
Laura Semini
Ingegneria del Software
Dipartimento di Informatica
Università di Pisa

 “Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice”

▪ -- Christopher Alexander A Pattern Language, 1977

 C. Alexander ha definito i design patterns studiando tecniche per
migliorare il processo di progettazione di edifici e aree urbane

 Ogni pattern è una regola in tre parti, che esprime una relazione tra
▪ Un contesto

▪ Un problema

▪ Una soluzione

 DEF: “una soluzione a un problema in un contesto”

 I pattern possono essere applicati a diverse aree, compreso lo
sviluppo software

analysis

Architetural
Detailed • coding

• unit testing

• integration

• system
testing

design

implementation

maintenance

 Sono 23 design pattern suddivisi in base al loro scopo
 Creazionali:

▪ propongono soluzioni per creare oggetti

 Comportamentali:

▪ propongono soluzioni per gestire il modo in cui vengono
suddivise le responsabilità delle classi e degli oggetti

 Strutturali:

▪ propongono soluzioni per la composizione strutturale di classi e
oggetti

 Factory: a class whose sole job is to easily create and return
instances of other classes

 Creational patterns abstract the object instantiation process.
▪ They hide how objects are created and help make the overall system

independent of how its objects are created and composed.

▪ They make it easier to construct complex objects instead of calling a
constructor, use a method in a "factory" class to set up the object saves lines
and complexity to quickly construct / initialize objects

 examples in Java:
▪ borders (BorderFactory),

▪ key strokes (KeyStroke),

▪ network connections (SocketFactory)

 Each time we invoke the “new” command to
create a new object, we violate the “Code to an
Interface” design principle

 Example

▪ List list = new ArrayList()

 Even though our variable’s type is set to an
“interface”, in this case “List ”, the class that
contains this statement depends on “ArrayList”

 if you have code that checks a few variables and instantiates a
particular type of class based on the state of those variables, then
the containing class depends on each referenced concrete class

▪ if (condition) { return new ArrayList(); }

else { return new LinkedList();}

 Obvious Problems: needs to be recompiled if classes change
▪ add new classes → change this code

▪ remove existing classes → change this code

 This means that this code violates the open-closed and the
information hiding design principles

 In generale una Factory è un Pure Fabrication con
l’obiettivo di:

▪ Confinare la responsabilità di creazioni complesse in
oggetti coesi

▪ Incapsulare la complessità della logica di creazione

 Simple Factory (detto anche Concrete Factory)

▪ non è un pattern GoF

▪ è una semplificazione molto diffusa di AF

 Abstract Factory (AF)

 Factory Method (FM)

 Problem:

▪ Not to violate High Cohesion and Low Coupling

 Solution:

▪ Assign a highly cohesive set of responsibilities to an
artificial class that does not represent anything in the
problem domain, in order to support high cohesion,
low coupling, and reuse.

 The design of objects can be roughly partitioned to two groups
▪ Those chosen by representational decomposition

▪ Those chosen by behavioral decomposition

 The latter group does not represent anything in the problem
domain, they are simply made up for the convenience of the
designer, thus the name pure fabrication.

 The classes are designed to group together related behavior
 A pure fabrication object is a kind of functioncentric (or

behavioral) object

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

 Problema

▪ Chi deve essere responsabile di creare gli oggetti
quando la logica di creazione è complessa e si vuole
separare la logica di creazione dalle altre funzionalità
di un oggetto?

 Soluzione

▪ La delega a un oggetto (Pure Fabrication) chiamato
Factory che gestisce la creazione

public class PizzaStore {

Pizza orderPizza(String type){

Pizza pizza;

If (type == CHEESE)
pizza = new CheesePizza();

else if (type == PEPPERONI)
pizza = new PepperoniPizza();

else if (type == PESTO)
pizza = new PestoPizza();

pizza.prepare();
pizza.bake();
pizza.package();
pizza.deliver();
return pizza
}

}

This becomes unwieldy
as we add to our menu

This part stays the same

Idea: pull out the creation code and put it into an object that only
deals with creating pizzas - the PizzaFactory

public class PizzaStore {
private SimplePizzaFactory factory;

public PizzaStore(SimplePizzaFactory factory)
{
this.factory = factory;
}

public Pizza orderPizza(String type) {
Pizza pizza = factory.createPizza(type);
pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();
return pizza;
}

}

public class SimplePizzaFactory {

public Pizza createPizza(String type) {
if (type.equals("cheese")) {

return new CheesePizza();
} else if (type.equals("greek")) {

return new GreekPizza();
} else if (type.equals("pepperoni")) {

return new PepperoniPizza();
}

}
}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Replace concrete instantiation with call to the PizzaFactory to create a new pizza

Now we don’t need to mess with this code if we add new pizzas

 Class creational patterns focus on the use of
inheritance to decide the object to be instantiated

▪ Factory Method

 Object creational patterns focus on the delegation of
the instantiation to another object

▪ Abstract Factory

Operates on products
produced by the Factory

method

In the official definition:
Factory method lets the subclasses decide which class to instantiate
Decide: --not because the classes themselves decide at runtime

-- but because the creator is written withount knowlwdge of the actual products
that will be created, which is decided by the choice of the subclass that is usd

 To demonstrate the factory method pattern, the pizza store
example evolves
▪ to include the notion of different franchises

▪ that exist in different parts of the country (California, New York, Chicago)

 Each franchise will need its own factory to create pizzas that
match the proclivities of the locals
▪ However, we want to retain the preparation process that has made

PizzaStore such a great success

 The Factory Method Design Pattern allows you to do this by
▪ placing abstract, “code to an interface” code in a superclass

▪ placing object creation code in a subclass

▪ PizzaStore becomes an abstract class with an abstract createPizza() method

 We then create subclasses that override createPizza() for each
region

Example3: Pizza: Factory Method
public abstract class PizzaStore {

protected abstract createPizza(String type);

public Pizza orderPizza(String type) {

Pizza pizza = createPizza(type);

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

public class NYPizzaStore extends PizzaStore {

public Pizza createPizza(String type) {

if (type.equals("cheese")) {

return new NYCheesePizza();

} else if (type.equals("greek")) {

return new NYGreekPizza();

} else if (type.equals("pepperoni")) {

return new NYPepperoniPizza();

}

return null;

}

}

 Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

 The Abstract Factory pattern is very similar to the
Factory Method pattern.

▪ One difference between the two is that with the Abstract
Factory pattern, a class delegates the responsibility of object
instantiation to another object via composition whereas the
Factory Method pattern uses inheritance and relies on a
subclass to handle the desired object instantiation.

 Actually, the delegated object frequently uses factory
methods to perform the instantiation!

MazeGame

public Wall makeWall()

{return new

EnchantedWall();}

 The factory method approach to the pizza store is a big success
allowing our company to create multiple franchises across the
country quickly and easily

 But, bad news, we have learned that some of the franchises
▪ while following our procedures (the abstract code in PizzaStore forces them

to)

▪ are skimping on ingredients in order to lower costs and increase margins

 Our company’s success has always been dependent on the use of
fresh, quality ingredients
▪ so “Something Must Be Done!”

 We will alter our design such that a factory is used to
supply the ingredients that are needed during the pizza
creation process

▪ Since different regions use different types of ingredients, we’ll
create region-specific subclasses of the ingredient factory to
ensure that the right ingredients are used

▪ But, even with region-specific requirements, since we are
supplying the factories, we’ll make sure that ingredients that
meet our quality standards are used by all franchises
▪ They’ll have to come up with some other way to lower costs. ☺

Note the introduction of more abstract classes:

Dough, Sauce, Cheese, etc.

 This factory ensures that
quality ingredients are
used during the pizza
creation process…

 … while also taking into
account the tastes of
people who live in
Chicago

 But how (or where) is this
factory used?

 First, alter the Pizza abstract base class to make
the prepare method abstract…

 Then, update Pizza subclasses to make use of the
factory! Note: we no longer need subclasses like
NYCheesePizza and ChicagoCheesePizza because
the ingredient factory now handles regional
differences

 We need to
update our
PizzaStore
subclasses to
create the
appropriate
ingredient
factory and pass
it to each Pizza
subclass in the
createPizza
factory method.

 We created an ingredient factory interface to allow for the
creation of a family of ingredients for a particular pizza

 This abstract factory gives us an interface for creating a family of
products
▪ The factory interface decouples the client code from the actual factory

implementations that produce context-specific sets of products

 Our client code (PizzaStore) can then pick the factory appropriate
to its region, plug it in, and get the correct style of pizza (Factory
Method) with the correct set of ingredients (Abstract Factory)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica. 36

 Intent

▪ Ensure a class only has one instance

▪ Provide a global point of access to it

 Motivation

▪ Sometimes we want just a single instance of a class to exist in
the system;
▪ For example, we want just one window manager. Or just one factory for a

family of products.

▪ We need to have that one instance easily accessible

▪ And we want to ensure that additional instances of the class can
not be created

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.37

 Unique objects are not uncommon
 Most objects in an application bear a unique

responsibility
 Yet singleton classes are relatively rare
 Fact that an object/class is unique doesn’t mean

that the Singleton pattern is at work

 Choc-O-Holic Inc’s industrial
strength Chocolate Boiler mixes
ingredients and milk at a high
temperature to make liquid
chocolate

 The ChocolateBoiler class also has
two boolean attributes empty and
boiled

 The ChocolateBoiler class contains
five methods fill(), drain(), boil(),
isEmpty() and isBoiled()

 The Chocolate Boiler has overflowed! It added
more milk to the mix even though it was full!!

 What happened?
 Hint: What happens if more than two instances of

ChocolateBoiler are created?

 The problem is with two instances controlling the
same phisycal boiler

 How can you prevent other developers from
constructing new instances of your class?

▪ Create a single constructor with private access

▪ private static ChocolateBoiler _chocolateboiler = new ChocolateBoiler()

▪ Make the unique instance available through a public
static GetChocolateBoiler() method

 Rather than creating a singleton instance ahead of time – wait
until instance is first needed
▪ public static ChocolateBoiler GetChocolateBoiler()

▪ {

▪ if (_chocolateboiler == null)

▪ {

▪ _chocolateboiler = new ChocolateBoiler();

▪ // ...

▪ }

▪ return _chocolateboiler

▪ }

 Might not have enough information to instantiate
a singleton at static initialization time

▪ Example: a ChocolateBoiler singleton may have to wait
for the real factory’s machines to establish
communication channels

 If the singleton is resource intensive and may not
be required

▪ Example: a program that has an optional query
function that requires a database connection

public class ChocolateBoiler {

private static ChocolateBoiler _chocolateboiler;

private ChocolateBoiler () {};

public static ChocolateBoiler GetChocolateBoiler()

{

if (_chocolateboiler == null)

{

_chocolateboiler = new ChocolateBoiler();

// ...

}

return _chocolateboiler

}

}

http://en.wikipedia.org/wiki/File:Singleton_UML_class_diagram.svg

➢ as it is, problems with threads …

 If the program is run in a multi-threaded environment it is
possible for two threads to initialize two singletons at
roughly the same time

Thread 1 Thread 2

public stat ChocolateBoiler

getInstance()

public stat ChocolateBoiler

getInstance()

if (uniqueInstance == null)

if (uniqueInstance == null)

uniqueInstance =

new ChocolateBoiler()

uniqueInstance =

new ChocolateBoiler()

return uniqueInstance;

return uniqueInstance;

 In the case of multithreading with more than one processor the
getInstance() method could be called at more or less the same
time resulting in to more than one instance being created.

 Possible solutions:
1. Move to an eagerly created instance rather than a lazily created one.

▪ Easy! But memory may be allocated and not used.

2. Synchronize the getInstance() method

▪ Disadvantage – synchronizing can decrease system performance.

3. Use double—checked—locking

▪ The idea is to avoid the costly synchronization for all invocations of the method
except the first.

 What if we want to be able to subclass Singleton and have the
single instance be a subclass instance?

 How could we do this?
▪ Have the static instance() method determine the particular subclass instance

to instantiate. This could be done via an argument or environment variable.
The constructors of the subclasses can not be private in this case, and thus
clients could instantiate other instances of the subclasses.

▪ Have each subclass provide a static instance() method. Now the subclass
constructors can be private.

49

 With a singleton you can pass the object as a
parameter to another method;

 With a singleton you can implement interfaces or
derive a base class;

 With a singleton you can use a factory pattern to
build up your instance (and/or choose which class
to instantiate).

 In both cases care with multithreading.
50

