
D3 - Part 2
Maps

D
at

a 
Jo

ur
na

lis
m

Angelica Lo Duca
angelica.loduca@iit.cnr.it



Transitions



Transitions in D3

A transition is an animation from one form to another. 

In D3 a transition starts with .transition() applied to a selection.

Example of Transition

https://www.d3-graph-gallery.com/graph/interactivity_transition.html


Types of transitions

Duration

Ease

Delay



Duration

Specifies the animation duration in milliseconds for each element.

d3.select("#container")

.transition()

  .duration(1000)

  .style("background-color", "red"); 

In this example, after 1 second the background color of the container is set to red.



Ease

Permits to specify and control the motion of the transition.

Types of ease

d3.select("#container")

.transition()

        .ease(d3.easeLinear)

    .duration(2000)

    .attr("height",100)

https://bl.ocks.org/d3noob/1ea51d03775b9650e8dfd03474e202fe


Delay

Sets the delay parameter for each element in the selection on which the transition 
is applied. The transition will start after the specified delay value.

d3.select("#container")

.transition()

        .ease(d3.easeLinear)

    .duration(2000)

    .delay(2000)

    .attr("height",100)



Delay VS Duration

Duration specifies how long the transition should run. 

Delay is the time after the transition should start.

Example

https://www.tutorialsteacher.com/codeeditor?cid=d3-20


Interactions



Interaction

Any activity triggered by the user:

Clickable Image

clicks
On click event 

listener

raises click 
event



Types of interactions

Mouse Events 

Pan & Zoom

Drag and Drop

Brush



Mouse Events

mousedown

mouseup

click

dblclick

mouseover

mouseout

mouseenter

mouseleave



.on()

Adds an event listener for the specified type.

var listener = function(d){ // do some staff}

d3.selection.on(“mousedown”, listener);



.dispatch()

Dispatches a custom event of the specified type to each selected element.

For example, if you wanted to create an event dispatcher for "start" and "end" events, 
you can say:

var dispatch = d3.dispatch("start", "end");

Then, you can access the dispatchers for the different event types as dispatch.start and 
dispatch.end. For example, you might add an event listener:

dispatch.on("start", listener);

And then later dispatch an event to all registered listeners:

dispatch.call("start");



.event

Event object to access standard event fields such as timestamp.

The current position of the event:

d3.event.pageX

d3.event.pageY



.mouse(container)

Gets the x and y coordinates of the current mouse position in the specified DOM 
element.

var point = d3.mouse(this)

var p = {x: point[0], y: point[1] };



.touch(container)

Gets the touch coordinates to a container



Pan & Zoom, Drag & Drop and Brush

Composed of three parts:

Definition of the event with its properties

var zoom = d3.zoom(). [...] .on("zoom", my_event_listener);

Application to a specific selection

svg.call(zoom);

Definition of the event listener

function my_event_listener(){}



Pan & Zoom

Panning allows you to move around what you see.

Zooming allows you to expand or contract what you see.

Create a new zoom

var zoom = d3.zoom()

https://github.com/d3/d3-zoom


zoom.scaleExtent()

Permits to define zooming options

zoom.scaleExtent([minimum, maximum])

Specifies the zoom scale allowed range as a two-element array, [minimum, 
maximum]. 

If not specified, returns the current scale extent, which defaults to [0, 
Infinity].



zoom.translateExtent()

Permits to define panning options

zoom.translateExtent([[x0, y0], [x1, y1]])

[x0, y0] is the top-left corner of the world and 

[x1, y1] is the bottom-right corner of the world

If the array of points is not specified, returns the current translate extent, which 
defaults to [[-∞, -∞], [+∞, +∞]].



zoom.extent()

Specifies the “area” involved in the zoom.

Default extent is [[0, 0], [width, height]]



Example

var zoom = d3.zoom()

      .scaleExtent([.5, 20])  

      .extent([[5, 3], [width, height]])

      .on("zoom", my_event_listener);

svg.call(zoom);



Retrieve new scales

var x = d3.scaleLinear() 

var xAxis = svg.append("g") . [...] .call(d3.axisBottom(x));

….

Within my_function

var newX = d3.event.transform.rescaleX(x);

xAxis.call(d3.axisBottom(newX))

rescaleY is used for the Y axis



Example (cont.)

function my_event_listener() {

    // retrieve the new scale

    var newX = d3.event.transform.rescaleX(x);

    var newY = d3.event.transform.rescaleY(y);

    // update axes with these new boundaries

    xAxis.call(d3.axisBottom(newX))

    yAxis.call(d3.axisLeft(newY))

https://www.d3-graph-gallery.com/graph/interactivity_zoom.html


Drag & Drop

Drag-and-drop is a popular and easy-to-learn pointing gesture: move the pointer to 
an object, press and hold to grab it, “drag” the object to a new location, and 
release to “drop”.

var drag = d3.drag();

https://github.com/d3/d3-drag


.on(type, listener)

The type must be one of the following:

● start - after a new pointer becomes active (on mousedown or touchstart).
● drag - after an active pointer moves (on mousemove or touchmove).
● end - after an active pointer becomes inactive (on mouseup, touchend or 

touchcancel).

Drag Events

https://github.com/d3/d3-drag#drag-events


Brush

Brushing is the interactive specification a one- or two-dimensional selected region 
using a pointing gesture, such as by clicking and dragging the mouse.

https://github.com/d3/d3-brush


Brush Event

var brush = d3.brush();

Definition of the listener

brush.on(type, listener)

The type must be one of the following:

● start - at the start of a brush gesture, such as on mousedown.
● brush - when the brush moves, such as on mousemove.
● end - at the end of a brush gesture, such as on mouseup.



Promises

Promises simplify the structure of 
asynchronous code,

A promise represents a value that 
is not yet known, but that will be 
known in the future. For example, 
when you load a file from a web 
server into a browser, the file’s 
contents aren’t available right 
away: the file must first be 
transferred over the network. 

Rather than locking up while the 
file is downloading, browsers 
download asynchronously.

var promises = []
promises.push(d3.json("file1.json"))
promises.push(d3.csv("file2.csv”))
myDataPromises = 
Promise.all(promises).then(function(data) {

var json_data = data[0]
var csv_data = data[1]

// do some stuff
}



Maps



D3 mapping concepts

D3 requests vector geographic information in the form of GeoJSON and renders 
this to SVG or Canvas in the browser.

The 3 concepts that are key to understanding map creation using D3 are:

● GeoJSON  - a JSON-based format for specifying geographic data
● Projections - functions that convert from latitude/longitude co-ordinates to x 

& y co-ordinates
● Geographic path generators - functions that convert GeoJSON shapes into 

SVG or Canvas paths

* source

https://www.d3indepth.com/geographic/


Geographic Data

GeoJSON is a standard for representing geographic data using the JSON format 
and the full specification is at geojson.org.

TopoJSON is an extension of GeoJSON, which eliminates redundancy by storing 
relational information between geographic features.

http://geojson.org/


GeoJSON 

Each feature consists of 

● geometry  - simple polygons in the case of the countries.
● properties can contain any information about the feature such as name, id, and other data such as 

population, GDP etc.

{
  "type": "Feature",
  "geometry": {
    "type": "Point",
    "coordinates": [125.6, 10.1]
  },
  "properties": {
    "name": "Dinagat Islands"
  }
}

https://en.wikipedia.org/wiki/GeoJSON


Maps download

https://geojson-maps.ash.ms/ 

https://observablehq.com/collection/@nitaku/official-italy-data

... 

https://geojson-maps.ash.ms/
https://observablehq.com/collection/@nitaku/official-italy-data


Projections

A projection function takes a longitude and latitude coordinate (in the form of an 
array [lon, lat]) and transforms it into an x and y coordinate.

Common projections:

● Azimuthal
● Composite
● Conic
● Cylindrical

https://github.com/d3/d3-geo-projection
https://github.com/d3/d3-geo#azimuthal-projections
https://github.com/d3/d3-geo#composite-projections
https://github.com/d3/d3-geo#conic-projections
https://github.com/d3/d3-geo#cylindrical-projections


Geographic Path Generator

A geographic path generator is a function that takes a GeoJSON object and 
converts it into an SVG path string. (In fact, it’s just another type of shape 
generator.)

We create a generator using the method .geoPath() and configure it with a 
projection function



Example

var projection = d3.geoEquirectangular();
var geoGenerator = d3.geoPath()
  .projection(projection);

var geoJson = {
  "type": "Feature",
  "properties": {
    "name": "Africa"
  },
  "geometry": {
    "type": "Polygon",
    "coordinates": [[[-6, 36], [33, 30], ... , [-6, 36]]]
  }
}

geoGenerator(geoJson);



Example (cont.)

// Join the features array to path elements

var u = d3.select('#content g.map')

  .selectAll('path')

  .data(geojson.features);

// Create path elements and update the d attribute using the geo generator

u.enter()

  .append('path')

  .attr('d', geoGenerator);



Shapes

Lines

Circles

Grid



Lines

If we need to add lines to a map we can 
achieve it by adding features to our 
GeoJSON.

Lines can be added as a LineString 
feature and will be projected into 
great-arcs (i.e. the shortest distance 
across the surface of the globe). Here’s 
an example where we add a line 
between London and New York:

var line = {
  type: 'Feature',
  geometry: {
    type: 'LineString',
    coordinates: [[0.1278, 
51.5074], [-74.0059, 40.7128]]
  }
}

geoGenerator(line)



Circles

Circle features can be generated 
using d3.geoCircle(). 

Typically the center ([lon, lat]) and the 
angle (degrees) between the points 
are set:

var circle = d3.geoCircle()
  .center([0.1278, 51.5074])
  .radius(5);

// returns a GeoJSON object 
// representing a circle
circle();

// returns a path string 
//representing the projected circle
geoGenerator(circle());



Grid

A GeoJSON grid of longitude and 
latitude lines (known as a graticule) 
can be generated using 
d3.graticule()

var graticule = d3.geoGraticule();

// returns a GeoJSON object 
//representing the graticule
graticule();

// returns a path string 
//representing the projected 
// graticule
geoGenerator(graticule());



Types of maps

Choropleth maps

Heat maps

Proportional symbol maps

Dot density maps

Animated time-series maps

...

* source

https://carto.com/blog/popular-thematic-map-types-techniques-spatial-data/


Choropleth maps - Example

What to consider when creating choropleth maps

https://blog.datawrapper.de/choroplethmaps/#:~:text=Make%20sure%20there%20is%20a,but%20shouldn't%20be%20overdone.
https://www.d3-graph-gallery.com/graph/choropleth_basic.html
https://www.d3-graph-gallery.com/graph/choropleth_basic.html


References

https://www.tutorialsteacher.com/d3js

https://datawanderings.com/2018/10/28/making-a-map-in-d3-js-v-5/

https://coolors.co/gradient-palette/f8caee-852170?number=3 

https://d3-legend.susielu.com/   

https://www.tutorialsteacher.com/d3js
https://datawanderings.com/2018/10/28/making-a-map-in-d3-js-v-5/
https://coolors.co/gradient-palette/f8caee-852170?number=3
https://d3-legend.susielu.com/

