
Laura Semini, Ingegneria del Software

Dipartimento di Informatica, Università di Pisa

Ingegneria del Software

Dovreste aver già visto dei metodi factory

2

Ingegneria del Software

Pattern creazionali: le factories

Factory: a class whose sole job is to easily create and return
instances of other classes

Creational patterns abstract the object instantiation process.
◦ They hide how objects are created and help make the overall system

independent of how its objects are created and composed.
◦ They make it easier to construct complex objects instead of calling a

constructor, use a method in a "factory" class to set up the object saves lines
and complexity to quickly construct / initialize objects

examples in Java:
◦ borders (BorderFactory),
◦ key strokes (KeyStroke),
◦ network connections (SocketFactory)

Ingegneria del Software

The Problem With “New”

Each time we invoke the “new” command to create a new object, we
violate the “Code to an Interface” design principle

Example
◦ List list = new ArrayList()

Even though our variable’s type is set to an “interface”, in this case
“List ”, the class that contains this statement depends on “ArrayList”

Ingegneria del Software

In addition

 if you have code that checks a few variables and instantiates a
particular type of class based on the state of those variables, then the
containing class depends on each referenced concrete class

◦ if (condition) { return new ArrayList(); }
else { return new LinkedList();}

 Obvious Problems: needs to be recompiled if classes change
◦ add new classes  change this code
◦ remove existing classes  change this code

 This means that this code violates the open-closed and the
information hiding design principles

Ingegneria del Software

Vedremo 3 tipi di pattern Factories

1. Simple Factory (detto anche Concrete Factory)
◦ non è un pattern GoF
◦ è una semplificazione molto diffusa di Abstract Factory

2. Abstract Factory

3. Factory Method

Ingegneria del Software

Simple Factory (aka concrete factory)

 Problema
 Chi deve essere responsabile di creare gli oggetti quando

la logica di creazione è complessa e si vuole separare la
logica di creazione dalle altre funzionalità di un oggetto?

 Soluzione
 La delega a un oggetto chiamato Factory che gestisce la

creazione

Ingegneria del Software

Simple(st) Factory: structure

Ingegneria del Software

Another simple Factory: structure

Ingegneria del Software

Example: Consider a pizza store that
makes different types of pizzas

public class PizzaStore {

Pizza orderPizza(String type){

Pizza pizza;

If (type == CHEESE)
pizza = new CheesePizza();

else if (type == PEPPERONI)
pizza = new PepperoniPizza();

else if (type == PESTO)
pizza = new PestoPizza();

pizza.prepare();
pizza.bake();
pizza.package();
pizza.deliver();
return pizza

}
}

This is creation code: it
becomes cumbersome
as we add to our menu

This is the preparation of the pizza,
this part stays the same (independent
on the pizza type)

Idea: pull out the creation code and put it into an object that
only deals with creating pizzas - the PizzaFactory

Ingegneria del Software

Class diagram

Ingegneria del Software

Simple solution: a SimplePizzaFactory

public class PizzaStore {

private SimplePizzaFactory factory;

public PizzaStore(SimplePizzaFactory factory) {

this.factory = factory;

}

public Pizza orderPizza(String type) {

Pizza pizza = factory.createPizza(type);

pizza.prepare();

pizza.bake();

pizza.package();

pizza.deliver();

return pizza

}

}

12

public class SimplePizzaFactory {

public Pizza createPizza(String type) {
if (type.equals("cheese")) {

return new CheesePizza();
}

else if (type.equals("greek")) {
return new GreekPizza();

}
else if (type.equals("pepperoni")) {

return new PepperoniPizza();
}

}
}

Replace concrete instantiation with call to the PizzaFactory to create a new pizza
Now we don’t need to mess with this code if we add new pizzas

Ingegneria del Software

Ingegneria del Software

GoF Factory Patterns

Class creational patterns focus on the use of inheritance to
decide the object to be instantiated

◦ Factory Method

Object creational patterns focus on the delegation of the
instantiation to another object

◦ Abstract Factory

Ingegneria del Software

The Factory Method Pattern

Operates on products
produced by the Factory

method

In the official definition:
Factory method lets the subclasses decide which class to instantiate
Decide: --not because the classes themselves decide at runtime

-- but because the creator is written withont knowledge of the actual products
that will be created, which is decided by the choice of the subclass that is used

Ingegneria del Software

The Factory Method Pattern: Participants

Product
◦ Defines the interface for the type of objects the factory method

creates

ConcreteProduct
◦ Implements the Product interface

Creator
◦ Declares the factory method, which returns an object of type

Product

ConcreteCreator
◦ Overrides the factory method to return an instance of a

ConcreteProduct

17

Ingegneria del Software

Example: Pizza
Simple Factory to Factory Method

To demonstrate the factory method pattern, the pizza store example
evolves

◦ to include the notion of different franchises
◦ that exist in different parts of the country (California, New York, Chicago)

Each franchise will need its own factory to create pizzas that match
the proclivities of the locals

◦ However, we want to retain the preparation process that has made PizzaStore
such a great success

The Factory Method Design Pattern allows you to do this by
◦ placing abstract, “code to an interface” code in a superclass
◦ placing object creation code in a subclass
◦ PizzaStore becomes an abstract class with an abstract createPizza() method

We then create subclasses that override createPizza() for each region

Ingegneria del Software

Example3: Pizza: Factory Method

public abstract class PizzaStore {

protected abstract createPizza(String type);

public Pizza orderPizza(String type) {

Pizza pizza = createPizza(type);

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}

Design patterns, Laura Semini, Università
di Pisa, Dipartimento di Informatica.

19

public class NYPizzaStore extends PizzaStore {

public Pizza createPizza(String type) {

if (type.equals("cheese")) {

return new NYCheesePizza();

} else if (type.equals("greek")) {

return new NYGreekPizza();

} else if (type.equals("pepperoni")) {

return new NYPepperoniPizza();

}

return null;

}

}

CREATOR CONCRETE
CREATOR

Ingegneria del Software

We want to build a Maze

20

Ingegneria del Software

Example: Maze

21

Ingegneria del Software

MazeGame class ha un metodo createMaze()
che crea le component e le assembla (2 responsabilità)

/**

* MazeGame.

*/

public class MazeGame {

// Create the maze.

public Maze createMaze() {

Maze maze = new Maze();

Room r1 = new Room(1);

Room r2 = new Room(2);

Door door = new Door(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

22

r1.setSide(MazeGame.North, new Wall());

r1.setSide(MazeGame.East, door);

r1.setSide(MazeGame.South, new Wall());

r1.setSide(MazeGame.West, new Wall());

r2.setSide(MazeGame.North, new Wall());

r2.setSide(MazeGame.East, new Wall());

r2.setSide(MazeGame.South, new Wall());

r2.setSide(MazeGame.West, door);

return maze;

}

}

Ingegneria del Software

The problem with this createMaze() method is
its inflexibility.

What if we wanted to have enchanted mazes with EnchantedRooms
and EnchantedDoors? Or a secret agent maze with DoorWithLock and
WallWithHiddenDoor?

What would we have to do with the createMaze() method? As it
stands now, we would have to make significant changes to it because
of the explicit instantiations using the new operator of the objects
that make up the maze.

How can we redesign things to make it easier for createMaze() to be
able to create mazes with new types of objects?

23

Ingegneria del Software

Let's add factory methods to the
MazeGame class

/**

* MazeGame with a factory methods.

*/

public class MazeGame {

public Maze makeMaze() {return new Maze();}

public Room makeRoom(int n) {return new Room(n);}

public Wall makeWall() {return new Wall();}

public Door makeDoor(Room r1, Room r2) {return new Door(r1, r2);}

24

• Astratti (la creazione delle parti del labirinto è realizzata
nelle sottoclassi)

• o concreti (viene data una implementazione di default
della creazione delle parti

Ingegneria del Software

createMaze implementa l’assemblaggio
public Maze createMaze() {

Maze maze = makeMaze();

Room r1 = makeRoom(1);

Room r2 = makeRoom(2);

Door door = makeDoor(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, makeWall());

r1.setSide(MazeGame.East, door);

………..

r2.setSide(MazeGame.West, door);

return maze;

}

}
25

Ingegneria del Software

We made createMaze() just slightly more
complex, but a lot more flexible!

Consider this EnchantedMazeGame
class:

public class EnchantedMazeGame extends MazeGame {

public Room makeRoom(int n) {return new EnchantedRoom(n);}

public Wall makeWall() {return new EnchantedWall();}

public Door makeDoor(Room r1, Room r2){return new EnchantedDoor(r1, r2);}

}

The createMaze() method of MazeGame is inherited by EnchantedMazeGame
◦ It can be used to create regular mazes

◦ or enchanted mazes without modification!

26

Ingegneria del Software

Factory Method pattern at work: Maze

The reason this works is that the createMaze() method of
MazeGame defers the creation of maze objects to its
subclasses.
In this example, the correlations are:

◦ Creator => MazeGame
◦ ConcreteCreator => EnchantedMazeGame

(MazeGame is also a ConcreteCreator)
◦ Product => Wall, Room, Door
◦ ConcreteProduct => EnchantedWall, EnchantedRoom,

EnchantedDoor
◦ Maze is a concrete Product (but also Product)

27

Ingegneria del Software

The Factory Method Pattern

Applicability
◦ Use the Factory Method pattern in any of the following situations:

◦ A class can't anticipate the class of objects it must create
◦ A class wants its subclasses to specify the objects it creates

28

Ingegneria del Software

Consequences

Benefits
◦ Code is made more flexible and reusable by the elimination of instantiation of

application-specific classes
◦ Code deals only with the interface of the Product class and can work with any

ConcreteProduct class that supports this interface

Liabilities
◦ Clients might have to subclass the Creator class just to instantiate a particular

ConcreteProduct

Implementation Issues
◦ Creator can be abstract or concrete
◦ Should the factory method be able to create multiple kinds of products? If so,

then the factory method has a parameter (possibly used in an if-else!) to decide
what object to create.

29

Ingegneria del Software

Intent

Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.
The Abstract Factory pattern vs Factory Method pattern.

◦ One difference between the two is that with the Abstract Factory
pattern, a class delegates the responsibility of object instantiation
to another object via composition whereas the Factory Method
pattern uses inheritance and relies on a subclass to handle the
desired object instantiation.

Actually, the delegated object frequently uses factory
methods to perform the instantiation, thus applying both
patterns

Ingegneria del Software

Abstract Factory: structure

Ingegneria del Software

Abstract Factory applied to the
MazeGame: the abstract factory

// MazeFactory – the abstract factory

public interface MazeFactory {

public Maze makeMaze();

public Room makeRoom(int n);

public Wall makeWall();

public Door makeDoor(Room r1, Room r2);

}

33

Ingegneria del Software

Abstract Factory applied to the
MazeGame: a concrete factory

// BasicMazeFactory – a concrete factory producing basic parts

public class BasicMazeFactory implements MazeFactory {

public Maze makeMaze() {return new BasicMaze();}

public Room makeRoom(int n) {return new BasicRoom(n);}

public Wall makeWall() {return new BasicWall();}

public Door makeDoor(Room r1, Room r2) {

return new BasicDoor(r1, r2);}

}

34

Ingegneria del Software

Abstract Factory applied to MazeGame: client implements assembly and
delegates construction of parts.

The createMaze() method of the MazeGame class takes a MazeFactory
reference as a parameter:
public class MazeGame {

public Maze createMaze(MazeFactory factory) {

Maze maze = factory.makeMaze();

Room r1 = factory.makeRoom(1);

Room r2 = factory.makeRoom(2);

Door door = factory.makeDoor(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, factory.makeWall());

…

return maze;

}} 35

createMaze() delegates
the responsibility for

creating maze parts to
the MazeFactory

object

Ingegneria del Software

Another concrete factory

public class EnchantedMazeFactory implements MazeFactory {

public Room makeRoom(int n) {return new EnchantedRoom(n);}

public Wall makeWall() {return new EnchantedWall();}

public Door makeDoor(Room r1, Room r2)

{return new EnchantedDoor(r1, r2);}

}

In this example, the correlations are:
◦ AbstractFactory => MazeFactory
◦ ConcreteFactories => BasicMazeFactory and EnchantedMazeFactory
◦ AbstractProduct => Wall, Room, Door
◦ ConcreteProduct => BasicWall, BasicRoom, BasicDoor, EnchantedWall, EnchantedRoom,

EnchantedDoor

36

Ingegneria del Software

Factory Method Abstract Factory

MazeGame

public Wall makeWall()
{return new
EnchantedWall();}

Ingegneria del Software

Moving On the Pizza Store

The factory method approach to the pizza store is a big success
allowing our company to create multiple franchises across the
country quickly and easily

But, bad news, we have learned that some of the franchises
◦ while following our procedures (the abstract code in PizzaStore forces them to)
◦ are skimping on ingredients in order to lower costs and increase margins

Our company’s success has always been dependent on the use of
fresh, quality ingredients

◦ so “Something Must Be Done!”

Ingegneria del Software

Abstract Factory to the Rescue!

We will alter our design such that a factory is used to
supply the ingredients that are needed during the pizza
creation process

◦ Since different regions use different types of ingredients, we’ll
create region-specific subclasses of the ingredient factory to
ensure that the right ingredients are used

◦ But, even with region-specific requirements, since we are
supplying the factories, we’ll make sure that ingredients that meet
our quality standards are used by all franchises

◦ They’ll have to come up with some other way to lower costs. ☺

Ingegneria del Software

First, We need a Factory Interface

Note the introduction of more abstract classes:
Dough, Sauce, Cheese, etc.

Ingegneria del Software

Second, We implement a Region-Specific
Factory

This factory ensures that quality
ingredients are used during the pizza
creation process…

… while also taking into account the
tastes of people who live in Chicago

But how (or where) is this factory used?

Ingegneria del Software

Pizza abstract base class

First, alter the Pizza
abstract base class to make
the prepare method
abstract…

Ingegneria del Software

A Pizza Subclass

Then, update
Pizza
subclasses to
make use of
the factory!
Note: we no
longer need
subclasses
like
NYCheesePizz
a and
ChicagoChee
sePizza
because the
ingredient
factory now
handles
regional
differences

Ingegneria del Software

PizzaStore subclasses

We need to
update our
PizzaStore
subclasses to
create the
appropriate
ingredient
factory and
pass it to each
Pizza subclass
in the
createPizza
factory
method.

Ingegneria del Software

Summary: What did we just do?

1. We created an ingredient factory interface

1. This abstract factory gives us an interface for creating a family of
products
1. The factory interface decouples the client code from the actual factory

implementations that produce context-specific sets of products

2. Our client code (PizzaStore) can then
1. pick the factory appropriate to its region,

2. plug it in, and

3. get the correct style of pizza (Factory Method) with the correct set of
ingredients (Abstract Factory)

Ingegneria del Software

Exercise

We want to apply the factory patterns to produce and package:
◦ Products: TVs and Remote controls (RC)
◦ Of two brands: Samsung and Philips
◦ (note that a Samsung TV uses a Samsung RC and a Philips TV uses a Philips RC)

1. Implement using Simple Factory: using parameters. (one unique
factory)

2. Implement using Factory method: creator invoke (Abstract) build to
have a TV and its RC, then packs them in a box

3. Implement using Abstract Factory: a client chooses the factory and
asks for the products he needs, then it packs them in a box

46

Ingegneria del Software

SimpleFactory

47

Ingegneria del Software

Factory Method

48

Ingegneria del Software

Abstract Factory

49

Ingegneria del Software

Cosa sono i Pure Fabrication

Pattern GRASP
Problem:

◦ Not to violate High Cohesion and Low Coupling

Solution:
◦ Assign a highly cohesive set of responsibilities to an

artificial class
◦ that does not represent anything in the problem

domain,
◦ in order to support high cohesion, low coupling, and

reuse.

Ingegneria del Software

Pure Fabrication: discussion

The design of objects can be roughly partitioned to two
groups

◦ Those chosen by representational decomposition
◦ Those chosen by behavioral decomposition

The latter group does not represent anything in the
problem domain, they are simply made up for the
convenience of the designer, thus the name pure
fabrication: The classes are designed to group together
related behavior
A pure fabrication object is a kind of functioncentric (or
behavioral) object

51

Ingegneria del Software

una Factory è un Pure Fabrication

 In generale una Factory è un Pure Fabrication con
l’obiettivo di:

◦ Confinare la responsabilità di creazioni complesse in
oggetti coesi

◦ Incapsulare la complessità della logica di creazione

53

Ingegneria del Software

54

Ingegneria del Software

Chocolate Boiler Controller

 The Boiler is controlled by the
ChocolateBoiler class

 The ChocolateBoiler class has
 two boolean attributes empty

and boiled

 five methods fill(), drain(),
boil(), isEmpty() and isBoiled()

Ingegneria del Software

Chocolate Boiler methods

{empty} fill() {!empty}

{!empty and !boiled} boil() {!empty and boiled}

{!empty and boiled} drain() {empty}

56

Ingegneria del Software

Problems...

The Chocolate Boiler has overflowed! It
added more milk to the mix even
though it was full!!

What happened?

Hint: What happens if more than two
instances of ChocolateBoiler are
created?

The problem is with two instances
controlling the same phisycal boiler

Ingegneria del Software

Singleton pattern

Intent
◦ Ensure a class only has one instance
◦ Provide a global point of access to it

Motivation
◦ Sometimes we want just a single instance of a class to exist in the

system;
◦ For example, we want just one window manager. Or just one factory for a

family of products.
◦ We need to have that one instance easily accessible
◦ And we want to ensure that additional instances of the class can

not be created

58

Ingegneria del Software

Recognizing Singleton

Unique objects are not uncommon
Most objects in an application bear a unique responsibility
Yet singleton classes are relatively rare
Fact that an object/class is unique doesn’t mean that the
Singleton pattern is at work

Ingegneria del Software

Prevent multiple instances

How can you prevent other developers from constructing
new instances of your class?

◦ Create a single constructor with private access

◦ private static ChocolateBoiler _chocolateboiler = new ChocolateBoiler()

◦ Make the unique instance available through a method:

◦ public static ChocolateBoiler() GetChocolateBoiler()

Ingegneria del Software

GetChocolateBoiler() (with lazy Initialization)

public static ChocolateBoiler GetChocolateBoiler()
{

if (_chocolateboiler == null)
{

_chocolateboiler = new ChocolateBoiler();
// ...

}
return _chocolateboiler

}

Rather than creating a singleton instance ahead of time – wait until instance is
first needed

Ingegneria del Software

_chocolateboiler == null vs _chocolateboiler != null

62

Ingegneria del Software

Why use Lazy Initialization?

Might not have enough information to instantiate a
singleton at static initialization time

◦ Example: a ChocolateBoiler singleton may have to wait for the real
factory’s machines to establish communication channels

If the singleton is resource intensive and may not be
required

◦ Example: a program that has an optional query function that
requires a database connection

Ingegneria del Software

Full Picture

public class ChocolateBoiler {
private static ChocolateBoiler _chocolateboiler;
private ChocolateBoiler () {};
public static ChocolateBoiler GetChocolateBoiler()
{

if (_chocolateboiler == null)
{
_chocolateboiler = new ChocolateBoiler();

// ...
}
return _chocolateboiler

}

}

Ingegneria del Software

UML Class Diagram

Ingegneria del Software

Our class so far...

as it is, problems with threads …

Ingegneria del Software

67

Ingegneria del Software

Thread Example
If the program is run in a multi-threaded environment it is
possible for two threads to initialize two singletons at
roughly the same time

Thread 1 Thread 2

public stat ChocolateBoiler
getInstance()

public stat ChocolateBoiler
getInstance()

if (uniqueInstance == null)

if (uniqueInstance == null)

uniqueInstance =
new ChocolateBoiler()

uniqueInstance =
new ChocolateBoiler()

return uniqueInstance;

return uniqueInstance;

Ingegneria del Software

Problems with Multithreading

 In the case of multithreading with more than one processor the
getInstance() method could be called at more or less the same time
resulting in to more than one instance being created.

 Possible solutions:
1. Move to an eagerly created instance rather than a lazily created one.

◦ Easy! But memory may be allocated and not used.
2. Synchronize the getInstance() method

◦ Disadvantage – synchronizing can decrease system performance.
3. Use double—checked—locking

◦ The idea is to avoid the costly synchronization for all invocations of the method
except the first.

Ingegneria del Software

Use an Eagerly Created Instance

• Code:
//Data elements

private static Singleton uniqueInstance = new Singleton()

private Singleton() {}

public static Singleton getInstance() {

return uniqueInstance

}

• Easy! But memory may be allocated and not used.

Ingegneria del Software

Synchronize the getInstance() Method

Code

public static synchronized Singleton getInstance()

{...
}

Disadvantage – synchronizing can decrease system performance.

Synchronization is expensive, however, and is really only needed the
first time the unique instance is created.

Use only if the performance of the getInstance() method is not critical
to the application.

Ingegneria del Software

Double—checked—locking

72

• Code:

private volatile static Singleton uniqueInstance

private Singleton() {}

public static Singleton getInstance() {

if (uniqueInstance == null)

synchronized (Singleton.class) {

if (uniqueInstance == null) {

uniqueInstance = new Singleton()

return uniqueInstance

}

• If a variable is declared as volatile then is guaranteed that any thread which reads the field will see
the most recently written value.

Ingegneria del Software

Double—checked—locking explainded

73

Ingegneria del Software

Singleton With Subclassing

What if we want to be able to subclass Singleton and have the single
instance be a subclass instance?

For example, suppose MazeFactory has subclasses
EnchantedMazeFactory and AgentMazeFactory. We want to
instantiate just one of them.

How could we do this?
1. Have the static getInstance() method of MazeFactory determine the particular

subclass instance to instantiate. This could be done via an argument or
environment variable. The constructors of the subclasses can not be private in
this case, and thus clients could instantiate other instances of the subclasses.

2. Have each subclass provide a static getInstance() method. Now the subclass
constructors can be private.

74

Ingegneria del Software

The MazeFactory instance() method determines the subclass to instantiate
public abstract class MazeFactory {

// The private reference to the one and only instance.

private static MazeFactory uniqueInstance = null;

// Create the instance using the specified String name.

public static MazeFactory getInstance(String name) {

if(uniqueInstance == null)

if (name.equals("enchanted"))

uniqueInstance = new EnchantedMazeFactory();

else if (name.equals("agent"))

uniqueInstance = new AgentMazeFactory();

return uniqueInstance;}} //this may not be the one specified by the parameter

75

Singleton With Subclassing (Method 1)

Ingegneria del Software

Problem!!!
if(uniqueInstance == null)

if (name.equals("enchanted"))

uniqueInstance = new EnchantedMazeFactory();

else if (name.equals("agent"))

uniqueInstance = new AgentMazeFactory();

The constructors of EnchantedMazeFactory and
AgentMazeFactory can not be private, since MazeFactory
must be able to instantiate them. Thus, clients could
potentially instantiate other instances of these subclasses.

76

Singleton With Subclassing (Method 1)

Ingegneria del Software

Singleton With Subclassing (Method 1)

Moreover, the getInstance(String name) methods violates the Open-
Closed Principle, since it must be modified for each new MazeFactory
subclass

We could use Java class names as the argument to the
instance(String) method, yielding simpler code:

public static MazeFactory getInstance(String name) {
if (uniqueInstance == null)

//Usa la reflection per creare un'istanza della classe specificata da nome
uniqueInstance = Class.forName(name).newInstance();

return uniqueInstance;
}

77

Ingegneria del Software

Singleton With Subclassing Method 2
Have each subclass provide a static instance method()

public abstract class MazeFactory {

// The protected reference to the one and only instance.

protected static MazeFactory uniqueInstance = null;

// The MazeFactory constructor. If you have a default

// constructor, it can not be private here!

protected MazeFactory() {}

// Returns a reference to the single instance.

public static MazeFactory getInstance() {return uniqueInstance;}

}

78

Ingegneria del Software

Singleton With Subclassing Method 2

public class EnchantedMazeFactory extends MazeFactory {

// Return a reference to the single instance.

public static MazeFactory getInstance() {

if(uniqueInstance == null)

uniqueInstance = new EnchantedMazeFactory();

return uniqueInstance;

}

// Private subclass constructor

private EnchantedMazeFactory() {}

}

79

Ingegneria del Software

Singleton With Subclassing Method 2

Client code to create factory the first time:

MazeFactory factory = EnchantedMazeFactory. getInstance();

Client code to access the factory:

MazeFactory factory = MazeFactory. getInstance();

Note that now the constructors of the subclasses are private. Only
one subclass instance can be created!

Also note that the client can get a null reference if it invokes
MazeFactory.getInstance() before the unique subclass instance is first
created

Finally, note that uniqueInstance is now protected!

80

Ingegneria del Software

Static Attributes in a Class (memento)

Each object of a class has its own copy of all the instance variables of
that class.

However, in certain cases all class objects should share only one copy
of a particular variable.

◦ Such variables are called static variables. A program contains only one copy
of each of a class’s static variables in memory, no matter how many objects
of the class have been instantiated.

A static variable represents class-wide information. All class objects
share the same static data item.

The public static attributes of a class can be accessed through the
class name and dot operator (e.g. Math.PI). Private static attributes
can only be accessed through methods and properties of that class.

Ingegneria del Software

Better using singletons or static classes?

 PRO for Singleton:
 With a singleton you can pass the object as a parameter to another

method;
 With a singleton you can derive a base class;
 With a singleton you can use a factory pattern to build up your instance

(and/or choose which class to instantiate).

 CONS for Singleton
 Those seen
 https://www.oracle.com/technical-resources/articles/java/singleton.html

 In both cases care with multithreading.

82

