Design Patterns
Factories
Singleton

Laura Semini, Ingegneria del Software

Dipartimento di Informatica, Universita di Pisa

UNIVERSITA DI PISA



Dovreste aver gia visto dei metodi factory

INETADDRESS: FACTORY METHODS

L 1 T L

* metodi statici di una classe che restituiscono oggetti di quella classe

* i seguenti metodi contattano il DNS per la risoluzione di indirizzo/hostname
static InetAddress getlLocalHost() throws UnknownHostEception
static InetAddress getByName (String hostname) throws UnknownHostException
static InetAddress [] getAllByName (String hostName)
throws UnknownHostException

static InetAddress getLoopBackAddress()

* i seguenti metodi statici costruiscono oggetti di tipo InetAddress, ma non
contattano il DNS (utile se DNS non disponibile e conosco indirizzo/host)

° nessuna garanzia sulla correttezza di hostname/IP, unknownHostException sollevata

solo se l'indirizzo € malformato
static InetAddress getByAddress(byte IPAddr[]) throws UnknownHostException

static InetAddress getByAddress (String hostName, byte IPAddr[])
throws UnknownHostException

[ "TTZHME-P
ne ress,

Dipartimento di Informatica & i . Ricci
Universita degli Studi di Pisa - aura Ricci
for clients




Pattern creazionali: le factories

Factory: a class whose sole job is to easily create and return
instances of other classes

Creational patterns abstract the object instantiation process.

> They hide how objects are created and help make the overall system
independent of how its objects are created and composed.

> They make it easier to construct complex objects instead of calling a
constructor, use a method in a "factory" class to set up the object saves lines
and complexity to quickly construct / initialize objects

examples in Java:
> borders (BorderFactory),
> key strokes (KeyStroke),
> network connections (SocketFactory)



The Problem With “New”

Each time we invoke the “new” command to create a new object, we
violate the “Code to an Interface” design principle

Example

List list = new ArrayList()

Even though our variable’s type is set to an “interface”, in this case
“List 7, the class that contains this statement depends on “ArrayList”




In addition

= if you have code that checks a few variables and instantiates a
particular type of class based on the state of those variables, then the
containing class depends on each referenced concrete class

if (condition) { return new ArraylList(); }
else { return new LinkedList();}

= QObvious Problems: needs to be recompiled if classes change

add new classes = change this code
remove existing classes =2 change this code

= This means that this code violates the open-closed and the
information hiding design principles



Vedremo 3 tipi di pattern Factories

1. Simple Factory (detto anche Concrete Factory)
non e un pattern GoF
e una semplificazione molto diffusa di Abstract Factory

2. Abstract Factory

3. Factory Method




Simple Factory (aka concrete factory)

- Problema

- Chi deve essere responsabile di creare gli oggetti qguando
a logica di creazione e complessa e si vuole separare la
ogica di creazione dalle altre funzionalita di un oggetto?

- Soluzione

| a delega a un oggetto chiamato Factory che gestisce |la
creazione




Simple(st) Factory: structure

Factory ) Client

[ — T CreateProductA()
AbstractProduct
CreateProductB() A }'

?
g
:

| AbstractProductA CreateProductA(){
return new ProductAl AbslractProductB ]‘

) %




Another simple Factory: structure

Factory ) - Clienmt

[ — T CreateProductA()
, CreateProductB() AbstractProductA }-
|
| 2
|
| ProductA2 ProductA1
|
|

AbstractProductA CreateProductA(..) {

AbstractProducts =

if(.) return new ProductAl
else return new ProductA? A

ProductB2 ProductB1




Example: Consider a pizza store that
makes different types of pizzas

public class PizzaStore {

Pizza orderPizza(String type){

Pizza pizza; BN
If (type == CHEESE) . . .
S e e - This is creation code: it
else if (type == PEPPERONI)
pizza = new PepperoniPizza(), beCOmeS CumberSOme
else if (type == PESTO) as we add to our menu

pizza = new PestoPizza(): _
pizza.prepare();|
pizza.bake(); TN I I
.. This is the preparation of the pizza,

pizza.deliver() this part stays the same (independent
return pizza )

) on the pizza type)

}

ldea: pull out the creation code and put it into an object that
only deals with creating pizzas - the PizzaFactory



Class diagram

I PizzaStare LLUSRES > PE
Olﬂﬂpiﬂﬂﬂ}- .._.u.:.-.......I:I.s..e..sl................-.-l-. plﬂpale“
Pizza bake()
.. T<<new>> cut()

<Ehew>> e

- -:":newﬁ:‘-r_

Pizza pizza;

If (type == CHEESE) | CheesePizza ' ‘ VeggiePizza ' ‘ PepperoniPizza |

pizza = new CheesePizza();
else if (type == PEPPERONI)

pizza = new PepperoniPizza();
else if (type == PESTO)

pizza = new PestoPizza();
pizza.prepare();
pizza.bake();
pizza.package();
pizza.deliver();
return pizza

}
}




Simple solution: a SimplePizzaFactory

public class PizzaStore { public class SimplePizzaFactory {

private SimplePizzaFactory factory;
public Pizza createPizza(String type) {

public PizzaStore(SimplePizzaFactory factory) { if (type.equals("cheese") {

this.factory = factory; return new CheesePizza();
¥
i else if (type.equals('greek™)) {
public Pizza orderPizza(String type) { }retum new GreekPizza();
Pizza pizza = factory.createPizza(type); else if (type.equals("pepperoni")) {
pizza.prepare(); N ;eturn new PepperoniPizza();

pizza.bake();
pizza.package();

pizza.deliver();

return pizza

Replace concrete instantiation with call to the PizzaFactory to create a new pizza
} Now we don’t need to mess with this code if we add new pizzas




Class Diagram of New Solution

= PlzzaStore
Client orderPizzal):

Pizza

Products

factory ‘ SimplePlzzaFactory
createPizzal(): Pizza

Factory

Plzza

prepare()
bake()
cut()

hm! I

! CheesePlzza I

‘ VegglePlzza I ‘Feppernnlplzzal

While this is nice, its not as flexible as it can be: 1o increase flexibility we
need to look at two design patierns: Factory Method and Abstract Factory



GoF Factory Patterns

Class creational patterns focus on the use of inheritance to
decide the object to be instantiated

- Factory Method

Object creational patterns focus on the delegation of the
instantiation to another object

- Abstract Factory



Factory Method

UNIVERSITA DI PISA



The Factory Method Pattern

Creator
Product FactoryMethod()
A AnOperation{) O

Al

product = FactoryMethod() ﬁ

ConcreteProduct r‘ """""" ConcreleCreator

Operates on products
produced by the Factory
method

FactoryMethod() ©-

o - ——— - -

ol
return new ConcreteProduct

In the official definition:

Factory method lets the subclasses decide which class to instantiate
Decide: --not because the classes themselves decide at runtime
-- but because the creator is written withont knowledge of the actual products
that will be created, which is decided by the choice of the subclass that is used




The Factory Method Pattern: Participants

Product
Defines the interface for the type of objects the factory method
creates

ConcreteProduct
Implements the Product interface

Creator
Declares the factory method, which returns an object of type
Product

ConcreteCreator

Overrides the factory method to return an instance of a
ConcreteProduct



Example: Pizza
Simple Factory to Factory Method

To demonstrate the factory method pattern, the pizza store example
evolves

> toinclude the notion of different franchises
> that exist in different parts of the country (California, New York, Chicago)

Each franchise will need its own factory to create pizzas that match
the proclivities of the locals

- However, we want to retain the preparation process that has made PizzaStore
such a great success

The Factory Method Design Pattern allows you to do this by
> placing abstract, “code to an interface” code in a superclass
> placing object creation code in a subclass
> PizzaStore becomes an abstract class with an abstract createPizza() method

We then create subclasses that override createPizza() for each region



Example3: Pizza: Factory Method
CREATOR CONCRETE

l CREATOR
public abstract class PizzaStore {

protected abstract createPizza(String type);

e : : public class NYPizzaStore extends PizzaStore {
public Pizza orderPizza(String type) {
public Pizza createPizza(String type) {
Pizza pizza = createPizza(type);
if (type.equals("cheese")) {

pizza.prepare(); return new NYCheesePizza();

pizza.bake(); } else if (type.equals("greek")) {

pizza.cut(); return new NY GreekPizza();
pizza.box(); } else if (type.equals("pepperoni”)) {
return pizza; return new NYPepperoniPizza();
} }
) return null;
}
}



We want to build a Maze




Example: Maze

ll MapSite
Enter()

Room Wall Door

Enter() Enter() Enter()
Maze SetSide() _

GetSide() IsOpen
AddRoom()
RoomNo() roomNumber




MazeGame class ha un metodo createMaze()
che crea le component e le assembla (2 responsabilita)

r1.setSide(MazeGame.North, new Wall());

5 %
>/|< MazeGame. rl.setSide(MazeGame.East, door);
*/ r1.setSide(MazeGame.South, new Wall());
oublic class MazeGame { rl.setSide(MazeGame.West, new Wall());
// Create the maze. r2.setSide(MazeGame.North, new Wall());
public Maze createMaze() { r2.setSide(MazeGame.East, new Wall());
Maze maze = new Maze(); r2.setSide(MazeGame.South, new Wall());
Room rl = new Room(1); r2.setSide(MazeGame.West, door);
Room r2 = new Room(2); return maze;
Door door = new Door(rl, r2); }
maze.addRoom(rl); }

maze.addRoom(r2);




The problem with this createMaze() method is
its inflexibility.

What if we wanted to have enchanted mazes with EnchantedRooms
and EnchantedDoors? Or a secret agent maze with DoorWithLock and
WallWithHiddenDoor?

What would we have to do with the createMaze() method? As it
stands now, we would have to make significant changes to it because
of the explicit instantiations using the new operator of the objects
that make up the maze.

How can we redesign things to make it easier for createMaze() to be
able to create mazes with new types of objects?



Let's add factory methods to the
MazeGame class

/**

* MazeGame with a factory methods.

*/

public class MazeGame {
public Maze makeMaze() {return new Maze();}
public Room makeRoom(int n) {return new Room(n);} >

public Wall makeWall() {return new Wall();}

public Door makeDoor(Room r1, Room r2) {return new Door(rl, r2);}

« Astratti (Ia creazione delle parti del labirinto € realizzata
nelle sottoclassi)
* 0 concreti (viene data una implementazione di default
della creazione delle parti




createMaze implementa I'assemblaggio

public Maze createMaze() {
Maze maze = makeMaze();

Room r1 = makeRoom(1);

Room r2 = makeRoom(2);

Door door = makeDoor(rl, r2);
maze.addRoom(rl);

maze.addRoom(r2);
rl.setSide(MazeGame.North, makeWali());
rl.setSide(MazeGame.East, door);
r2.setSide(MazeGame.West, door);

return maze;




We made createMaze() just slightly more
complex, but a lot more flexible!

Consider this EnchantedMazeGame

class
public class EnchantedMazeGame extends MazeGame { 2
public Room makeRoom(int n) {return new EnchantedRoon

public Wall makeWall() {return new EnchantedWall();}

public Door makeDoor(Room r1, Room r2){return new EnchantedDoor(r1, r2);}

The createMaze() method of MazeGame is inherited by EnchantedMazeGame
° |t can be used to create regular mazes
° or enchanted mazes without modification!




Factory Method pattern at work: Maze

The reason this works is that the createMaze() method of
MazeGame defers the creation of maze objects to its
subclasses.

In this example, the correlations are:
Creator => MazeGame
ConcreteCreator => EnchantedMazeGame
(MazeGame is also a ConcreteCreator)
Product => Wall, Room, Door

ConcreteProduct => EnchantedWall, EnchantedRoom,
EnchantedDoor

Maze is a concrete Product (but also Product)



The Factory Method Pattern

Applicability
Use the Factory Method pattern in any of the following situations:

A class can't anticipate the class of objects it must create
A class wants its subclasses to specify the objects it creates




Consequences

Benefits
> Code is made more flexible and reusable by the elimination of instantiation of
application-specific classes

o Code deals only with the interface of the Product class and can work with any
ConcreteProduct class that supports this interface

Liabilities
> Clients might have to subclass the Creator class just to instantiate a particular
ConcreteProduct

Implementation Issues
o Creator can be abstract or concrete

> Should the factory method be able to create multiple kinds of products? If so,
then the factory method has a parameter (possibly used in an if-else!) to decide
what object to create.



Abstract Factory




Intent

Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

The Abstract Factory pattern vs Factory Method pattern.

One difference between the two is that with the Abstract Factory
pattern, a class delegates the responsibility of object instantiation
to another object via composition whereas the Factory Method
pattern uses inheritance and relies on a subclass to handle the
desired object instantiation.

Actually, the delegated object frequently uses factory
methods to perform the instantiation, thus applying both
patterns



Abstract Factory: structure

AbstractFactory Client

CreateProductA()
CrasteProduct8)) AbstractProductA ]-

A A

-[ ProductA2 ] ProductAt }-»

ConcreteFactoryl |- ConcreteFactory2 |-
CreateProductAl() E CreateProductA() '
CreateProductB() | |1 CreateProductBl) || . AbstractProducts |«

| A

I

H procmez] ProductB! ]--




Abstract Factory applied to the
MazeGame: the abstract factory

// MazeFactory — the abstract factory

public interface MazeFactory {
public Maze makeMaze();
public Room makeRoom(int n);
public Wall makeWall();

public Door makeDoor(Room r1, Room r2);

)



Abstract Factory applied to the
MazeGame: a concrete factory

// BasicMazeFactory — a concrete factory producing basic parts

public class BasicMazeFactory implements MazeFactory {
public Maze makeMaze() {return new BasicMaze();}
public Room makeRoom(int n) {return new BasicRoom(n);}
public Wall makeWall() {return new BasicWall();}

public Door makeDoor(Room r1, Room r2) {

return new BasicDoor(rl, r2);}




Abstract Factory applied to MazeGame: client implements assembly and
delegates construction of parts.

The createMaze() method of the MazeGame class takes a MazeFactory
reference as a parameter:

public class MazeGame {

public Maze createMaze(MazeFactory factory) { createMaze() delegates

Maze maze = factory.makeMaze(); the responsibility for
Room rl = factory.makeRoom(1); creating maze parts to
the MazeFactory

Room r2 = factory.makeRoom(2); .
object

Door door = factory.makeDoor(r1, r2);

maze.addRoom(rl);

maze.addRoom(r2);

rl.setSide(MazeGame.North, factory.makeWall());

return maze;



Another concrete factory

public class EnchantedMazeFactory implements MazeFactory {
public Room makeRoom(int n) {return new EnchantedRoom(n);}
public Wall makeWall() {return new EnchantedWall();}
public Door makeDoor(Room r1, Room r2)

{return new EnchantedDoor(r1, r2);}

In this example, the correlations are:
o AbstractFactory => MazeFactory
> ConcreteFactories => BasicMazeFactory and EnchantedMazeFactory

o AbstractProduct => Wall, Room, Door

o ConcreteProduct => BasicWall, BasicRoom, BasicDoor, EnchantedWall, EnchantedRoom,
EnchantedDoor



Factory Method Abstract Factory

AbstractFaclory Client
CreataProductal] /
S T AbstractProductd  pet——

v--#  ProductA2 ProductAl b --,

MazeGame F l &

ConcretleFactoryl - ConcreteFactory2 |
CraataProductAf) CreateProductAl) . .
CreateProductB() CreateProductB{) | | AbstractProduct -

Creator

T T L L T T T T

Product FactoryMethod() SEE T
AnOperaIiun{)\x

A ZF \\\I Client of the

Factory method public Wall makeWall()
Uses the products {return new

ConcreteProduct [-—1 ConcreteCreator / EnchantedWall();}
FactoryMethod()




Moving On the Pizza Store

The factory method approach to the pizza store is a big success

allowing our company to create multiple franchises across the
country quickly and easily

But, bad news, we have learned that some of the franchises

> while following our procedures (the abstract code in PizzaStore forces them to)
o are skimping on ingredients in order to lower costs and increase margins

Our company’s success has always been dependent on the use of
fresh, quality ingredients
> s0 “Something Must Be Done!”




Abstract Factory to the Rescue!

We will alter our design such that a factory is used to
supply the ingredients that are needed during the pizza
creation process

Since different regions use different types of ingredients, we’ll
create region-specific subclasses of the ingredient factory to
ensure that the right ingredients are used
But, even with region-specific requirements, since we are
supplying the factories, we’ll make sure that ingredients that meet
our quality standards are used by all franchises

. They’ll have to come up with some other way to lower costs. ©



First, We need a Factory Interface

public interface PizzalngredientFactory {

public Dough createDough();

public Sauce createSauce();

public Cheese createCheese();
public Veggies[] createVeggies();
public Pepperoni createPepperoni();
public Clams createClam();

= O O 0 =] OnN e W BRI

ot ot

Note the introduction of more abstract classes:
Dough, Sauce, Cheese, etc.



Second, We implement a Region-Specific

Factory

l||public class ChicagoPizzaIngredientFactory
2 implements PlzzalIngredientFactory
3{
4
5 public Dough createDough() {
i return new ThickCrustDough ):
7 ¥
a8
9 public Sauce createsSauace(|) {
1 return new PlumTomatoSauce(|):r
11 *
12
13 public Cheese createCheese() [
1a return new MorzarsellaChesse(|):
15 ¥
16
17 public Veggies] ] createVeggies([) |
1&g veggies wveggies[] = { mew BlackOlives(}.
19 new Spinachi).
20 new Eggplant(}) }:
21 return weggies;
22 ¥
23
24 public Pepperoni createPepperonif)
25 return new SlicedPepperoni{):r
28 ¥
27
28 public Clams createClam(} {
29 return new FrozenClamsi{)r
30 i3
31| ¥
32

This factory ensures that quality
ingredients are used during the pizza
creation process...

... While also taking into account the
tastes of people who live in Chicago

But how (or where) is this factory used?



Pizza abstract base class

1 ||public abstract class Pizza { First, alter the Pizza
2 string name; abstract base class to make
3 the prepare method
4 Dough dough; abstract...

5 Sauce sauce;

A Vegglies wveggises[];:

7 Cheose cheese;

B Pepperonli pepperoni;

9 Clams clam;
10
11 abstract void prepare():;
12
13 volid bake() |
14 system.out.println{"Bake for 25 minutes at 350");
15 }
16
L7 volid cut({) {




A Pizza Subclass

1| public class CheesePizza extends Pizza | Then, update
2 PizzalngredientFactory ingredientFactory; Pizza
3 subclasses to
4 public CheesePizza(PizzalIngredientFactory ingredientFactory) { Emaekfeagtscfry?f
J this.ingredientFactory = ingredientFactory; Note: we n6
i } longer need
7 subclasses
B vold prepare like
PIEpALEl) , s e NYCheesePizz
! System.out.println("Preparing " + name}; 3 and
10 dough = ingredientFactory.createDough(); ChicagoChee
11 sauce = ingredientFactory.createSauce(); sePizza
12 cheese = ingredientFactory.createCheese(); because the
ingredient
13} ¢
actory now
14|} handles
15 regional
differences




0 =1 on LA s L B

= o= = e
e £ B = 2

f—i
L

PizzaStore subclasses

j—i
T

=
o |

public class ChicagoPizzaStore extends PizzaStore {

protected Pizza createPizza(String item) {
Pizza pizza = mull;
PizzalngredientFactory ingredientFactory =
new ChicagoPizzalngredientFactory();

if (item.equals{"cheese"}) {

pizza = new Chees ePlzzat1ngredlentFactnry},
pizza.setName("Chicago Style Cheese Pizza

} else if (item.equals{"veggie™)) {

plizza = new VeggliePizza(ingredientFactory);
pizza.setName( "Chicago 8tyle Veggie Pizza

We need to
update our
PizzaStore
subclasses to
create the
appropriate
ingredient
factory and
pass it to each
Pizza subclass
in the
createPizza
factory
method.



Summary: What did we just do?

1. We created an ingredient factory interface

1. This abstract factory gives us an interface for creating a family of

products

1. The factory interface decouples the client code from the actual factory
implementations that produce context-specific sets of products

2. Our client code (PizzaStore) can then
1. pick the factory appropriate to its region,
2. plugitin, and

3. get the correct style of pizza (Factory Method) with the correct set of
ingredients (Abstract Factory)



Exercise

We want to apply the factory patterns to produce and package:
Products: TVs and Remote controls (RC)
Of two brands: Samsung and Philips
(note that a Samsung TV uses a Samsung RC and a Philips TV uses a Philips RC)

1. Implement using Simple Factory: using parameters. (one unique
factory)

2. Implement using Factory method: creator invoke (Abstract) build to
have a TV and its RC, then packs them in a box

3. Implement using Abstract Factory: a client chooses the factory and
asks for the products he needs, then it packs them in a box



SimpleFactory

Television
SamsungTV PhilipsTV
RemoteC BoxBuild
oxBuilder
TVandRCFactory myFactory . : :
"~ TtcreateTV(marca : string) : Television , _ |¥buildBox(marca : string)
[ | % +createRC(marca : string) : RemoteC Y
SamsungRC PhilipsRC \ \

{if(tmarca=="Samsung")
return new(SamsungTV);

{tv=myFactory.createTV(marca);
, » rc=myFactory.createRC(marca);
if(marca=="Philips")

4 Box box=new Box();
return new(PhilipsTV) box.put(tv):
} oklrek

box.put(rc);
}




Factory Method

{tv=createTV();
rc=createRC(); BoxButlder
Box box=new Box(); [T 777 +buildBox()
box.put(tv); +createTV/() : Television
box.put(rc): +createRC() : RemoteC
| T
SamsungBoxBuilder PhilipsBoxBuilder Television
+createTV() +createTV()
+createRC() +createRC()
] T |
: : SamsungTV PhilipsTV
createTV {return new SamsungTV, } createTV {return new PhilipsTV; }
createRC {return new SamsungRC; } createRC {return new PhilipsRC; }
RemoteC
I |
SamsungRC PhilipsRC




Abstract Factory

TVandRCFactory BoxBuilder
+createTV() : Television myFactory 7~ +buildBox()
+createRC() : RemoteC ' |*setFactory(factory : TVandRCFactory)
\
A y

\

\

\

\
SamsungTVandRCFactory PhilipsTVandRCFactory {tv=myFactory.createTV(); B r———
+createTV() : Television +createTV() : Television rc=myFactory.createRC(); gevision
+createRC() : RemoteC +createRC() : RemoteC Box box=new Box();

! : box.put(tv); [F
createTV {return new SamsungTV; } B : box.put(rc);
createRC {return new SamsungRC; } | } SamsungTV PhilipsTV
:
createTV {return new PhilipsTV; }
createRC {return new PhilipsRC; }
RemoteC
I |
SamsungRC PhilipsRC




Cosa sono i Pure Fabrication

Pattern GRASP

Problem:
- Not to violate High Cohesion and Low Coupling

Solution:

- Assign a highly cohesive set of responsibilities to an
artificial class

- that does not represent anything in the problem
domain,

- in order to support high cohesion, low coupling, and
reuse.



Pure Fabrication: discussion

The design of objects can be roughly partitioned to two
groups

- Those chosen by representational decomposition

- Those chosen by behavioral decomposition

The latter group does not represent anything in the
problem domain, they are simply made up for the
convenience of the designer, thus the name pure

fabrication: The classes are designed to group together
related behavior

A pure fabrication object is a kind of functioncentric (or
behavioral) object



una Factory e un Pure Fabrication

= In generale una Factory e un Pure Fabrication con
I"obiettivo di:
- Confinare la responsabilita di creazioni complesse in
oggetti coesi
- Incapsulare la complessita della logica di creazione




Singleton

. 3
UNIVERSITA DI PISA




The Chocolate Factory Example

The chocolate factory has computer
controlled chocolate boilers. The job of the
boiler is to take chocolate and milk, bring
them to a boil, and then pass them on to the
next phase of making chocolate bars. One
of the main functions of the system is to
prevent accidents such as draining 500 litres
of unboiled mixture, or filing the boiler when
is already full, or boiling an empty boiler.




Chocolate Boiler Controller

The Boiler is controlled by the ChocolateBailer
ChocolateBoiler class ol LN M i
-emgty ; bool
-bodlad | bood
The ChocolateBoiler class has '+ﬁ||.[].
two boolean attributes empty +drain()
and boiled +hoil( }
five methods fill(), drain(), +HsEmptyl) : bool
boil(), isEmpty() and isBoiled() +isBoiled(} - bool




Chocolate Boiler methods

{empty} fill() {lempty}

{lempty and !boiled} boil() {!empty and boiled}

{lempty and boiled} drain() {empty}




Problem:s...

The Chocolate Boiler has overflowed! It
added more milk to the mix even
though it was full!!

What happened?

Hint: What happens if more than two
instances of ChocolateBoiler are
created?

The problem is with two instances
controlling the same phisycal boiler




Singleton pattern

Intent
- Ensure a class only has one instance
- Provide a global point of access to it

Motivation
- Sometimes we want just a single instance of a class to exist in the
system;

For example, we want just one window manager. Or just one factory for a
family of products.

- We need to have that one instance easily accessible

- And we want to ensure that additional instances of the class can
not be created



Recognizing Singleton

Unique objects are not uncommon
Most objects in an application bear a unique responsibility

Yet singleton classes are relatively rare

Fact that an object/class is unique doesn’t mean that the
Singleton pattern is at work




Prevent multiple instances

How can you prevent other developers from constructing
new instances of your class?

Create a single constructor with private access

private static ChocolateBoiler _chocolateboiler = new ChocolateBoiler()

Make the unique instance available through a method:

public static ChocolateBoiler() GetChocolateBoiler()



GetChocolateBoiler() (with lazy Initialization)

public static ChocolateBoiler GetChocolateBoiler()

{
if (_chocolateboiler == null)
{
_chocolateboiler = new ChocolateBoiler();
/] ...
}
return _chocolateboiler
}

Rather than creating a singleton instance ahead of time — wait until instance is
first needed



_chocolateboiler == null VS _chocolateboiler = null

cli:ent ChocolgteBoiler client ChocolateBoiler | | :ChocolateBoiler

getlnstanceﬂ '[ ) E\_ geﬂnstance( )
H ................... »| :ChocolateBoiler




Why use Lazy Initialization?

Might not have enough information to instantiate a

singleton at static initialization time

Example: a ChocolateBoiler singleton may have to wait for the real
factory’s machines to establish communication channels

If the singleton is resource intensive and may not be
required
Example: a program that has an optional query function that
requires a database connection



Full Picture

public class ChocolateBoiler {
private static ChocolateBoiler _chocolateboiler;
private ChocolateBoiler () {};
public static ChocolateBoiler GetChocolateBoiler ()

{

1f (_chocolateboller == null)

{

_chocolateboiler = new ChocolateBoiler();
//

}

return _chocolateboiler



UML Class Diagram

Singleton

- singleton : Singleton

- Singleton()
+ getinstance() : Singleton




Our class so far...

ChocolateBoiler

mpty ' bool
boiled - bool
fill{ )

sBoiled() - bool
GetChocolateBaoiler()

as it is, problems with threads ...



We don't know what happened! The

new Singleton code was running fine. The only

thing we can think of is that we just added some
optimizations to the Chocolate Boiler Controller
that makes use of multiple threads.




Thread Example

If the program is run in a multi-threaded environment it is
possible for two threads to initialize two singletons at

roughly the same time
Thread 1 Thread 2

public stat ChocolateBoiler
getInstance ()

public stat ChocolateBoiler
getInstance ()

if (uniqueInstance == null)
if (uniqueInstance == null)
uniquelnstance =
new ChocolateBoiler ()
uniquelnstance =

new ChocolateBoiler ()

return uniquelInstance;

return uniquelnstance;




Problems with Multithreading

= |n the case of multithreading with more than one processor the
getlnstance() method could be called at more or less the same time
resulting in to more than one instance being created.

= Possible solutions:

1. Move to an eagerly created instance rather than a lazily created one.

Easy! But memory may be allocated and not used.
2. Synchronize the getinstance() method

Disadvantage — synchronizing can decrease system performance.
3. Use double—checked—Ilocking

The idea is to avoid the costly synchronization for all invocations of the method
except the first.



U Se an E a g er | y C rea t o d I N St ance cliéent ChocolateBoiler | | :ChocolateBoiler

L getInstance() 1

- Code: | 1

//Data elements

private static Singleton uniquelnstance = new Singleton|()
private Singleton () {}

public static Singleton getInstance ()

return uniquelnstance

}
- Easy! But memory may be allocated and not used.



Synchronize the getinstance() Method

Code

public static synchronized Singleton getInstance()

{...
}

Disadvantage — synchronizing can decrease system performance.

Synchronization is expensive, however, and is really only needed the
first time the unique instance is created.

Use only if the performance of the getinstance() method is not critical
to the application.



Double—checked—locking

* Code:
private volatile static Singleton uniquelnstance
private Singleton () {}
public static Singleton getInstance () {
1f (uniquelnstance == null)
synchronized (Singleton.class) {
1f (uniquelnstance == null) {
uniquelnstance = new Singleton|()

return uniquelnstance

}

* |favariable is declared as volatile then is guaranteed that any thread which reads the field will see
the most recently written value.



Double—checked—Ilocking explainded

Check first to see 1f the instance exists or not. If not, then lock
up a block of code.

A thread’s copy of a volatile
attribute is reconciled with the
“master” copy each time it is
referenced.

// Danger! This implementation of Singleton not
// guaranteed to work prior to Java 5

//

public class Singleton {
private volatile static Singleton uni
private Singleton() {}
public static Singleton getlnstance() {

if (umqueInStance :.Z null) ) Second check 1s necessary
synchronized (Singletgn.cla to verify uniquelnstance is

if (uniquelnstance == null) { stllnull
A synchronized block o uniquelnstance = new Singleton();
code. } } }

Only one thread at a return uniquelnstance;
time will execute this. } }

Note these two checks on
uniquelnstance

Result 1s very little overhead compared to synchronizing a whole
method/class.



Singleton With Subclassing

What if we want to be able to subclass Singleton and have the single
instance be a subclass instance?

For example, suppose MazeFactory has subclasses
EnchantedMazeFactory and AgentMazeFactory. We want to
instantiate just one of them.

How could we do this?

1. Have the static getinstance() method of MazeFactory determine the particular
subclass instance to instantiate. This could be done via an argument or
environment variable. The constructors of the subclasses can not be private in
this case, and thus clients could instantiate other instances of the subclasses.

2. Have each subclass provide a static getinstance() method. Now the subclass
constructors can be private.



Singleton With Subclassing (Method 1)

The MazeFactory instance() method determines the subclass to instantiate
public abstract class MazeFactory {
// The private reference to the one and only instance.
private static MazeFactory uniquelnstance = null;
// Create the instance using the specified String name.
public static MazeFactory getinstance(String name) {
if(uniquelnstance == null)
if (name.equals("enchanted"))
uniquelnstance = new EnchantedMazeFactory();
else if (name.equals("agent"))
uniquelnstance = new AgentMazeFactory();

return uniquelnstance;}} //this may not be the one specified by the parameter



Singleton With Subclassing (Method 1)

Problem!!!
if(uniquelnstance == null)
if (name.equals("enchanted"))

uniquelnstance = new EnchantedMazeFactory();
else if (name.equals("agent"))

uniguelnstance = new AgentMazeFactory();

The constructors of EnchantedMazeFactory and

AgentMazeFactory can not be private, since MazeFactory
must be able to instantiate them. Thus, clients could

potentially instantiate other instances of these subclasses.



Singleton With Subclassing (Method 1)

Moreover, the getlnstance(String name) methods violates the Open-
Closed Principle, since it must be modified for each new MazeFactory

subclass

We could use Java class names as the argument to the
instance(String) method, yielding simpler code:

public static MazeFactory getinstance(String name) {

if (uniquelnstance == null)
//Usa la reflection per creare un'istanza della classe specificata da nome

uniquelnstance = Class.forName(name).newlnstance();
return uniquelnstance;

)



Singleton With Subclassing Method 2

Have each subclass provide a static instance method()

public abstract class MazeFactory {
// The protected reference to the one and only instance.
protected static MazeFactory uniquelnstance = null;
// The MazeFactory constructor. If you have a default

// constructor, it can not be private here!

protected MazeFactory() {}
// Returns a reference to the single instance.

public static MazeFactory getinstance() {return uniquelnstance;}



Singleton With Subclassing Method 2

public class EnchantedMazeFactory extends MazeFactory {

// Return a reference to the single instance.

public static MazeFactory getinstance() {
if(uniquelnstance == null)

uniquelnstance = new EnchantedMazeFactory();

return uniquelnstance;

}

// Private subclass constructor

private EnchantedMazeFactory() {}



Singleton With Subclassing Method 2

Client code to create factory the first time:

MazeFactory factory = EnchantedMazeFactory. getinstance();
Client code to access the factory:

MazeFactory factory = MazeFactory. getinstance();

Note that now the constructors of the subclasses are private. Only
one subclass instance can be created!

Also note that the client can get a null reference if it invokes
MazeFactory.getlnstance() before the unique subclass instance is first
created

Finally, note that uniquelnstance is now protected!



Static Attributes in a Class (memento)

Each object of a class has its own copy of all the instance variables of
that class.

However, in certain cases all class objects should share only one copy

of a particular variable.

Such variables are called static variables. A program contains only one copy
of each of a class’s static variables in memory, no matter how many objects
of the class have been instantiated.

A static variable represents class-wide information. All class objects
share the same static data item.

The public static attributes of a class can be accessed through the
class name and dot operator (e.g. Math.Pl). Private static attributes
can only be accessed through methods and properties of that class.



Better using singletons or static classes?

= PRO for Singleton:

With a singleton you can pass the object as a parameter to another
method;
With a singleton you can derive a base class;

With a singleton you can use a factory pattern to build up your instance
(and/or choose which class to instantiate).

= CONS for Singleton

Those seen
https://www.oracle.com/technical-resources/articles/java/singleton.html

= |n both cases care with multithreading.



