
Vincenzo Gervasi, Laura Semini

Ingegneria del Software

Dipartimento di Informatica

Università di Pisa

� “Each pattern describes a problem which occurs

over and over again in our environment, and then

describes the core of the solution to that

problem, in such a way that you can use this

solution a million times over, without ever doing

it the same way twice”

� -- Christopher Alexander A Pattern Language, 1977

� Alexander studied ways to improve the process of designing

buildings and urban areas.

� “Each pattern is a three-part rule, which expresses a relation

between a certain context, a problem and a solution.”

� Hence, the common definition of a pattern: “A solution to a

problem in a context.”

� Patterns can be applied to many different areas of human

endehavour, including software development

analysis

Architetural

Detailed • coding

• unit testing

• integration

• system

testing

design

implementation

maintenance

� “A design pattern names, abstracts, and identifies

key aspects of a common design structure that

makes it useful for creating a reusable object-

oriented design.”

� The GoF design patterns are “descriptions of

communicating objects and classes that are

customized to solve a general design problem in a

particular context.”

� Factory: a class whose sole job is to easily create and return

instances of other classes

� Creational patterns abstract the object instantiation process.

� They hide how objects are created and help make the overall system

independent of how its objects are created and composed.

� They make it easier to construct complex objects instead of calling a

constructor, use a method in a "factory" class to set up the object saves lines

and complexity to quickly construct / initialize objects

� examples in Java:

� borders (BorderFactory),

� key strokes (KeyStroke),

� network connections (SocketFactory)

� Class creational patterns focus on the use of

inheritance to decide the object to be instantiated

� Factory Method

� Object creational patterns focus on the delegation of

the instantiation to another object

� Abstract Factory

� Each time we invoke the “new” command to

create a new object, we violate the “Code to an

Interface” design principle

� Example

� Duck duck = new DecoyDuck()

� Even though our variable’s type is set to an

“interface”, in this case “Duck”, the class that

contains this statement depends on “DecoyDuck”

� if you have code that checks a few variables and instantiates a

particular type of class based on the state of those variables, then

the containing class depends on each referenced concrete class
▪ if (hunting) { return new DecoyDuck(); } //decoy=da richiamo

▪ else { return new RubberDuck();}

� Obvious Problems: needs to be recompiled if classes change

� add new classes � change this code

� remove existing classes � change this code

� This means that this code violates the open-closed principle and

the “encapsulate what varies” design principle

/**

* MazeGame.

*/

public class MazeGame {

// Create the maze.

public Maze createMaze() {

Maze maze = new Maze();

Room r1 = new Room(1);

Room r2 = new Room(2);

Door door = new Door(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, new Wall());

r1.setSide(MazeGame.East, door);

r1.setSide(MazeGame.South, new Wall());

r1.setSide(MazeGame.West, new Wall());

r2.setSide(MazeGame.North, new Wall());

r2.setSide(MazeGame.East, new Wall());

r2.setSide(MazeGame.South, new Wall());

r2.setSide(MazeGame.West, door);

return maze;

}

}

� What if we wanted to have enchanted mazes with

EnchantedRooms and EnchantedDoors? Or a

secret agent maze with DoorWithLock and

WallWithHiddenDoor?

� What would we have to do with the createMaze()

method? As it stands now, we would have to

make significant changes to it because of the

explicit instantiations using the new operator of

the objects that make up the maze.

/**

* MazeGame with a factory methods.

*/

public class MazeGame {

public Maze makeMaze() {return new Maze();}

public Room makeRoom(int n) {return new Room(n);}

public Wall makeWall() {return new Wall();}

public Door makeDoor(Room r1, Room r2) {return new

Door(r1, r2);}

Abstract or

concrete

public Maze createMaze() {

Maze maze = makeMaze();

Room r1 = makeRoom(1);

Room r2 = makeRoom(2);

Door door = makeDoor(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, makeWall());

r1.setSide(MazeGame.East, door);

………..

r2.setSide(MazeGame.West, door);

return maze;

}

}

� Consider this EnchantedMazeGame class:

public class EnchantedMazeGame extends MazeGame {

public Room makeRoom(int n) {return new enchantedRoom(n);}

public Wall makeWall() {return new EnchantedWall();}

public Door makeDoor(Room r1, Room r2){return new

EnchantedDoor(r1, r2);}

}

� The createMaze() method of MazeGame is inherited by

EnchantedMazeGame

� It can be used to create regular mazes

� or enchanted mazes without modification!

Operates on products

produced by the Factory
method

In the official definition:

Factory method lets the subclasses decide which class to instantiate

Decide: --not because the classes themselves decide at runtime

-- but because the creator is written withount knowlwdge of the actual products

that will be created, which is decided by the choice of the subclass that is usd

� Product

� Defines the interface for the type of objects the factory method

creates

� ConcreteProduct

� Implements the Product interface

� Creator

� Declares the factory method, which returns an object of type

Product

� ConcreteCreator

� Overrides the factory method to return an instance of a

ConcreteProduct

� The reason this works is that the createMaze() method

of MazeGame defers the creation of maze objects to its

subclasses.

� In this example, the correlations are:

� Creator => MazeGame

� ConcreteCreator => EnchantedMazeGame
▪ (MazeGame is also a ConcreteCreator)

� Product => MapSite

� ConcreteProduct => Wall, Room, Door, EnchantedWall,

EnchantedRoom, EnchantedDoor

� Maze is a concrete Product (but also Product)

� Applicability

� Use the Factory Method pattern in any of the following

situations:

▪ A class can't anticipate the class of objects it must create

▪ A class wants its subclasses to specify the objects it creates

public class PizzaStore {

Pizza orderPizza(String type){

Pizza pizza;

If (type == CHEESE)

pizza = new CheesePizza();

else if (type == PEPPERONI)

pizza = new PepperoniPizza();

else if (type == PESTO)

pizza = new PestoPizza();

pizza.prepare();

pizza.bake();

pizza.package();

pizza.deliver();

return pizza

}

}

This becomes unwieldy

as we add to our menu

This part stays the same

Idea: pull out the creation code and put it into an object that only

deals with creating pizzas - the PizzaFactory

Example3: Pizza

Simple solution: just a factory
public class PizzaStore {

private SimplePizzaFactory factory;

public PizzaStore(SimplePizzaFactory factory) {

this.factory = factory;

}

public Pizza orderPizza(String type) {

Pizza pizza = factory.createPizza(type);

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}

public class SimplePizzaFactory {

public Pizza createPizza(String type) {

if (type.equals("cheese")) {

return new CheesePizza();

} else if (type.equals("greek")) {

return new GreekPizza();

} else if (type.equals("pepperoni")) {

return new PepperoniPizza();

}

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Replace concrete instantiation with call to the PizzaFactory to create a new pizza
Now we don’t need to mess with this code if we add new pizzas

� To demonstrate the factory method pattern, the pizza store

example evolves

� to include the notion of different franchises

� that exist in different parts of the country (California, New York, Chicago)

� Each franchise will need its own factory to create pizzas that

match the proclivities of the locals

� However, we want to retain the preparation process that has made

PizzaStore such a great success

� The Factory Method Design Pattern allows you to do this by

� placing abstract, “code to an interface” code in a superclass

� placing object creation code in a subclass

� PizzaStore becomes an abstract class with an abstract createPizza() method

� We then create subclasses that override createPizza() for each

region

Example3: Pizza: Factory Method
public abstract class PizzaStore {

protected abstract createPizza(String type);

public Pizza orderPizza(String type) {

Pizza pizza = createPizza(type);

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.25

public class NYPizzaStore extends PizzaStore {

public Pizza createPizza(String type) {

if (type.equals("cheese")) {

return new NYCheesePizza();

} else if (type.equals("greek")) {

return new NYGreekPizza();

} else if (type.equals("pepperoni")) {

return new NYPepperoniPizza();

}

return null;

}

}

� “Depend upon abstractions. Do not depend upon concrete

classes.”

� Normally “high-level” classes depend on “low-level” classes;

� Instead, they BOTH should depend on an abstract interface

� DependentPizzaStore depends on eight concrete Pizza subclasses

� PizzaStore, however, depends on the Pizza interface, as do the Pizza

subclasses

� In this design, PizzaStore (the high-level class) no longer depends

on the Pizza subclasses(the low level classes); they both depend

on the abstraction “Pizza”. Nice.

� Benefits

� Code is made more flexible and reusable by the elimination of instantiation

of application-specific classes

� Code deals only with the interface of the Product class and can work with

any ConcreteProduct class that supports this interface

� Liabilities

� Clients might have to subclass the Creator class just to instantiate a

particular ConcreteProduct

� Implementation Issues

� Creator can be abstract or concrete

� Should the factory method be able to create multiple kinds of products? If

so, then the factory method has a parameter (possibly used in an if-else!) to

decide what object to create.

� Provide an interface for creating families of related or

dependent objects without specifying their concrete

classes.

� The Abstract Factory pattern is very similar to the

Factory Method pattern.

� One difference between the two is that with the Abstract

Factory pattern, a class delegates the responsibility of object

instantiation to another object via composition whereas the

Factory Method pattern uses inheritance and relies on a

subclass to handle the desired object instantiation.

� Actually, the delegated object frequently uses factory

methods to perform the instantiation!

� AbstractFactory

� Declares an interface for operations that create abstract product objects

� ConcreteFactory

� Implements the operations to create concrete product objects

� AbstractProduct

� Declares an interface for a type of product object

� ConcreteProduct

� Defines a product object to be created by the corresponding concrete

factory

� Implements the AbstractProduct interface

� Client

� Uses only interfaces declared by AbstractFactory and AbstractProduct

classes

// MazeFactory.

public class MazeFactory {

public Maze makeMaze() {return new Maze();}

public Room makeRoom(int n) {return new Room(n);}

public Wall makeWall() {return new Wall();}

public Door makeDoor(Room r1, Room r2) {

return new Door(r1, r2);}

}

Note that the MazeFactory class is just a collection of factory

methods!

Also, note that MazeFactory acts as both an AbstractFactory and a

ConcreteFactory.

The createMaze() method of the MazeGame class takes a MazeFactory reference

as a parameter:

public class MazeGame {

public Maze createMaze(MazeFactory factory) {

Maze maze = factory.makeMaze();

Room r1 = factory.makeRoom(1);

Room r2 = factory.makeRoom(2);

Door door = factory.makeDoor(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, factory.makeWall());

…

return maze;

}}

createMaze()
delegates the

responsibility for
creating maze
objects to the

MazeFactory object

public class EnchantedMazeFactory extends MazeFactory {

public Room makeRoom(int n) {return new EnchantedRoom(n);}

public Wall makeWall() {return new EnchantedWall();}

public Door makeDoor(Room r1, Room r2)

{return new EnchantedDoor(r1, r2);}

}

In this example, the correlations are:

AbstractFactory => MazeFactory

ConcreteFactory => EnchantedMazeFactory (MazeFactory is also a

ConcreteFactory)

AbstractProduct => MapSite

ConcreteProduct => Wall, Room, Door, EnchantedWall, EnchantedRoom,

EnchantedDoor

MazeGame

public Wall makeWall()

{return new

EnchantedWall();}

� Benefits

� Isolates clients from concrete implementation classes

� Makes exchanging product families easy, since a

particular concrete factory can support a complete

family of products

� Enforces the use of products only from one family

� Liabilities

� Supporting new kinds of products requires changing

the AbstractFactory interface

� How many instances of a particular concrete factory should there

be?

� An application typically only needs a single instance of a particular concrete

factory

� How can the factories create the products?

� Factory Methods

� Factories

� How can new products be added to the AbstractFactory interface?

� AbstractFactory defines a different method for the creation of each product

it can produce

� We could change the interface to support only a make(String kindOfProduct)

method

� The factory method approach to the pizza store is a big success

allowing our company to create multiple franchises across the

country quickly and easily

� But, bad news, we have learned that some of the franchises

� while following our procedures (the abstract code in PizzaStore forces them

to)

� are skimping on ingredients in order to lower costs and increase margins

� Our company’s success has always been dependent on the use of

fresh, quality ingredients

� so “Something Must Be Done!”

� We will alter our design such that a factory is used to

supply the ingredients that are needed during the pizza

creation process

� Since different regions use different types of ingredients, we’ll

create region-specific subclasses of the ingredient factory to

ensure that the right ingredients are used

� But, even with region-specific requirements, since we are

supplying the factories, we’ll make sure that ingredients that

meet our quality standards are used by all franchises

▪ They’ll have to come up with some other way to lower costs. ☺

Note the introduction of more abstract classes:

Dough, Sauce, Cheese, etc.

� This factory ensures that

quality ingredients are

used during the pizza

creation process…

� … while also taking into

account the tastes of

people who live in

Chicago

� But how (or where) is this

factory used?

� First, alter the Pizza abstract base class to make

the prepare method abstract…

� Then, update Pizza subclasses to make use of the

factory! Note: we no longer need subclasses like

NYCheesePizza and ChicagoCheesePizza because

the ingredient factory now handles regional

differences

� We need to

update our

PizzaStore

subclasses to

create the

appropriate

ingredient

factory and pass

it to each Pizza

subclass in the

createPizza

factory method.

� We created an ingredient factory interface to allow for the

creation of a family of ingredients for a particular pizza

� This abstract factory gives us an interface for creating a family of

products

� The factory interface decouples the client code from the actual factory

implementations that produce context-specific sets of products

� Our client code (PizzaStore) can then pick the factory appropriate

to its region, plug it in, and get the correct style of pizza (Factory

Method) with the correct set of ingredients (Abstract Factory)

� Apply the factory patterns to produce:

� Products: TVs and Remote controls (RC)

� Two types: Samsung and Philips

� With Factory method: creator builds a TV and its

RC, then packs it.

� With Abstract Factory: a client chooses the

factory and asks for the product(s) he needs.

