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Insertion Sort su stringhe

Esercizio

Scrivere una funzione che, dato un array di stringhe e la sua lunghezza, lo
ordini utilizzando l’algoritmo Insertion Sort.

Scrivere un programma che utilizzi la funzione per ordinare un array di
N stringhe lette da input e stampi in output gli elementi dell’array ordinato.
Assumere che la lunghezza massima di una stringa sia 100 caratteri.

Si può utilizzare la funzione strcmp in string.h per confrontare lessico-
graficamente due stringhe. Utilizzare il comando man strcmp per maggiori
informazioni.

La prima riga dell’input contiene la dimensione N dell’array. Le righe suc-
cessive contengono gli elementi dell’array, una stringa per riga. Ogni stringa
ha lunghezza massima di 100 caratteri.
L’output contiene gli elementi dell’array ordinato, una stringa per riga.

Esempio

Input

5 (numero di elementi)

facile

stringhe

provare

per

esercizio

Output

esercizio
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per

provare

stringhe
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Esercizio 3

void insertionSort(char **A, int len) { 
  int i, j; 
  char *key; 
   
  for(i = 1; i < len; i++) { 
    key = A[i]; 
    j = i - 1; 
    while (( j >= 0 ) && (strcmp(A[j], key) > 0)) { 
      A[j+1] = A[j]; // scambia i puntatori 
      j--; 
    } 
    A[j+1] = key; 
  } 
}
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Ricerca binaria su stringhe

Esercizio

Scrivere una funzione che, data una stringa, un array di stringhe distinte

e ordinate lessicograficamente e la sua lunghezza, cerchi la stringa nell’ar-

ray utilizzando la ricerca binaria. La funzione restituisce la posizione della

stringa se essa è presente, il valore -1 altrimenti.

Scrivere un programma che implementi il seguente comportamento. L’in-

put è formato da una prima riga contenente la lunghezza N dell’array. Le

successive N righe contengono le stringhe dell’array ordinate lessicografica-

mente.

Segue una sequenza di dimensione non nota di richieste espresse con coppie.

La prima riga di ogni coppia è un valore che può essere “0” o “1”. Se il

valore è 0, il programma termina (non ci sono più richieste). Se il valore è

“1”, sulla riga successiva si trova una stringa da cercare.

Per ciascuna richiesta ci si aspetta in output l’esito della ricerca: la posizione

della stringa nell’array se essa è presente, -1 altrimenti.

L’input è costituito da:

• una riga contenente la lunghezza N dell’array;

• N righe contenenti le stringhe dell’array ordinate lessicograficamente;

• una sequenza di dimensione non nota di richieste espresse con coppie.

La prima riga di ogni coppia è un valore che può essere “0” o “1”. Se

il valore è 0, il programma termina (non ci sono più richieste). Se il

valore è “1”, sulla riga successiva si trova una stringa da cercare.

L’output contiene una riga per ogni stringa richiesta in input, contenente la

posizione della stringa nell’array se essa è presente, -1 altrimenti.
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int binsearch(char **dict, int left, int right, char *str) { 
  
  if (left > right) { 
    return -1; 
  } 

  int pos = (left+right)/2; // floor 
  int cmp = strcmp(str, dict[pos]); 
   
  if (cmp == 0) return pos;  
  if (cmp < 0) { 
   return binsearch(dict, left, pos-1, str); 

  } else { 
   return binsearch(dict, pos+1, right, str); 

  } 
} 



QuickSort parziale

void quicksort( int a[], int sx, int dx ) { 
   
  int perno, pivot; 
  if( sx < dx ) { 
    // Da implementare! scelta del pivot.  
  // Scegliere una posizione a caso tra sx e dx inclusi.   
    pivot = ???; 
    perno = distribuzione(a, sx, pivot, dx);  
      // separa gli elementi minori di a[pivot]     
         // da quelli maggiori o uguali     
    /* Ordina ricorsivamente le due metà */ 
    quicksort(a, sx, perno-1); 
    quicksort(a, perno+1, dx);  
  } 
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The following procedure implements quicksort.

QUICKSORT(A, p, r)

1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)
4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.

PARTITION(A, p, r)

1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[ j ] ≤ x
5 then i ← i + 1
6 exchange A[i]↔ A[ j ]
7 exchange A[i + 1]↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION

always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

// assume che il pivot sia in posizione r 
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≤ x > x unrestricted

x

p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r ]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r ] = x . The values in A[ j . . r − 1] can take on any values.

A[ j ] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[ j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[ j ] ≤ x ; i is incremented, A[i]
and A[ j ] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[ j − 1] > x , since the item that was swapped into A[ j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is !(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩.

7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p + r)/2 when all elements
in the array A[p . . r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is !(n).
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
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of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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The following procedure implements quicksort.

QUICKSORT(A, p, r)

1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)
4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.

PARTITION(A, p, r)

1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[ j ] ≤ x
5 then i ← i + 1
6 exchange A[i]↔ A[ j ]
7 exchange A[i + 1]↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION

always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

// assume che il pivot sia in posizione r 
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≤ x > x unrestricted

x

p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r ]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r ] = x . The values in A[ j . . r − 1] can take on any values.

A[ j ] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[ j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[ j ] ≤ x ; i is incremented, A[i]
and A[ j ] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[ j − 1] > x , since the item that was swapped into A[ j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is !(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩.

7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p + r)/2 when all elements
in the array A[p . . r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is !(n).
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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The following procedure implements quicksort.

QUICKSORT(A, p, r)

1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)
4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.

PARTITION(A, p, r)

1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[ j ] ≤ x
5 then i ← i + 1
6 exchange A[i]↔ A[ j ]
7 exchange A[i + 1]↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION

always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

// assume che il pivot sia in posizione r 
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Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r ]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r ] = x . The values in A[ j . . r − 1] can take on any values.

A[ j ] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[ j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[ j ] ≤ x ; i is incremented, A[i]
and A[ j ] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[ j − 1] > x , since the item that was swapped into A[ j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is !(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩.

7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p + r)/2 when all elements
in the array A[p . . r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is !(n).
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
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3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
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the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when



Distribuzione del QuickSort

146 Chapter 7 Quicksort

The following procedure implements quicksort.

QUICKSORT(A, p, r)

1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)
4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.

PARTITION(A, p, r)

1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[ j ] ≤ x
5 then i ← i + 1
6 exchange A[i]↔ A[ j ]
7 exchange A[i + 1]↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION

always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

// assume che il pivot sia in posizione r 
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Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r ]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r ] = x . The values in A[ j . . r − 1] can take on any values.

A[ j ] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[ j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[ j ] ≤ x ; i is incremented, A[i]
and A[ j ] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[ j − 1] > x , since the item that was swapped into A[ j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is !(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩.

7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p + r)/2 when all elements
in the array A[p . . r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is !(n).
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when

7.1 Description of quicksort 147

2 8 7 1 3 5 6 4

p,j ri

(a)

2 8 7 1 3 5 6 4

p,i rj

(b)

2 8 7 1 3 5 6 4

p,i rj

(c)

2 8 7 1 3 5 6 4

p,i rj

(d)

2 871 3 5 6 4

p rj

(e)

i

2 8 71 3 5 6 4

p rj

(f)

i

2 8 71 3 5 6 4

p rj

(g)

i

2 8 71 3 5 6 4

p r

(h)

i

2 871 3 5 64

p r

(i)

i

Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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The following procedure implements quicksort.

QUICKSORT(A, p, r)

1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)
4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.

PARTITION(A, p, r)

1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[ j ] ≤ x
5 then i ← i + 1
6 exchange A[i]↔ A[ j ]
7 exchange A[i + 1]↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION

always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

// assume che il pivot sia in posizione r 
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Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r ]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r ] = x . The values in A[ j . . r − 1] can take on any values.

A[ j ] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[ j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[ j ] ≤ x ; i is incremented, A[i]
and A[ j ] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[ j − 1] > x , since the item that was swapped into A[ j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is !(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩.

7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p + r)/2 when all elements
in the array A[p . . r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is !(n).
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
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Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
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in line 1 satisfies the third condition.
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on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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The following procedure implements quicksort.

QUICKSORT(A, p, r)

1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)
4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.

PARTITION(A, p, r)

1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[ j ] ≤ x
5 then i ← i + 1
6 exchange A[i]↔ A[ j ]
7 exchange A[i + 1]↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION

always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

// assume che il pivot sia in posizione r 
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≤ x > x unrestricted

x

p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r ]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r ] = x . The values in A[ j . . r − 1] can take on any values.

A[ j ] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[ j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[ j ] ≤ x ; i is incremented, A[i]
and A[ j ] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[ j − 1] > x , since the item that was swapped into A[ j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is !(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩.

7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p + r)/2 when all elements
in the array A[p . . r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is !(n).
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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The following procedure implements quicksort.

QUICKSORT(A, p, r)

1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)
4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.

PARTITION(A, p, r)

1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[ j ] ≤ x
5 then i ← i + 1
6 exchange A[i]↔ A[ j ]
7 exchange A[i + 1]↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION

always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

// assume che il pivot sia in posizione r 
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≤ x > x unrestricted

x

p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r ]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r ] = x . The values in A[ j . . r − 1] can take on any values.

A[ j ] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[ j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[ j ] ≤ x ; i is incremented, A[i]
and A[ j ] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[ j − 1] > x , since the item that was swapped into A[ j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is !(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩.

7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p + r)/2 when all elements
in the array A[p . . r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is !(n).
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Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when
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Esercizio 1  
QuickSort su interi

Quicksort

Esercizio

Scaricare il sorgente quicksort parziale.c che si trova sulla pagina del

corso:

http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/informatica/all-b/quicksort_parziale.

c.zip

Questo sorgente contiene un’implementazione di Quicksort che deve essere

completata scrivendo il corpo della funzione

int distribuzione(int a[], int sx, int px, int dx)

Tale funzione deve partizionare gli elementi dell’array a[sx . . . dx] utilizzan-

do l’elemento a[px] come pivot e restituire la posizione di tale elemento dopo

il partizionamento.

La prima riga dell’input contiene la dimensione N (non limitata) dell’array.

Le righe successive contengono gli elementi dell’array, uno per riga.

L’output contiene gli elementi dell’array ordinato, su una sola riga.

Esempio

Input

5 (numero di elementi)

100

23

3213

355

2311

Output

23 100 355 2311 3213

1



Esercizio 2  
QuickSort su stringhe

Quicksort su stringhe

Esercizio

A partire dal codice dell’esercizio precedente, scrivere una funzione che,
dato un array di stringhe e la sua lunghezza, lo ordini (lessicograficamente)
utilizzando l’algoritmo Quicksort.

Scrivere un programma che utilizzi la funzione per ordinare un array di
N stringhe lette da input e stampi in output gli elementi dell’array ordinato.
Assumere che la lunghezza massima di una stringa sia 100 caratteri.

Si può utilizzare la funzione strcmp in string.h per confrontare lessico-
graficamente due stringhe. Utilizzare il comando man strcmp per maggiori
informazioni.

La prima riga dell’input contiene la dimensione N dell’array. Le righe suc-
cessive contengono gli elementi dell’array, una stringa per riga. Ogni stringa
ha lunghezza massima di 100 caratteri.
L’output contiene gli elementi dell’array ordinato, una stringa per riga.

Esempio

Input

5 (numero di elementi)

facile

stringhe

provare

per

esercizio

Output

esercizio

facile

per

provare

stringhe

1



Esercizio 3  
QuickSort strambo

Quicksort strambo

Esercizio

Modificare il Quicksort del primo esercizio in maniera tale che ordini gli ele-

menti pari nella parte inferiore dell’array e quelli dispari in quella superiore.

Scrivere un programma che utilizzi la funzione per ordinare come indi-

cato un array di N interi letti da input.

La prima riga dell’input contiene la dimensione N (non limitata) dell’array.

Le righe successive contengono gli elementi dell’array, uno per riga.

L’output contiene la sequenza ordinata, su una sola riga.

Esempio

Input

7 (numero di elementi)

1

78

42

54

23

85

2

Output

2 42 54 78 1 23 85

1



Esercizio 4  
3-way QuickSort

Three-way Quicksort

Esercizio

Partendo dall’implementazione del primo esercizio, implementare il Quick-

sort su interi con three-way partition. L’algoritmo si di↵erenzia dal Quicksort

per la fase di partizionamento. In questo caso la funzione distribuzione

divide l’array in tre intervalli (invece di due):

1. gli elementi minori del pivot;

2. gli elementi uguali al pivot;

3. gli elementi maggiori del pivot.

Scrivere un programma che utilizzi la funzione per ordinare un array di

N interi letti da input.

La prima riga dell’input contiene la dimensione N (non limitata) dell’array.

Le righe successive contengono gli elementi dell’array, uno per riga.

L’output contiene gli elementi dell’array ordinato, su una sola riga.

Esempio

Input

5 (numero di elementi)

100

23

3213

355

2311

Output

23 100 355 2311 3213

1



Puzzle

Puzzle

21 Marzo 2013

La Scala
(da Olimpiadi Italiane di Informatica, 2003)

Un gradino è un rettangolo che giace sul piano cartesiano, i cui lati sono

paralleli ai due assi. Una scala è una sequenza di gradini con le seguenti

proprietà:

• i lati inferiori di tutti i gradini giacciono sull’asse X;

• il lato sinistro del primo gradino giace sull’asse Y;

• il lato sinistro di ogni gradino successivo al primo giace sul lato destro

del gradino precedente;

• le altezze dei gradini sono strettamente decrescenti.

Figure 1: Un esempio di scala

Supponete di avere un insieme di punti sul piano cartesiano le cui co-

ordinate sono numeri interi positivi. Il vostro obiettivo è di trovare una

scala tale che tutti i punti dell’insieme giacciano nell’area sottesa alla scala

(oppure, sul bordo della scala stessa). Fra tutte le scale possibili, volete

1



Puzzle
sceglierne una che minimizzi l’area sottesa.

Il programma legge i dati punti da input. Sulla prima riga è indicato un

singolo numero intero N che è il numero di punti. Su ciascuna delle succes-

sive N righe è indicato un punto, espresso attraverso le sue coordinate x e

y (due numeri interi separati da uno spazio). L’output sarà formato da una

sola riga contenente l’area della scala di area minima.

La figura 2 mostra i punti dell’esempio e una scala di area minima che

li contiene tutti. Notare che l’area sottesa misura 7⇥ 13 + 3⇥ 11 + 2⇥ 7 +

8⇥ 5 + 2⇥ 1 = 91 + 33 + 14 + 40 + 2 = 180.

Figure 2: La scala di area minima per i punti dell’esempio.

Input

11

3 13

6 4

16 3

6 8

9 2

10 11

12 7

7 13

20 5

1 7

22 1

Output

180

2



Sheldon e Amy sono innamorati. Amy vorrebbe inviare un anello per posta a 
Sheldon.  
Sfortunatamente, loro vivono a Kleptopia dove qualunque cosa spedita per 
posta viene rubata a meno che non sia in una scatola chiusa con un 
lucchetto. Sheldon e Amy hanno dei lucchetti ma nessuno dei due ha le 
chiavi dei lucchetti dell'altro. 

Come può Amy far arrivare l'anello a Sheldon?

Amore a Kleptonia


