have any path of length greater than m.

Since there are a finite number of trees corresponding to derivations
with no path length greater than m, the process must eventually terminate.
Now L(G) is nonempty if and only if at least one of the trees in the collection
corresponds to the derivation of a terminal string.

The existence of an algorithm to determine whether a given cfl is empty
is very important. We shall use this fact extensively in simplifying context-
free grammars. As we shall see later, for more complex types of grammars,
such as the context-sensitive grammars, no such algorithm exists.

Theorem 4.2. Given any context-free grammar G = (Vy, Vrp, P, S),
generating a nonempty language, it is possible to find an equivalent
grammar G,, such that for every variable 4 of G, there is a terminal

string w, such that 4 2> w.

Proof. For each variable 4 in Vy, consider the grammar G, = (Vy, V7, P, A4).
If the language L(G,) is empty, then we can remove 4 from Vy, and we can
remove all productions involving A, either on the right or left, from P.
After deleting from G all occurrences of variables 4 such that L(G,) is
empty, we have a new grammar G, = (Vy, Vr, P’, S) where Vy and P’ are
the remaining variables and productions. Clearly L(G;) & L(G), since a
derivation in G, is a derivation in G. Suppose that there is a word w in L(G)
which is not in L(G,). Then some derivation of w must involve a sentential

.. , % *
form «;Aa,, where Aisin Vy — Vyand S = oy Aoy =W Then, however,

there must be some w, in V¥ such that 4 % wy, a fact that contradicts the

requirement that 4 be in Vy — Vy.

41 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS 49

In addition to removing variables from which no terminal string can be
derived, we can also remove variables which are useless in the sense that
they can never appear in a derivation.

Theorem 4.3. Given any context-free grammar generating a nonempty
cfl L, it is possible to find a grammar G, generating L, such that for each
variable A4 there is a derivation

s X widwg L WiWoWg,
where wy, wy, and wy are in V3,
Proof. Let G; = (Vy, Vy, P, S) be any grammar generating L that satisfies
Theorem 4.2. If § 2> oy Aoy, oy and «, in V¥, then there exists a derivation

sE wyAw, x WiWoWs, since terminal strings can be derived from 4 and
from all variables appearing in «, and «,. We can effectively construct the

set V5 of all variables A4, such that S X oy Acg, as follows. Start by placing
S in the set. Add to the set any variable which appears on the right-hand
side of any production A4 — «, if 4 is in the set. The procedure stops when
no new members can be added to the set.

Let G, = (Vy, Vi, P’, S) where P’ is the set of productions remaining
after removing all productions from P which have variables in ¥y — V3 on
either the left or right. Now L(G) = L(G’), as one can easily show, and G,
satisfies the condition of the theorem.

Before the next theorem, let us introduce the concept of a leftmost
derivation. We say that a derivation is leftmost if, at every step, the variable
replaced has no variable to its left in the sentential form from which the
replacement is made. That is, if S = «¢; = a3 =+ - = «, is a leftmost
derivation in some grammar G = (Vy, V5, P, S), then for 1 S i < n, we
can write «; as x;4;8,, where the string x; is in the set V%, B, is an arbitrary
string in V'*, A; is a variable and 4; — v, is a production of P. Finally,
X8 18 o 41, and o 41 was derived from «; by replacing 4; by y;.

Lemma 4.1, Given a context-free grammar G = (Vy, Vi, P, S),if S %)- w,
then there is a leftmost derivation of w in G.
Proof. We prove by induction on the number of steps in the derivation that
if 4 is any variable and 4 %—> w, win V#, then A4 %:» w by a leftmost deriva-
tion. The statement is trivially true for one-step derivations. Suppose that

it is true for derivations of k or fewer steps. Let 4 — «; X wbeak + 1
step derivation in G and suppose that «; = ByB,...B,, where B, is in V,
1 £ i £ m. The first step of the derivation is clearly 4 — B;B,...B,. We

can write w as uyuy. . .u,, where B, = u;, for 1 £ i £ m. By the inductive

hypothesis, there exist leftmost derivations of u; from B;, 1 < i < m. Note

50 CONTEXT-FREE GRAMMARS 4.1

that B; may be a terminal, in which case B; = u; and the derivation takes no
steps. Thus the first step of the derivation of w is followed by a leftmost
derivation of u; from B, yielding a leftmost derivation of u;B,B;...8,
from A. Now u, is in V¥, so a leftmost derivation of u, from B, will not
violate the definition of a leftmost derivation of w from 4. In turn, we
replace each B; which is not a terminal by u, according to a leftmost deriva-

tion. It is easy to see that the definition of a leftmost derivation for 4 X w
is never violated.

Theorem 4.4. Given a context-free grammar G, we can find an equiva-
lent grammar G, with no productions of the form 4 — B, where 4 and
B are variables.

Proof. Let G be the grammar (Vy, Vi, P, §). Call the productions in P of
the form 4 — B, 4 and B in Vy, “type x” productions and all other pro-
ductions “type y.”

We construct a new set of productions P; from P by first including all

type y productions of P. Then, suppose that 4 % B, for 4 and B in Vy.

We add to P, all productions of the form 4 — o, where B — « is a type y
production of P.

Observe that we can easily test if 4 % B, since if

A=>B = B, = .--= B, — B,
G G G G

and some variable appears twice in the sequence, we can find a shorter
sequence of type x productions which will result in 4 %}» B. Thus it is

sufficient to consider only those sequences of type x productions whose
length is less than the number of variables of G.
We now have a modified grammar, G, = (Vy, Vr, Py, S). Surely, if

A — a is a production of P, then 4 % «. Thus if there is a derivation of

w in G, then there is a derivation of w in G.
Now suppose that w is in L(G) and consider a leftmost derivation of w
in G, say S =g o=y = W, If,for0si<mn, % = g

by a type y production, then «; o> Suppose that «; => o by a type
x production, but that o; = by a type y production unless i = 0. Also,
suppose that o, oG Oy all by type x productions and
oy = oy by a type y production. Then o, ;. 1, ..., «; are all of the same

length, and since the derivation is leftmost, the symbol replaced in each of
these must be at the same position. But then o, > by one of the pro-
1

ductions of P, — P. Hence L(G,) = L(G).

42 CHOMSKY NORMAL FORM 51

4.2 CHOMSKY NORMAL FORM

We now prove the first of two normal-form theorems. These each state
that all context-free grammars are equivalent to grammars with restrictions
on the forms of productions.

Theorem 4.5. (Chomsky Normal Form.) Any context-free language can
be generated by a grammar in which all productions are of the form
A — BC or A — a. Here A4, B, and C are variables and « is a terminal.

Proof. Let G be a context-free grammar. By Theorem 4.4, we can find an
equivalent grammar, G, = (Vy, Vr, P, S), such that P contains no produc-
tions of the form 4 — B, where A and B are variables. Thus, if a produc-
tion has a single symbol on the right, that symbol is a terminal, and the
production is already in an acceptable form.

Now consider a production in P, of the form 4 — ByB,...B,, where
m = 2. Each terminal B; is replaced by a new variable C;, which appears
on the right of no other production. We then create a new production
C, — B, which is of allowable form, since B, is a terminal. The production
A — B;B,...B,, is replaced by 4 — C1C,y...C,, where C; = B; if B, is a
variable.

Let the new set of variables be ¥y, and the new set of productions, P’.

Consider the grammar G, = (Vy, Vr, P', S).T If « = B, then (xai—;- B.
Thus L(G;) < L(G;). Now we show by induction on the number of steps
in a derivation that if 4 Ei;r» w, A in Vy and w in V#, then 4 % w. The
result is trivial for one-step derivations. Suppose that it is true for deriva-
tions of up to k steps. Let 4 %— w by a k + 1 step derivation. The first

step must be of the form

A= C1Cy...Cy, m

v
[\

We can write

A

* ,
W= WiWa...Wpn, where C,; o W 12ism.
2

If C, is in Vi — Vy, then there is only one production of P’ we may use,
namely C; — g, for some @; in V. In this case, @, = w;. By the construc-
tion of P’, there is a production 4 — B;B,...B,, of P where B, = C, if
is in Vy and B, = @, if C; is in Vy — Vy. For those C; in Vy, we know

that the derivation C; % w; takes no more than k steps, so by the inductive

hypothesis, B; X w;. Hence 4 2w
G1 G1

+ Note that G, is not yet in Chomsky normal form.

52 CONTEXT-FREE GRAMMARS 4.2

We have now proved the intermediate result that any context-free
language can be generated by a grammar for which every production is
either of the form 4 - aor 4 — B,B,...B,, form = 2. Here 4 and B,
B, ..., B, are variables and g is a terminal.

Let us consider such a grammar G, = (Vy, Vr, P', §). We modify G,
by adding some additional symbols to ¥} and replacing some productions
of P’. For each production 4 — B\B,...B, of P’ for m = 3 we create
new variables D,, D,, ..., D, _, and replace 4 — B B,...B,, by the set of
productions

{A - BlDla -Dl - B2D21 vy Dm—3 - Bm—2Dm—29 Dm—2 - -Bm—le}-
Let Vy be the new nonterminal vocabulary and P” the new set of produc-

tions. Let Gy = (Vy, Vi, P”, S). It is clear that if 4 Gi> B, then 4 Giz— B so
2 3

L(G;) < L(G;). But it is also true that L(Gs) < L(G,), as can be shown in
essentially the same manner as it was shown that L(G,) < L(G,). The proof
will be left to the reader.

Example 4.1. Let us consider the grammar ({S, 4, B}, {a, b}, P, S) which
has the productions:

S — bA S — aB
A—>a B—b

A —aS B> bS
A—bAA B - aBB

and find an equivalent grammar in Chomsky normal form.

First, the only productions already in proper form are 4 — a and
B — b. There are no productions of the form C — D, where C and D are
variables, so we may begin by replacing terminals on the right by variables,
except in the case of the productions 4 — aand B —> b. S — bA is replaced
by S — Ci4 and C; — b. Similarly, 4 — aS§ is replaced by 4 — C,S and
C;—a. A-—>bAA is replaced by 4 — C344 and C; — b. S —>aB is
replaced by S — C,B and Cy, - a. B — bS is replaced by B — CsS and
Cs — b. B —> aBB is replaced by B — C¢BB and C; — a.

In the next stage, the production 4 — C3A44 is replaced by 4 — C,D,
and D; — AA, and the production B — Ce¢BB is replaced by B — CsD,
and D; — BB. The productions for the grammar in Chomsky normal form
are shown below.

S— C 4 S— C,B C,—b Cyi—a
A — C,S B — CsS Cy—>a Cs—b
A — C3D, B — CyD, Cs—b Cs—>a
D, — A4 D, - BB A—>a B—>b

4.3 GREIBACH NORMAL FORM 53

4.3 GREIBACH NORMAL FORM

We now develop a normal-form theorem which uses productions whose
right-hand sides each start with a terminal symbol, perhaps followed by
some variables. First we prove two lemmas which say we can modify the
productions of a cfg in certain ways without affecting the language generated.

Lemma 4.2. Define an A-production to be a production with a variable
A on the left. Let G = (Vy, Vr, P, S) be a context-free grammar. Let
A —> oy Be, be a production in P and {B -> ;, B— f,,..., B— 8.} be
the set of all B-productions. Let G; = (Vy, ¥V, Py, S) be obtained
from G by deleting the production 4 — e;Be, from P and adding the
productions A — ;fi09, 4 — o;Ba0g, ..., A —> oy, Then L(G) =
L(Gy).

Proof. Obviously L(G,) < L(G), since if A —> B0, is used in a derivation
of G4, then

A e o3 Bosy g 1oy

can be used in G. To show that L(G) < L(G,), one simply notes that 4 —
a1 Bay is the only production in G not in G;. Whenever 4 — «,Be, is used
in a derivation by G, the variable B must be rewritten at some later step
using a production of the form B — ;. These two steps can be replaced by
the single step A4 = oy Bics.

Lemma 4.3. Let G = (Vy, Vr, P, S) be a context-free grammar. Let

{A ")Aal,A 9A062,...,A’+A0£r}

be the set of A-productions for which A is the leftmost symbol of the
right-hand side. Let

A_>319A'_)ﬁ2’---aA'-)Bs

be the remaining productions with 4 on the left. Let G, = (Vy U {Z},
Vr, P1, S) be the cfg formed by adding the variable Z to Vy, and re-
placing all the A-productions by the productions:

A — ﬁi’ . Z — Oy,
<i<
M A—>ﬁ{Z,} Isiss @ z—miz,} !
Then L(G;) = L(G).

A
IIA
~

Proof. Before proving the lemma, we point out that the A-productions
alone, by leftmost derivations, generate the regular set
{Bla :B2a ceey Bs}{“la Cgy e vvy oc,}*,

and this is precisely the set generated by the productions in G, with 4 or Z
on the left.

54 CONTEXT-FREE GRAMMARS 4.3

Let x be in L(G). From a leftmost derivation of x by G we can construct
a derivation of x by G, as follows: Whenever there occurs in the leftmost
derivation a sequence of steps

tAy = tdoyy = tAoy 0y == tAay, - o0y = thicts, 0,0y,
replace the entire sequence by
tAy g tBZy e 1By Zy g 7R 'O‘izzyz;? B, - esy0y.

The resulting derivation is a derivation of x in G,, although not a leftmost
derivation. Thus L(G) < L(G,).

Now consider a leftmost derivation of x in G;,. Whenever a Z is intro-
duced into the sentential form, reorder the derivation by immediately applying
the productions that cause the Z to disappear. That is, for some instance of
Z, a production Z — «Z may be used. Then, in the leftmost derivation, «
will derive a terminal string, and another production involving Z will be
used. It should be clear that o could be left, temporarily, and the produc-
tions with Z on the left used immediately. Of course, the derivation will no
longer be leftmost. Finally, a production Z — $ will be used, where 8 has
no Z. Then, the «’s generated, as well as 8, can be expanded normally. The
result of the revised order of derivation will be the same as the original left-
most derivation.

Replace the resulting sequence of steps involving Z, namely:

tdy g 1BZy g tBie;, Zy FIg ?'tﬁto‘ip‘ oLy e 1Bicty,+ + - eyt ¥
by

tAy = tAoyy = tAas 0y rgii-a tAoy, - - o0y = 1By, - oy, 00, Y

The result is a derivation of x in G. Thus L(G,) < L(G).

Theorem 4.6. (Greibach Normal Form.) Every context-free language L
can be generated by a grammar for which every production is of the
form A — a«, where A is a variable, g is a terminal, and o is a (possibly
empty) string of variables.

Proof. Let G = (Vy, V7, P, S) be a Chomsky normal-form grammar
generating the cfl L. Assume that ¥y = {4,, 4,, ..., An}. The first step in
the construction is to modify the productions so that if 4; — 4,y is a pro-
duction, then j > i. This will be done as follows, starting with 4; and
proceeding to 4,,. Assume that the productions have been modified so that,
forl £i £k, A, — Ay is a production only if j > i. We now modify the
A, +1-productions.

If Ay.1 — A;y is a production, with j < & + 1, we generate a new set
of productions by substituting for A, the right-hand side of each 4-produc-

43 GREIBACH NORMAL FORM 55

tion according to Lemma 4.2. By repeating the process & — 1 times at most,
we obtain productions of the form 4,,, = 4y, I = k + 1. The produc-
tions with / = & + 1 are then replaced according to Lemma 4.3, introducing
a new variable Z; ;.

By repeating the above process for each original variable, we have only
productions of the forms:

1. Ak - Al'}’, 1>k
2. Ay —> ay, ain Vy
3. Zlc -9'}/, ’)’ln (VNU{Zl,ZQ,...,Zm})*.

Note that the leftmost symbol on the right-hand side of any production
for A,, must be a terminal, since 4,, is the highest-numbered variable. The
leftmost symbol on the right-hand side of any production for A4, _, must
be either 4,, or a terminal symbol. When it is 4,,, we can generate new produc-
tions by replacing A, by the right-hand side of the productions for A4,,
according to Lemma 4.2. These productions must have right-hand sides
that start with a terminal symbol. We then proceed to the productions for
Am_0y..., Az, A; until the right-hand side of each production for an A4;
starts with a terminal symbol.

As the last step we examine the productions for the new variables,
Z.,,Z,,...,Z, These productions start with either a terminal symbol or
an original variable. Thus one more application of Lemma 4.2 for each
Z; production completes the construction.

Example 4.2. Convert to Greibach normal form, the grammar
G = ({Al’ AZ’ A3}5 {as b}, P, Al)s
where P consists of the following.

Ay = Apds Ag— Ay Ay
A2 - A3A1 A3 - a
A, — b

Step 1. Since the right-hand side of the productions for 4, and A4, start
with terminals or higher-numbered variables, we begin with the production
Az — A, A4, and substitute the string 4,45 for 4,. Note that 4; ~ 4,45 Is
the only production with 4; on the left.

The resulting set of productions is:

Al — A2A3 A3 —> A2A3A2
Ay — AzA; Az — a.
Ay —>b
Since the right-hand side of the production 45 — 4,454, begins with a
lower-numbered variable, we substitute for the first occurrence of A, either

56 CONTEXT-FREE GRAMMARS 4.3

AzA; or b. Thus Ay — AxA43A, is replaced by A3 — AzA;AzA, and Az —
bA;A,. The new set is

Ay — Az4s Az —> AzA1434;
A2 - A3A1 A3 - bA3A2
A, — b As—>a

We now apply Lemma 4.3 to the productions

Az —> A3A1A3A,, Az — bA3zA,, and A; — a.
Symbol Zj is introduced, and the production 43 — 434,434, is replaced by
Ag — bAsAZy, As—>aZs, Zz—> A1Azd,, and Zz — A A3A.Z;.

The resulting set is

Ay —> AxAs Az —> bAzAZ;
Ay — AzA,y Az — aZg

Ay —> b Zs — A1 A3AZ;
Az — bAzA, Zs — A1 AzA,.
As—>a

Step 2. Now all the productions with 4; on the left have right-hand sides
that start with terminals. These are used to replace 45 in the production
A, — AzA, and then the productions with A, on the left are used to replace
A, in the production 4, — A;45. The result is the following.

Az —> bAzA, Ag —> bAzAZ,

A3 —>a A3 — a23

Ay — bAzA.4, Ay — bAzAZ3 A4,
Az - aA1 A2 g aZSAl

A, — b

Al — bA3A2A1A3 A]_ - bA3A223A1A3
Ay — aAd,A; A, = aZiA, 45

Al - bA3

Zs — Ay AsAsZs

Zy— Ay Asds

Step 3. The two Z; productions are converted to proper form resulting in
ten more productions. That is, the productions

Z; — A1A34, and Z; — A1AsAsZy

are altered by substituting the right-hand side of each of the five produc-
tions with 4, on the left for the first occurrences of 4,. Thus, Z3 — A, 434,
becomes

Zs — bA3A34,, Z3 — bAzA: 414345 4,, Z; — aA1A3A3As,
23 — bA3A223A1A3A3A2, al’ld Z3 - aZ3A1A3A3A2.

4.4 SOLVABILITY OF FINITENESS; THE uvwxy THEOREM 57

The other production for Z; is replaced similarly. The final set of produc-
tions is:

Ay — bAzA, Az —> bA3AZ,

A3 —a A3 —> aZ;;

A2 - bA3A2A1 A2 — bAgAzZaAl
Ay —aAd; Ay — aZ3A;

Ay —b

Ay — bAgAyd, Ay Ay = bAyAyZ A, A,
Al - aA1A3 Al — aZ3A1A3

Al — bAg

23 —> bAsAaAz
Zy —> bAgAyAiAsAsdy

Zs —> bAgA A1 AgAs A7

Zy—> aA;AzAzA,
Zy — bAzAZ3A, A3 A3A,
Z3 - aZ3A1A3A3A2

Zy —> ad Az Ay AsZ,
Zg —> bAA,Z3A4, AsAsAZ
23 —> aZSA1A3A3A223

4.4 SOLVABILITY OF FINITENESS AND THE “wvwxy THEOREM”

In Theorem 4.2 we showed that we could eliminate from a grammar those
variables generating no terminal strings. In fact, we can do more. We can
test if a language generated by a given symbol is finite or infinite and eliminate
those variables, other than the sentence symbol, from which only a finite
number of terminal strings can be derived. In proving this result, we shall
show two results (Theorems 4.7 and 4.8) quite interesting in their own right.

Theorem 4.7. Let L be any context-free language. There exist constants
p and g depending only on L, such that if there is a word z in L, with
|z| > p, then z may be written as z = uvwxy, where |vwx| < g and v
and x are not both e, such that for each integer i = 0, uv*wx'y is in L.

Proof. Let G = (Vy, Vi, P, S) be any Chomsky normal-form grammar for
L. If G has k variables, then let p = 2¥~* and let ¢ = 2*. It is easy to see
that, for a Chomsky normal-form grammar, if a derivation tree has no path
of length greater than j, then the terminal string derived is of length no
greater than 27-1. The proof is left to the reader.

Hence, if z is in L and |z| > p, then the tree for any derivation of z by
the grammar G contains a path of length greater than k. We consider a
path P, of longest length, and observe that there must be two nodes, »; and
ny, satisfying the following conditions.

1. The nodes n; and n; both have the same label, say 4.
2. Node n, is closer to the root than node #,.
3. The portion of path P from n; to the leaf is of length at most & + 1.}

+ Clearly, a path of longest length includes a leaf.

58 CONTEXT-FREE GRAMMARS 4.4

. ~ J
2, =bba a
o g {c)
2 = bbbaba

{a)
2y =232,24, where z; =bb and 2, = €.
G = {{A,B.C}.{ab}.{A > BC,B > BAC~ BAA a8~ b),A)
Fig. 4.2. Illustration of subtrees T, and T, of Theorem 4.7. (a) Tree. (b) Sub-
tree 71. (c) Subtree T,.
A

i times
Fig. 4.3. The derivation of uv'wx'y, A
where u = b, v = bb, w = a, x = ¢,
y = ba. a

4.4 SOLVABILITY OF FINITENESS; THE uvwxy THEOREM 59

To see that n, and n, can always be found, just proceed up path P from
the leaf, keeping track of the labels encountered. Of the first £ + 2 nodes,
only the leaf has a terminal label. The remaining £ + 1 nodes cannot have
distinct variable labels.

Now the subtree T, with root s, represents the derivation of a subword
of length at most 2* (and hence, of length less than or equal to g). This is
true because there can be no path in T, of length greater than k& + 1, since
P was a path of longest length in the entire tree. Let z; be the result of the
subtree T;. If T, is the subtree generated by node n, and z, is the result of
the subtree T, then we can write z, as z;32,z,. Furthermore, z; and z, cannot
both be e, since the first production used in the derivation of z; must be of
the form A — BC for some variables B and C. The subtree 7, must be com-
pletely within either the subtree generated by B or the subtree generated by C.
The above is illustrated in Fig. 4.2.

We now know that

* *
A re 234z, = ZaZaZss where |z3z52,] £ ¢q.

But it follows that 4 —> Zhzoz for each i 2 0. See Fig. 4.3. The string z
G

can clearly be written as uzgz,z,.y, for some y and y. Weletzz = v, z5 = w»
and z, = x, to complete the proof.

Theorem 4.8. There is an algorithm to determine if a given context-free
grammar G generates a finite or infinite number of words.

Proof. Let p and q be the constants defined in Theorem 4.7. Thus, if z is
in L(G) and |z| > p, then z can be written as uvwxy where for each i =z 0,
wwxly is in L(G). Also |v| + |x| > 0. .Hence if there is a word in L(G)
of length greater than or equal to p, then L(G) is infinite.

Suppose that L = L(G) is infinite. Then there are arbitrarily long words
in L(G) and, in particular, a word of length greater than p + ¢. This word
may be written as

uwwxy, where |pwx| £ ¢, |v| + |x] >0,

and wv'wx'y is in L for all i = 0. In particular, uwy is in L, and |uwy| <
luwwxy|. Also luwy| > p. If luwy| > p + g, we repeat the procedure until
we eventually find a word in L of length /, p < I £ p + ¢. Thus L is infinite
if and only if it contains a word of length ,p < I £ p + q.

Since we may test whether a given word is in a given context-free lan-
guage (Theorem 2.2), we have merely to test all words of length between
p and p + ¢ for membership in L(G). If there is such a word, then L is
clearly infinite; if not, then there are no words of length greater than p in
L, so L is finite.

60 CONTEXT-FREE GRAMMARS 4.4

Theorem 4.9. Given a context-free grammar G,, we can find an equiva-
lent grammar G, for which, if 4 is a variable of G, other than the
sentence symbol, there are an infinity of terminal strings derivable
from A.

Proof. If I(G,) is finite, the theorem is trivial, so assume that Z(G,) is
infinite. If Gy = (Vy, Vr, Py, S), then for each 4 in Vy, we know from
Theorem 4.8 that by considering the context-free grammar G, = (Vy, Vo,
P,, A) we can determine whether there is an infinity of terminal strings w,

such that 4 %’ w. Suppose that 4,, 4,, ..., 4, are exactly the variables
generating an infinity of terminal strings, and that B;, B, . . ., B, are exactly

those generating a finite number of terminal strings. We create a new set
of productions, P,, from P, as follows.

Suppose that C, — C,C,...C, is a production of Py; C, is among
Ay, Aoy ..., A,. Then every production of the form Cy — uyuy. . .u, is in
Py, whereforl1 £i=r,

1. If C; is terminal, ; = C;.
2. If C, is among Ay, Ag, ..., Ay, then 4, = C;.
3. If C, is among By, B, ..., B,, u; is one of the finite number of terminal

words such that C, G%» ;.
We know that P, contains no productions with any of By, B,,..., B,

on the left. We consider the new grammar G, = (V§, Vi, Py, S), where
Vi = {4, Ag, . .., A,}. Note that S must be in V7, since L is assumed to

be infinite. Surely, if « = B, then « % B, so L(Gy) < L(GY).

As usual, to show that L(G,) € L(G,), we prove by induction on the
number of steps in the derivation that if

* .
Ay = w, 1<igk,
G1

IA

where w is a terminal string, then A4, —Gi—> w. The result is trivial for one-step
2

derivations, so assume that it is true for up to j steps. Now suppose that in
a derivation of j + 1 steps, the first production used is 4; - C,C,...C,.
We can write w as

IIA

WiWg. . . W, where C; Giz» w, 1Z2igr
1

There is a production 4; — wyu,. . .u, in P,, where u, = w, if either C, is

a terminal or if C, is among By, B, ..., B, and u, = C, if C, is among

Ay, Ag, ..., Ax. The inductive step follows immediately.

Example 4.3. Consider the grammar G = ({S, 4, B}, {a, b, ¢, d}, {S — ASB,

S — AB, 4 —~a, A— b, B—>c, B—d}, S§). Itis easy to see that 4 gener-
ates only the strings ¢ and b and B generates only the strings ¢ and d. How-

4.5 THE SELF-EMBEDDING PROPERTY 61

ever, S generates an infinity of strings. The only productions with S on the
left are S — ASB and S — 4B. The production S — ASB is replaced by
S —aSe, S—aSd, S— bSc, and S — bSd. Likewise, the production
S — AB is replaced by S —ac, S—ad, S — bc, and S — bd. The new
grammar is

G, = {S},{a,b,¢,d}, P, S)
where

P ={S—aSc,S—aSd, S — bSc, S — bSd, S — ac,
S — ad, S — bc, S — bd}.

4.5 THE SELF-EMBEDDING PROPERTY

A context-free grammar G is said to be self-embedding if there is a variable
. * .

A with the property that 4 = oy Aoy Where oy and o, are nonempty strings.

The variable A4 is also said to be self~embedding. Note that it is the self-
embedding property that gives rise to sentences of the form uv'wx’y. One
gets the feeling that it is the self-embedding property that distinguishes a
strictly context-free language from a regular set. One should note that
simply because a grammar is self-embedding does not mean that the language
generated is not regular. For example, the grammar

G = ({S},{a, b}, P, S),
where
P={S—>aSa,S—aS,S—bS,S—~>a,S—b}

generates a regular set. In fact, L(G) = {a, b}*.

In this section we shall see that a context-free grammar that is not self-
embedding generates a regular set. Consequently, a context-free language
is nonregular if and only if all of its grammars are self-embedding.

Theorem 4.10. Let G be a non-self-embedding context-free grammar.
Then L(G) is a regular set.

Proof. In examining the constructions for the normal forms developed in
this chapter, we note that each of the constructions has the property that if
the original grammar was non-self-embedding, then the normal-form gram-
mar was non-self-embedding. In particular this is true of the Greibach
normal form. Thus, if G is non-self-embedding, we can find a grammar
G, = (Vy, V7, Py, Sy) in Greibach normal form, equivalent to G, which is
non-self-embedding.t Moreover, by Theorem 4.2 a terminal string can be
derived from each variable in V.

+ Although the statement is not obvious, it is easy to prove. Clearly the applica-
tion of Lemma 4.2 does not introduce self-embedding. In Lemma 4.3 one must
show that Z is self-embedding only if A4 is self-embedding.

62 CONTEXT-FREE GRAMMARS 4.6

Consider a leftmost derivation in Gy. If G, has m variables, and / is the
length of the longest right-hand side of any production, then no sentential
form can have more than m/ variables appearing in it. To see this, assume
that more than m/ variables appear in some sentential form « of a leftmost
derivation. In the derivation tree for «, consider those nodes on the path
from the root to the leftmost variable of «. In particular, consider those
nodes where variables are introduced to the right of the path. Since the
maximum number of variables coming directly from any node is / — 1, and
since a variable to the right of the above path has not been rewritten, there
must be at least m + 1 such nodes. Thus some variable 4 must appear
twice among the labels of these nodes. Since we are considering only nodes
where new variables are introduced to the right of the path, and since each
production introduces a terminal as the leftmost character, the variable A
must be self-embedding.

Now if there are at most ml variables in any sentential form, we can
design a type 3 grammar G, = (Vy, Vr, Py, S), generating L(G) as follows.
The variables of G, correspond to strings of variables of G; of length less

than or equal to ml. That is, Vy = {[a]l[a] < mland « in Vi} Sis [Si]
If A — ba is in P,, then for all variables of ¥y corresponding to strings
starting with 4 we have [48] — b[«B] in P, provided that |«B| £ ml. It
should be obvious from the construction that G, simulates all leftmost

derivations in Gy, so L(G,) = L(G,). Thus L(G) is regular.

4.6 e-RULES IN CONTEXT-FREE GRAMMARS

Earlier we showed that several restrictions can be placed on the productions
of context-free grammars without limiting the class of languages that can
be generated. Now we consider an extension of context-free grammars to
include productions of the form 4 — ¢ for any variable 4. Such a produc-
tion is called an e-rule. Many descriptions of context-free languages allow
these productions. We shall show that a language generated by a cfg with
e-rules is always a cfl.

The concepts concerning trees for context-free grammars carry over
directly to these augmented grammars. One simply allows e to be the label
of a node. Clearly, that node must be a leaf.

Theorem 4.11. If L is a language generated by a grammar G = (Vy,
Ve, P, S) and every production in P is of the form 4 — o, where 4 is a
variable and « is a string (possibly ¢) in V*, then L can be generated by
a grammar in which every production is either of the form 4 — «, with
A a variable and « in V' *, or S — ¢, and further, S does not appear on
the right of any production.

Proof. By a trivial extension of Lemma 2.1, we can assume that .S does not
appear on the right-hand side of any production in P. For any variable 4

4.7 SPECIAL CONTEXT-FREE LANGUAGES AND GRAMMARS 63

of G we can decide whether 4 % e. For if so, then there is a derivation

whose tree has no path longer than the number of variables of G. (This
argument was used in Theorem 4.1.)

Let A, Ao, . .., A, be those variables of ¥ from which e can be derived
and By, B,, ..., B, be those from which it cannot. We construct a new set
of productions P; according to the following rules.

1. IfSZ=> e, then S — e is in P,.

2. No other production of the form 4 — ¢ appears in P;.
3. If
A— CC,...C, rzl,

is in P, then each production of the form 4 — ay,. .., is in Py, where
if C;isin Vy U {By, By, ..., B,}, then C;, = o, and if C; is in {4, A,
..., Ax}, then o; may be C; or e. However, not all &’s may be e.

As usual, it should be clear that if G; = (Vy, V7, P1, S), then L(G,) €
L(G). We must show by induction on the number of steps in the derivation,

that if 4 %> w, w # ¢, then 4 E*? w, for A in Vy. For one step, the result
is obvious, so assume that it is true for up to k steps. Suppose that A4 %\,— w

by a k + I-step derivation and suppose that 4 — C;C,...C, is the first
production used. We can write w as wyw,...w, where for 1 £ i< r,

C, % w;. If w, # ¢, then by induction we know that C; Gi> w;. Now, there
1

is a production of P; of the form 4 — «jay. .., Where o; = C; if W, # €
and o; = €if w;, = e. Hence

E3
A = w.
G1

It follows immediately from Theorem 4.11 that the only difference
between context-free grammars with productions of the form 4 — ¢ and
those with no such productions is that the former may include ¢ as a word
in the language. From here on we call a context-free grammar with e-rules
simply a context-free grammar, knowing that an equivalent context-free
grammar without e productions (except for S — ¢, possibly) can be found.

4.7 SPECIAL TYPES OF CONTEXT-FREE LANGUAGES AND GRAMMARS

At this point, we mention several restricted classes of context-free languages.
If every production of a cfg is of the form 4 — uBv or 4 —u, A and B
variables, # and v terminal strings, then we say that the grammar is linear.
A language that can be generated by a linear grammar is called a linear
language. Not all context-free languages are linear languages. Observe that
no string derivable in a linear grammar has more than one variable.

64 CONTEXT-FREE GRAMMARS 47

Example 4.4, The grammar
G = ({S},{0,1}L,{S—= 051, S — ¢}, S)

is a linear grammar which generates {0"1*|n = 0}.

A grammar G = (Vy, Vi, P, S) is said to be sequential if the variables
in Vy can be ordered Ai, As, ..., A, such that if 4, — o« is a production
in P, then « contains no 4; with j < i. A language generated by a sequential
grammar is called a sequential language.

Example 4.5. The grammar
G = ({Ale A2}> {09 1}’ {Al —> A2Als Al - A2s A2 - 0A213 A2 - 6}’ Al)

is a sequential grammar which generates the language {0*1*|n = 0}*.

If a context-free language L over an alphabet V7 is a subset of the lan-
guage wiwg .. . wit for some k, where w; is in V¥, 1 = i £ k, then we say
that L is a bounded language.

Example 4.6. The language
{(ab)y'c™dd)*|n = 13

is a bounded language. Here k = 3 and wy; = ab, w, = c and wz = d.

A context-free grammar G = (Vy, Vr, P, S) is said to be ambiguous if
there is a word in L(G) with two or more distinct leftmost derivations. If
every grammar generating a context-free language is ambiguous, we say that
the language is inherently ambiguous.

There exist inherently ambiguous context-free languages. An example
is the language L = {a'b’c*|i = j or j = k}. Essentially the reason that L
is inherently ambiguous is that any context-free grammar generating L must
generate those words for which i = j by a process different from that used
to generate those words for which j = k. It is impossible not to generate
some of those words for which / = j = k& by both processes.

Example 4.7. Consider the grammar G of Example 4.1, which had produc-
tions S—bA, S—aB, A—>a, B—>b, A—aS, B—bS, A—bAA,
B — aBB. The word aabbab has the following two leftmost derivations:

S = aB = aaBB = aabB = aabbS — aabbaB — aabbab
S — aB — aaBB — aabSB — aabbAB —> aabbaB — aabbab.

Hence G is ambiguous. However, the language

L(G) = {w|w consists of an equal number of &’s and 4’s}

+ Strictly speaking wiws...w¥ should be written {w,}*{wa}*...{we}*. No con-
fusion should result.

PROBLEMS 65

is not inherently ambiguous. For example, L(G) is generated by the unam-
biguous grammar

Gl = ({S’ Aa B}s {aa b}s Ps S):

where P consists of:

S — aBS,S — aB, S — bAS,S — bA, A — bAA, A — a, B— aBB, B — b.

PROBLEMS

4.1

4.2

4.3

4.4
4.5

4.6

4.7

4.8

Given a context-free grammar with m variables, for which the right side of
no production is longer than /, provide an upper bound on the number of
trees with no path longer than m + 1?

Give a simple algorithm to determine if the language generated by a cfg is
empty. Note that if a grammar generates a nonempty language, at least
one variable must have a production whose right-hand side contains only
terminals.

Given two strings «; and 5 and a context-free grammar G, give an algorithm

L. *
to determine if o, ? g,

Complete the proof of Theorem 4.5.
Consider the grammar
G = ({S, Ta L}, {aa b: +s — X, /9 [a]3 }) P1 S)’
where P consists of the productions:
S—>T+ S8 T—LxT L—I[S]
S—>T-8 T— LT L—g
S—T T— L L—b.
Informally describe L(G). Find a grammar in Chomsky normal form
generating L(G).
Consider the grammar G = ({4, B, C}, {0, 1}, P, A), where P consists of
the productions:
A — 0Al B— 1C0
A — 04C B~ AC
A—0 C— 1CB
A — 1B0 C—> AB
Find an equivalent grammar G, such that if D is a variable of Gy, then
D => w for some terminal string w.
If G is a Chomsky normal-form grammar, where w is in L(G), and there is
a derivation of w using p steps, how long is w? Prove your answer.
Show how to put the productions of a Chomsky normal-form grammar
into the form A — BC, where B # C, and if A — «;Bay and 4 — y, By,
are productions then «; = y; and ez = y,.

66

4.9

4.10

4.11

4.12

4.13
4.14
4.15
4.16

4.17
4.18
4.19
4.20
4.21

CONTEXT-FREE GRAMMARS

Several times we have modified the productions of a grammar and then
proved that the resulting grammar was equivalent to the original, one such
case being Lemma 4.3. Can you think of a general type of modification
that will include most of the special cases? Prove that your modification
results in an equivalent grammar.
Consider the grammar G = ({S},{p, [,], ~, 2}, P, S) where P is the set
of productions:

S—p S—~8 S—[§> S].
Describe L(G) informally. Find a Chomsky normal-form grammar for
L(G). Number the variables, giving S the highest number. Find a Greibach
normal-form grammar for L(G) from the Chomsky normal-form grammar
you have obtained. Can you find a simpler Greibach normal-form grammar
for L(G)?
Show that every context-free language can be generated by a grammar in
which every production is of the form 4 —a, 4 — aB, or A — aBC,
where a is terminal, and A4, B, and C are variables.

Show that every context-free language can be generated by a grammar in
which every production is of the form 4 — a or 4 — a«b, where a and b
are terminals and « is a string of variables.

Use Theorem 4.7 to show that {a'|/ a prime} is not a context-free language.
Show that {@'|7 is a perfect square} is not a context-free language.
Use Theorem 4.7 to show that {a'b'c'|i = 1} is not a context-free language.

Consider the grammar G = ({S, 4, B}, {0, 1}, P, S), where P consists of
the following productions:

S-— AB B — 041

A — BSB B-—¢

A— BB B—0
A—1.

Find an equivalent grammar for which S does not appear on the right of
any production and § — e is the only production with € on the right.

Find a cfl that cannot be generated by a linear grammar.
Find a cfl that is not a bounded language.

Find a cfl that is not a sequential language.

Show that the grammar G, of Example 4.7 is unambiguous.

Which of the following grammars are self-embedding? Find finite auto-
mata accepting those languages which have non-self-embedding grammars.

a) G = ({4, B, C}, {a, b}, P, A), where P contains the productions
A— CB C— AB

A—b C—a
B— CA

REFERENCES 67

b) G = ({4, B, C}, {a, b}, P, A), where P contains the productions

A— CB A— Ca
C— AB
B—bC C-—b

4,22 Show that every cfl over a one-symbol alphabet is regular.

REFERENCES

The original work on context-free languages appears in Chomsky [1956], Chom-
sky [1959], and Bar-Hillel, Perles, and Shamir [1961]. Theorems 4.1, 4.7 and 4.8
are from the latter paper. Theorem 4.5 appears in Chomsky [1959] and Theorem
4.6 in Greibach [1965]. A simple proof of the latter result can be found in
Rosenkrantz [1967]. Theorem 4.10 is from Chomsky [1959]. Ginsburg [1966] is
a good reference on the properties of context-free languages. For results on
linear languages, see Greibach [1963], Gross [1964], Haines [1964], and Greibach
[1966]. For sequential languages, see Ginsburg and Rice [1962], Ginsburg and
Rose [1963(a) and (b)], and Shamir [1965]. For bounded languages, see Ginsburg
and Spanier [1964]. Ambiguity and inherent ambiguity are treated more exten-
sively in Chapter 14. For the application of context-free languages to the area
of programming, see Samelson and Bauer [1960], Irons [1961], Floyd [1962(a)
and (b)], [1963], and [1964(a) and (c)], and Lewis and Stearns [1966].

There are two interesting theorems concerning context-free languages which
we have not covered. We have not, in fact, developed the notation even to state
them formally, but they deserve mention. The first is Parikh’s Theorem (Parikh
[1961]) which essentially states that if L is a cfl contained in X*, then for each
w in L, the numbers of instances of each symbol of X found in w satisfy one of
a finite number of nontrivial sets of simultaneous linear equations. For example,
{a"b"*|n = 1} is not a context-free language, since the numbers of &’s and 4’s in
each word satisfy only quadratic equations.

The second theorem is the characterization of ¢f!’s in terms of “Dyck lan-
guages.” A Dyck language is a cfl generated by a grammar

G. = ({8}, {as, as, .. ., G, by, ba, ..., by}, P, S),

where P consists of the productions S — SS, S — ¢, and S — a,Sh;, for 1 =
i = k. L(G,) can be thought of as being composed of strings of balanced paren-
theses of &k types. The corresponding left and right parentheses for each / are
a; and b;. The theorem states that every cfl can be expressed as a homomorphism
(see Chapter 9) of the intersection of a Dyck language and a regular set. The
theorem was first proved in Chomsky [1962]. Alternative proofs appear in
Stanley [1965] and Ginsburg [1966].

CHAPTER 5

PUSHDOWN AUTOMATA

5.1 INFORMAL DESCRIPTION

We shall now consider a device which is quite important in the study of
formal languages—the pushdown automaton. This device is essentially a
finite automaton with control of both an input tape and a pushdown store.
The pushdown store is a “first in-last out™ list. That is, symbols may be
entered or removed only at the top of the list. When a symbol is entered at
the top, the symbol previously at the top becomes second from the top, the
symbol previously second from the top becomes third, etc. Similarly, when
a symbol is removed from the top of the list, the symbol previously second
from the top becomes the top symbol, the symbol previously third from the
top becomes second, and so on.

A familiar example of a pushdown store is the stack of plates on a
spring which we often see in cafeterias. There is a spring below the plates
with just enough strength so that only one plate appears above the level of the
counter. When that top plate is removed, the load on the spring is lightened,
and the plate directly below appears above the level of the counter. If a plate is
then put on top of the stack, the pile is pushed down, and that plate appears
above the counter. For our purposes, we make the assumption that the
spring is arbitrarily long so that we may add as many plates as we desire.

Let us see how we can use the stack of plates, coupled with a finite
control, to recognize a nonregular set. The set L = {wew®|w in {0, 1}*}1
is a context-free language, generated by the grammar

G = ({S}, {0, 1, ¢}, {S — 050, § — 151, S — ¢}, S)

It is not hard to show that L cannot be accepted by any finite automaton.
To accept L, we shall make use of a finite control with two states, ¢; and g,
and a pushdown store on which we place blue, green, and red plates. The
device will operate by the following rules.

1. The machine starts with one red plate on the stack and with the finite
control in state g¢;.

+ w® denotes w reversed.
68

5.1 INFORMAL DESCRIPTION 69

2. If the input to the device is 0 and the device is in state q;, a blue plate is
placed on the stack. If the input to the device is 1 and the device is in
state g,, a green plate is placed on the stack. In both cases the finite
control remains in state g;.

3. If the input is ¢ and the device is in state g,, it changes state to g, without
adding or removing any plates.

4. If the input is 0 and the device is in state g, with a blue plate on top of
the stack, the plate is removed. If the input is 1 and the device is in state
g. with a green plate on top of the stack, the plate is removed. In both
cases the finite control remains in state g,.

5. If the device is in state g, and a red plate is on top of the stack, the plate
is removed without waiting for the next input.

6. For all cases other than those described above, the device can make no
move.

The preceding moves are summarized in Fig. 5.1.

We say that the device described above accepts an input string if, on
processing the last symbol of the string, the stack of plates becomes com-
pletely empty. Note that, once the stack is completely empty, no further
moves are possible.

Essentially, the device operates in the following way. In state g,, the
device makes an image of its input by placing a blue plate on top of the stack
of plates each time a O appears in the input and a green plate each time a 1

INPUT
Top plate State 0 1 c
Blue g1 | Add blue plate; stay | Add green plate; Go to
in state g;. stay in state g;. state g2.

gs Remove top plate; — —
stay 1n state gs.

Green q: Add blue plate; stay | Add green plate; Go to
in state g;. stay in state ¢;. state gs.

ga — Remove top plate; —

stay in state g,.

Red g1 | Add blue plate; stay | Add green plate; Go to
in state g;. stay in state g;. state ¢s.

gz Without waiting for | Without waiting Without
next input, remove for next input, waiting for
top plate. remove top plate. | next input,
remove top

plate

Fig. 5.1. Finite control for pushdown machine accepting {wew?|w in {0, 1}*}.

70 PUSHDOWN AUTOMATA 5.2

appears in the input. When c¢ is the input, the device transfers to state g,.
Next, the remaining input is compared with the stack by removing a blue
plate from the top of stack each time the input symbol is a 0 and a green
plate each time the input symbol is a 1. Should the top plate be of the wrong
color, the device halts and no further processing of the input is possible.
If all plates match the inputs, eventually the red plate at the bottom of the
stack is exposed. The red plate is immediately removed and the device is
said to accept the input string. All plates can be removed only in the case
where the string that enters the device after the c is the reversal of what
entered before the c.

5.2 DEFINITIONS

We shall now formalize the concept of a pushdown automaton (pda). The
pda will have an input tape, a finite control, and a pushdown store. The
pushdown store is a string of symbols in some alphabet. The leftmost
symbol will be considered to be at the “top” of the store. The device will be
nondeterministic, having some finite number of choices of moves in each
situation. The moves will be of two types. In the first type of move, an input
symbol is scanned. Depending on the input symbol, the top symbol on the
pushdown store, and the state of the finite control, a number of choices are
possible. Each choice consists of a next state for the finite control and a
(possibly empty) string of symbols to replace the top pushdown store symbol.
After selecting a choice, the input head is advanced one symbol.

The second type of move (called an e-move) is similar to the first, except
that the input symbol is not used, and the input head is not advanced after
the move. This type of move allows the pda to manipulate the pushdown
store without reading input symbols.

Finally, we must define the language accepted by a pushdown automaton.
There are two natural ways to do this. The first, which we have already seen,
is to define the language accepted to be the set of all inputs for which some
sequence of moves causes the pushdown automaton to empty its pushdown
store. This language is referred to as the language accepted by empty store.

The second way of defining the language accepted is similar to the way a
finite automaton accepts tapes. That is, we could designate some states as
final states and define the accepted language as the set of all inputs for which
some choice of moves causes the pushdown automaton to enter a final state.

As we shall see, the two definitions of acceptance are equivalent in the
sense that if a set can be accepted by empty store by some pda, it can be
accepted by final state by some other pda, and vice-versa.

Acceptance by final state is the more common notion, but it is easier
to prove the basic theorem of pushdown automata by using acceptance by
empty store. The basic theorem is that a language is accepted by a push-
down automaton if and only if it is a context-free language.

5.2 DEFINITIONS 71

A pushdown automaton M is a system (K, %, T, 8, o, Zo, F) where

. K is a finite set of states.

. 3 is a finite alphabet called the input alphabet.

. I'is a finite alphabet, called the pushdown alphabet.

. go in K is the initial state.

. Z, in T' is a particular pushdown symbol called the start symbol. Z,
initially appears on the pushdown store.

. F < K is the set of final states.

7. 8 is a mapping from K x (£ U {e}) x T to finite subsets of K x I,

[F TN SR I S R

(=)}

We use lower-case letters near the front of the alphabet to denote input
symbols and lower-case letters near the end of the alphabet to denote strings
of input symbols. Capital letters usually denote pushdown symbols and
Greek letters indicate strings of pushdown symbols.

The interpretation of

5(% a, Z) = {(pla 71)9 (pZa 72)> v (Pms '}’m)}

where gand p, 1 S i < m,arein K, aisin &, Z is in T, and y; is in I',
1 € i £ m, is that the pda in state g, with input symbol a and Z the top
symbol on the pushdown store, can, for any i, enter state p;, replace Z by
y:, and advance the input head one symbol. We adopt the convention that
the leftmost symbol of y, will be placed highest on the store and the right-
most symbol lowest on the store.}

The interpretation of

3(‘1, €, Z) = {(pla 71)5 (p2s 72)3 RS] (pma ')’m)}

is that the pda in state ¢, independent of the input symbol being scanned and
with Z the top symbol on the pushdown store, can enter state p; and replace
Z by y, forany i, 1 < i £ m. In this case, the input head is not advanced.

Example 5.1. Figure 5.2 gives a formal pushdown automaton which accepts
{wew®|w in {0, 1}*} by empty store. Note that for a move in which the pda
writes a symbol on the top of the store & has a value (g, y) where |y} = 2.
For example, 8(q1,0, R) = {(41, BR)}. If y were of length one, the pda
would simply replace the top symbol by a new symbol and not increase the
length of the pushdown store. This allows us to let y equal € for the case in
which we wish to erase the top symbol, thereby shortening the pushdown
store.

Note that the rule 8(¢, €, R) = {(¢2, €)} means that the pda, in state g,
with R the top pushdown symbol, can erase the R independent of the input
symbol. In this case the input head is not advanced.

+ This convention is opposite that used by some other writers. We prefer it since
it simplifies notation in what follows.

72 PUSHDOWN AUTOMATA 5.2

M = ({ql’ Qz}, {O’ 1’ C}, {Rs Ba G}a 3, qi1, Rs ‘P)T
81, 0, R) = {(q1, BR)} 3(gs, 1, R) = {(q1, GR)}
8(q1, 0, B) = {(q1, BB)} 8(g1, 1, B) = {(q1, GB)}
8(q1, 0, G) = {(q:, BG)} 8(q1, 1, G) = {(¢q1, GG)}
8(g1, ¢, B) = {(gs, R}
3(q1, ¢, B) = {(g=, B)}
3(q1, ¢, G) = {{g2, G)}
3(g2, 0, B) = {(gs, ©)} 8(gz, 1, G) = {(gs,)}
8(gz2, € R) = {(¢a,)}

Fig. 5.2. Formal pushdown automaton accepting {wew®|w in {0, 1}*} by empty
tape.

A configuration of a pda is a pair (g, y) where ¢ is a state in K and y is
a string of pushdown symbols. We say that a pda M is in configuration
(g, y) if M is in state ¢ with y on the pushdown store, the leftmost symbol of
y being the top symbol on the pushdown store. If @ is in & U {¢}, y and 8
are in I'*, and Z is in T', and further, if the pair (p, f) is in 8(q, @, Z), then
we write

a:(q, Zy) fiz (p» B7)-

The above means that according to the rules of the pda the input @ may
cause M to go from configuration (g, Zy) to configuration (p, 8y).

If for ay, a,, ..., a,, each in X U {e}, states g1,¢s, ..., ¢,.1 and push-
down strings y, ¥a, . . ., Yu+1 We have:

a;:(qi, v3) I'AZ (@i+1,7i41)
for all { between 1 and »n, then we write

a1ay. . .4y (q15 1)]‘:—4 (@n+15 vne)-d

Recall that many of the a,’s may be e. The subscript M will be dropped from
':—4 whenever the meaning remains clear.
For a pda M we define T'(M), the language accepted by final state, to be

{wlw:(go, Zo) l% (g, y) for any y in I'* and q in F}.
Also, we define N(M), the language accepted by empty store, to be
{wlw:(go, Zo) fi7 (4, ¢) for any g in K}.

1 @ denotes the empty set.
I By convention, we always have €:(g, v) |;f—;, @, y).

5.2 DEFINITIONS 73

When accepting by empty store, the set of final states is irrelevant. Thus
when accepting by empty store we usually let the set of final states be the
empty set.

The pda of Example 5.1 is deterministic in the sense that at most one
move is possible from any configuration. Formally, we say that a pda,
M= (K ZT,8,qy Zy, F), is deterministic if:

1. For each g in K and Z in I', whenever &(q, ¢, Z) is nonempty, then
8(q, a, Z) is empty for all @ in Z,

2. Fornogin K, ZinT', and a in 2 U {e} does &g, a, Z) contain more than
one element.

Condition 1 prevents the possibility of a choice between a move
independent of the input symbol (e-move) and a move involving an input
symbol. Condition 2 prevents a choice of move for any (g, a, Z) or (g, ¢, Z).

Example 5.2. Figure 5.3 gives a nondeterministic pda that accepts {ww?®|w in
{0, 1}*}. Rules 1 through 6 allow M to store the input on the pushdown
store. In Rules 3 and 6 M has a choice of moves. If M decides that the
middle of the input string has been reached, then the second choice is selected.
M goes to state g, and tries to match the remaining input symbols with the
contents of the pushdown store. If M guessed right, and if the input is of
the form wwF, then the inputs will match, M will empty its pushdown store,
and thus accept the input string.

M = ({qla Q:a}, {05]}3 {R9 Bs G}9 s’ q1, R, ‘p)

1. &q1,0, R) = {(g1, BR)} 6. 8q1, 1, G) = {(g1, GG, (g2,)}
2. 8q1, 1, R) = {(g1, GR)} 7. 84z, 0, B) = {(g2, <)}
3. &q1, 0, B) = {(q1, BB), (¢, ©)} 8. 8¢z, 1, G) = {(g2, &)}
4. 8(q1, 0, G) = {(q1, BG)} 9. g1, &, B) = {(ga,)}
5. g1, 1, B) = {(g1, GB)} 10. 8(gz, €, R) = {(gz, €)}

Fig. 5.3. A nondeterministic pda that accepts {ww?|w in {0, 1}*} by empty store.

We cannot emphasize too strongly that M accepts an input if any se-
quence of choices causes M to empty its pushdown store. Thus M always
“guesses right,” because wrong guesses, in themselves, do not cause an input
to be rejected. An input is only rejected if there is no *“right guess.” Figure
5.4 shows the accessible configurations of M when processing the string
001100.

For finite automata, the deterministic and nondeterministic models were
equivalent with respect to the languages accepted. We shall see later that
the same is not true for pda. In fact ww” is accepted by a nondeterministic
pda, but not by any deterministic pda.

74 PUSHDOWN AUTOMATA 5.3

Input Configurations

€ | (@, R)— (g2 ¢
0 (41} BR)
00 | (g1, BBR)(g2, R) — (43, ¢)
001 | (g1, GBBR)
0011 | (g1, GGBBR) (gs, BBR)
00110 | (g1, BGGBBR) (g2, BR)

001100 (ql,l BBGGBBR) (g2, G&BBR) (92, R) = (g2,)

Fig. 5.4. Accessible configurations for the pda of Fig. 5.3 with input 001100.

5.3 NONDETERMINISTIC PUSHDOWN AUTOMATA AND CONTEXT-FREE
LANGUAGES

We shall now prove the fundamental result that the class of languages
accepted by nondeterministic pda is precisely the class of context-free lan-
guages. We first show that the languages accepted by nondeterministic
pushdown automata by final state are exactly the languages accepted by
nondeterministic pushdown automata by empty store. We then show that
the languages accepted by empty store are exactly the context-free languages.

Theorem 5.1. L is N(M,) for some pda M, if and only if L is T(M,)
for some pda, M.

Proof (if). Let
M2 = (Ky 29 Fa 8> 110, ZO> F)

be a pda such that L = T(M,). Let
M, = (KY{geqe}, 2, T U {X}, ¥, 90, X, 9)
where &' is defined as follows.

1. 8'(gs, €, X) contains (gq, ZoX).

2. 8(q, a, Z) includes the elements of &(g, a,Z) for all ¢ in K, a in £ or
a=¢cand ZinI.

3. Forallgin F, and Z in " U {X}, 8'(q, ¢, Z) contains (g,, €).

4. ForallZin I' U {X}, 8(q., €, Z) contains (g, €).

Rule 1 causes M, to enter the initial configuration of M,, except that M,
will have its own bottom of the stack marker, X, which is below the symbols
of M,’s pushdown store. Rule 2 allows M, to simulate M,. Should M, ever
enter a final state, Rules 3 and 4 allow M; the choice of entering state ¢, and
erasing its store, thereby accepting the input, or continuing to simulate M,.

8.3 NONDETERMINISTIC PUSHDOWN AUTOMATA AND CFL'S 75

One should note that M, may possibly erase its entire store for some input
x not in T(M,). This is the reason that M, has its own special bottom of the
stack marker. Otherwise 3, in simulating M,, would also erase its entire
store, thereby accepting x when it should not.

Now assume that x is in T(My). Then x:(qo, Zo) IX/I*—z (g, v) for some ¢
in F. Thus
:(q0> X) iz; (90» ZoX) by Rule 1,
X:(qo, ZoX) l—;—l (g, vX) by Rule 2,
(¢, vX) L\—:; (4> €) by Rules 3 and 4,

and therefore x is in N(#,). By similar reasoning, if x is in N(#,), then x
is in T(My).

Proof (only if). Let

Ml = (Ka Ey I‘: 8, qO; ZO’ (p)
be a pda such that L = N(M,). Let
M2 = (K U {qé)» qf}s Es rv {X}, 8’5 46, Xs {qf})
where 8’ is defined as follows.

1. &'(gq, €, X) contains (gy, ZoX).

2. Forallgin K, ainX U {e}, and Z in T, &§'(g, a, Z) includes the elements
of &g, a, Z).

3. For allg in K, 8(g, ¢, X) contains (g, €).

Rule 1 causes M, to enter the initial configuration of M;, except that
M, will have its own bottom of stack marker X which is below the symbols
of My’s pushdown store. Rule 2 allows M, to simulate A/;. Should M, ever
erase its entire pushdown store, then M,, in simulating M,, will erase its
entire pushdown store except for the symbol X at the bottom. Rule 3 causes
M,, when the X appears, to enter a final state, thereby accepting the input x.
The proof that T(M,) = N(M,) is similar to the proof in the if part of the
theorem and is left as an exercise.

Theorem 5.2. If L is a context-free language, then there exists a pda M,
such that L = N(M).

Proof. Let G = (Vy, Vi, P, S) be a context-free grammar in Greibach
normal form generating L. (We assume that e is not in L(G). The reader
may modify the construction for the case where € is in L(G).) Let

M = ({ql}’ V’I‘9 VN5 89 g1, Sa (P))

where 8(gy, a, A) contains (g, y) whenever A — ay is in P.

76 PUSHDOWN AUTOMATA 5.3

To show that L(G) = N(M), note that xAB —=> xaof if and only if
a:(q:, AB) ’7\2 (g1, «B). It follows immediately by induction on the number
of steps of the derivation that xA48 %)» xya, for any x and y in V¥, A in Vy,
and « and B in V¥, if and only if y:(g, 4B)]A—"; (g1, ®). Thus S %» x if and
only if x:(g;, S) F:,-[(g1, ©)-T

Theorem 5.3. If L is N(M) for some pda M, then L is a context-free

language.

Proof. Let M be the pda (K, %, I, 8, g0, Zo, 9). Let G = (Vy, 2, P, S) be
a context-free grammar. Vy is the set of objects of the form [g, A4, p], where
g and p are in K and A4 is in T, plus the new symbol S. P is the set of
productions:

1. S — [go, Zo, q] for each g in K.

2. [‘L As p] g a[qla -Bl’ ‘12][429 -B2a 93] s [qrm Bms qm-i—l] for each q, 41,92,
o5 qne1 in K, where p = ¢, .4, eachainX U {e}, and 4, By, By, .. ., B,
in I, such that &g, a, 4) contains (g;, B1B;...B,). (If m = 0, then
q: = p, g, a, A) contains (p, ¢), and the production is [g, 4, p] — a.)

To understand the proof it helps to know that the variables and produc-
tions of G have been defined in such a way that a leftmost derivation in G of
a sentence x is a simulation of the pda M, when fed the input x. In particular,
the variables that appear in any step of a leftmost derivation in G correspond
to the symbols on the pushdown store of the pda at a time when the pda
has seen as much of the input as the grammar has already generated.

To show that L(G) = N(M), we prove by induction on the number of
steps in a derivation of G or number of moves of M, that

[4.4,p] = x ifandonlyif x:(g, 4) fg (p, ¢).
Now if x is in L(G), then

S ? [qu ZO: q] % X,

for some state g. Hence, x:(q,, Zo) F:; (¢, €), and therefore, x is in N(M)-
Similarly x in N(M) implies that x:(g,, Z,) % (g, €). Hence,

*
N ? [(IOs ZO’ q] ? X,

and therefore, x is in L(G).

+ Note that the pda M makes no e-moves.

5.3 NONDETERMINISTIC PUSHDOWN AUTOMATA AND CFL'S 77

First we shall undertake the “if” part of the proof. Suppose that
x:(gq, A) % (p, €) by a process taking k steps. We wish to show that
[g, 4, p] %» x. For k = 1, x is either a single symbol or e. Thus 3(g, x, A)
must contain v(p, ¢) and hence [g, 4, p] - x is a production in P. Therefore
9, 4, p] = x.

Now we assume that the hypothesis is true for any process of up to
k — 1 steps and show that it is true for processes of & steps. The first step
must be of the form

a:(q, A) ; (g1, B\B>...B), 121,

where a is € or the first symbol of x. It must be that x can be written
X = aX1Xs...X; such that for each i between 1 and /,

x::(q: By) l% (Gi+15€)
by a process of fewer than k steps, where ¢,4s,...,4;+1 are in K, and

¢1+1 = p. Therefore, from the inductive hypothesis, [¢;, B;, ¢;+1] %)» x;. But

[qs A> P] - a[‘h» Bl, ‘I2][92s B2> qS]‘ . [qh Bb ql+1]

is a production of G, so
[% Aa p] %’ axiXxXqg...X; = X.

The “only if” part of the proof follows in a manner similar to the “if”
part, by induction on the length of a derivation, and will not be given.

Example 5.3. Let
M = ({qu ql}s {0? l}s {Xa ZO}: 83 q0> ZO: (P)

where 8 is given by:

8(qO’ 05 ZO) = {(‘Io, XZO)} S(qla 1, X) = {(qu €)}
(g0, 0, X) = {(q0, XX)} g1, &, X) = {(g1, O}
(g0, 1, X) = {(q1, &)} (41, € Zo) = {(g1, €)}

To construct a c¢fg G = (Vy, Vi, P, S) generating N(M) let

VN = {S> [GIo, Xa Qo], [qu Xa QIL [qla X’ %]a [qla X5 91],
{90, Zy, 90}, (90, Zo, 911, (915 Zo» 90); [915 Zo, 1]}

and ¥y = {0, 1}. To construct the set of productions easily, we must realize
that some variables may not appear in any derivation starting from the
symbol S. Thus, we can save some effort if we start with the productions
for S, then add productions only for those variables that appear on the right

78 PUSHDOWN AUTOMATA 53

of some production already in the set. The productions for S are

S — g0, Zo, 90] S — [g0, Zo, 911

Next we add productions for the variable [gq, Zo, ¢,]. These are

[qO’ ZOa qO] -> O[qm X9 %][%s ZO: qO];
[qu ZO; 90] - O[QO, X5 ‘11][91» ZO: 90]

These productions are required by

8(409 0, ZO) = {(‘Io, XZO)}
Next, the productions for g, Z,, g:] are

[q09 ZCI) ql] - O[qf)a X’ qO][qO: ZC» (11],
(90, Zo, 411 = Olg0, X, ¢:1[91, Zo, ¢:]-

These are also required by 8(gy, 0, Z;) = {(g5, XZ,)}. The productions for
the remaining variables and the relevant moves of the pda are:

1' [qu X: qO] - 0[Q03 Xs %][‘Io, Xa ‘]o]

[90, X, g0] — 0[q0, X, 91191, X, q0]

(90, X, q1] = Olgo, X, goligo, X, 1]

[90, X, g1]1 = O[go, X, ¢:1[g1, X, 91]

since 8(qo, 0, X) = {(qo, XX)}
. [90, X7 ‘h] — 1 since a(q(), 1, X) = {(qla E)}
. [Ch, ZO; éh] — € Sil’lCC 5(417 €, ZO) = {(qls e)}
. [g1, X, ¢:]1 — e since 8(q1, €, X) = {(q1,)}
[41, X, q:] — 1 since 8(gy, 1, X) = {(g1, ©)}

It should be noted that there are no productions for the variables
91, X, q0] and [g1, Zo, go]. Thus no terminal string can be derived from
either [q,, Zo, go] or [g0, X, qo]. Deleting all productions involving one of
these four variables on either the right or left, we end up with the following
productions.

[I I S

S — [q0, Zo, g1] [g0, X, q1] — 1
[90; Zo, q:]1 — Olgo, X, 911191, Zo, ¢:] g1, X, 1] — €
[90s X, 11 — Olgo, X, ¢:][g:1, X, q1] (91, X, 1] — 1
(91, Zo, q1] — €

We summarize Theorems 5.1, 5.2, and 5.3 as follows. The subsequent
three statements are equivalent:

1. L is a context-free language.
2. L = N(M,) for some pda M,.
3. L = T(M,) for some pda M,.

REFERENCES 79

PROBLEMS
5.1 Find pushdown automata accepting the following sets by final state,

a) {w|w in {0, 1}* and w consists of an equal number of 0’s and 1’s}.
b) {a"b"\n = m = 2.
¢) The set generated by the grammar

G = (S, 4}, {a, b}, {S— adA, A — bS, A — aS, A — a}, S).

d) The set of well-formed FORTRAN arithmetic expressions. Assume
that variable names may be of any length greater than or equal to
one.

5.2 Give a grammar for the language which is N(M) where
M = ({q05 ql}s {09 1}9 {ZO: X}s 8’ 9o, ZO; ‘P)
and 8 is given by:

8(q0’ l’ ZO) = {(qlJ’ XZO)} 8(q0, € ZO) = {(qO’ E)}
8(qo, 1, X) = {(go, XX}} 3(g1, 1, X) = {{g1, &)}
8(q0> 05 X) = {(qh X)} 5(‘11, 09 ZO) = {(q()’ ZO)}

5.3 Prove the “only if” portion of Theorem 5.3.

5.4 Let L = N(M) for some pda. Show that L = N(M;) for some one state
pda, Ml.

5.5 Let L = T(M) for some pda. Show that L = T(M,) for some two-state
pda, M;. Under what conditions is L = T(M,) for some one-state pda, M;?

5.6 Let L = N(M) for some pda. Show that L = N(M,) for some pda, M; =
(K, %, T, 8, qo, Zo, F) where 8(q, ¢, Z) = ¢ forallgin Kand Zin T.

5.7 Is the pda of Example 5.1 deterministic? Justify your answer.
5.8 In Example 5.3, why are there no productions for the variable [, X, gol?

REFERENCES

The pushdown automaton appears as a formal construction in Oettinger [1961]
and Schutzenberger [1963]. Its relation to context-free languages was shown
independently in Chomsky [1962] and Evey [1963].

Various generalizations of pushdown automata have appeared in the litera-
ture. Devices with two or more pushdown tapes are equivalent to Turing
machines. (See Chapter 6.) The pushdown transducer is a pushdown automaton
which may output symbols at each move. It has been studied in Evey [1963],
Fischer [1963], Ginsburg and Rose [1966], and Ginsburg and Greibach [1966b].
The two-way pushdown automaton is a device with a pushdown store, a finite
control, and an input tape on which a head can move in either direction. These
devices have been studied in Hartmanis, Lewis, and Stearns [1965], Aho, Hop-
croft, and Ullman [1968], and Gray, Harrison, and Ibarra [1967].

