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Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to x by | x|
(read “the floor of x”) and the least integer greater than or equal to x by [x] (read
“the ceiling of x”). For all real x,

Xx—=1 < |x] = x < [x] < x+1. (3.3)
For any integer n,
(/2] + (n/2] = n,

and for any real number x > 0 and integers a. b > 0,

]~ [2

x/al | | x

| _ %)
[%_ < L:_Q, (3.6)

The floor function f(x) = | x| is monotonically increasing, as is the ceiling func-
tion f(x) = [x].
Modular arithmetic

For any integer a and any positive integer n, the value a mod 7 is the remainder
(or residue) of the quotient a/n:

amodn=a—nla/n| . (3.8)
It follows that

O0<amodn <n. (3.9)

Given a well-defined notion of the remainder of one integer when divided by an-
other, it is convenient to provide special notation to indicate equality of remainders.
If (@ mod n) = (b mod n), we writea = b (mod 1) and say that a is equivalent
to b, modulo n. In other words, a = b (mod n) if @ and b have the same remain-
der when divided by n. Equivalently, ¢« = b (mod n) if and only if n is a divisor
of b —a. We write ¢ # b (mod n) if a is not equivalent to b, modulo 1.
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Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function p(n)
of the form

d
p(n) = Zaini )
i=0

where the constants ag.d,.....aq are the coefficients of the polynomial and
ag # 0. A polynomial is asymptotically positive if and only if a; > 0. For an
asymptotically positive polynomial p(n) of degree d, we have p(n) = A(n?). For
any real constant @ > 0, the function n“ is monotonically increasing, and for any
real constant @ < 0, the function #n¢ is monotonically decreasing. We say that a
function f(n) is polynomially bounded it f(n) = O(n*) for some constant k.

Exponentials

For all real @ > 0, m, and #n, we have the following identities:

a® = 1,
a' = a,
at = l1/a,
@y = am,
@y = (@)".
a"a" = a"™".

For all n and @ > 1, the function a¢” is monotonically increasing in n. When
convenient, we shall assume 0° = 1.

We can relate the rates of growth of polynomials and exponentials by the fol-
lowing fact. For all real constants a and b such that ¢ > 1,

lim — =0, (3.10)

from which we can conclude that
n® = o(a").

Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

Using e to denote 2.71828. .., the base of the natural logarithm function, we
have for all real x,

2 33 Ooxi
K =l x+—F— 4= - (3.11)
¢ YRR i "

i=0
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where */” denotes the factorial function defined later in this section. For afl real x,
we have the inequality

e*>1+x, (3.12)
where equality holds only when x = 0. When |x| < I, we have the approximation
l4+x<e’ <l4x+x2. (3.13)

When x — 0, the approximation of e* by 1 4 x is quite good:
e =1+x4+0(x?).

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x — O rather than as x —> 00.) We have for all x,

x n
lim (1 4 —) — . (3.14)
n—00 n

Logarithms

We shall use the following notations:

lgn = log,n (binary logarithm) ,
Inn = log,n (natural logarithm) ,
I¥n = (Ign)*  (exponentiation) ,
lglgn = lg(lgn) (composition) .

An important notational convention we shall adopt is that logarithm functions will
apply only to the next term in the formula, so that lgn + k will mean (Ign) + k
and not lg(n + k). If we hold b > 1 constant, then for n > 0, the function log, n
is strictly increasing.

Forallreala > 0,5 > 0, ¢ > 0, and n,

a = bplwme,
log.(ab) = log.a +log. b,
log,a" = nlog,a,
log, a
1 — ¢ \ 3.15
%6 4 log,. b G
logy(l/a) = —logya,
1
1 = .
08 4 log, b
al()ghc — Cl()g};a ] (3 l())

where, in each equation above, logarithm bases are not 1.
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By equation (3.15), changing the base of a logarithm from one constant to an-
other changes the value of the logarithm by only a constant factor, and so we shall
often use the notation “lg n” when we don’t care about constant factors, such as in
O-notation. Computer scientists find 2 to be the most natural base for logarithms
because so many algorithms and data structures involve splitting a problem into
two parts.

There is a simple series expansion for In(1 4+ x) when |x| < 1:

2 X3 X4 ’CS

In(1 + x) 4 +:
n X)=X——+ ———F = —- .
2 "3 T4

We also have the following inequalities for x > —1:

— < In(l+x) < x, 3.17
lL+x ™ ( ) = G.17)
where equality holds only for x = 0.

We say that a function f(n) is polylogarithmically bounded if f(n) = O(lgk i)
for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting Ig n for n and 2¢ for a in equation (3.10), yielding

1g” n _ 1% n

m ——— =
n—0c0 (2“)'8" n—oo pné

=0.

From this limit, we can conclude that

g n = o(n%)

for any constant @ > 0. Thus, any positive polynomial function grows faster than
any polylogarithmic function.

Factorials

The notation n! (read “n factorial”) is defined for integers n > O as

\ 1 itn =0,
n! =
n-n—"N0! ifn >0.

Thus,n!=1-2-3..-n.
A weak upper bound on the factorial function is n! < n”, since each of the n
terms in the factorial product is at most n. Stirling’s approximation,

nl = 21n (g) (1 +(~)(l)) , (3.18)
n
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where e is the base of the natural logarithm, gives us a tighter upper bound, and a
lower bound as well. As Exercise 3.2-3 asks you to prove,

nl = om"),
n! = w2,
lg(n!) = Onlgn), (3.19)

where Stirling’s approximation is helpful in proving equation (3.19). The following
equation also holds for all n > 1:

n\”"
nl = v2rn (-) p (3.20)
e
where
: < < : (3.21)
2n+1 " Ton- '

Functional iteration

We use the notation f)(n) to denote the function f(n) iteratively applied i times
to an initial value of n. Formally, let f(n) be a function over the reals. For non-
negative integers i, we recursively define

n iti =0,
f(fVm)) ifi >0.
For example, if f(n) = 2n, then f(n) = 2'n.

FOm =

The iterated logarithm function

We use the notation 1g" n (read “log star of ") to denote the iterated logarithm, de-
fined as follows. Let lg(i) n be as defined above, with f(n) = Ign. Because the log-
arithm of a nonpositive number is undefined, Ig"") » is defined only if 1g¥"" n > 0.
Be sure to distinguish 1g") n (the logarithm function applied i times in succession,
starting with argument n) from Ig’ n (the logarithm of n raised to the ith power).
Then we define the iterated logarithm function as

lg"n =minf{i >0:1g"n <1} .

The iterated logarithm is a very slowly growing function:

lg*2 = 1,
g*4 = 2,
g*16 = 3,
lg* 65536 = 4.
lo* (265536) 5
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Since the number of atoms in the observable universe is estimated to be about 103,
which is much less than 2%°°3¢ we rarely encounter an input size n such that
lg*n > 5.

Fibonacci numbers

We define the Fibonacci numbers by the following recurrence:

Fpb = 0,
Fr =1, (3.22)
F, = Fa+ Fo fori > 2.

Thus, each Fibonacci number is the sum of the two previous ones, yielding the
sequence

0,1,1,2,3,5, 8, 13, 21, 34, 55, ....

Fibonacci numbers are related to the golden ratio ¢ and to its conjugate qAS which
are the two roots of the equation

x2=x41 (3.23)

and are given by the following formulas (see Exercise 3.2-6):

14+ /5

o = — (3.24)
= 1.61803... .
j = 28
2
= —.61803....

Specifically, we have

¢i__$i
F; = ,
NG

which we can prove by induction (Exercise 3.2-7). Since ‘cﬂ < 1, we have

]
NG

<

<

1
V5
I
3

which implies that
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¢ 1
F, = ng + EJ , (3.25)

which is to say that the i th Fibonacci number F; is equal to ¢ /+/5 rounded to the
nearest integer. Thus, Fibonacci numbers grow exponentially.

Exercises

3.2-1

- Show that if f(n) and g(n) are monotonically increasing functions, then so are

the functions f(n) + g(n) and f(g(n)), and if f(n) and g(n) are in addition
nonnegative, then f(n) - g(n) is monotonically increasing.

3.2-2
Prove equation (3.16).

3.2-3
Prove equation (3.19). Also prove that n! = w(2") and n! = o(n").

3.24 x
Is the function [1g #]! polynomially bounded? Is the function [Iglgn]! polynomi-
ally bounded?

3.2-5 *
Which is asymptotically larger: 1g(lg” n) or Ig"(Ign)?

3.2-6
Show that the golden ratio ¢ and its conjugate (;AS both satisfy the ecquation
x2=x+1

3.2-7
Prove by induction that the i th Fibonacci number satisfies the equality
b9

i N )

where ¢ is the golden ratio and qAb is its conjugate.

3.2-8
Show that k Ink = ©(n) implies k = O(n/Inn).




A Summations

When an algorithm contains an iterative control construct such as a while or for
loop, we can express its running time as the sum of the times spent on each exe-
cution of the body of the loop. For example, we found in Section 2.2 that the jth
iteration of insertion sort took time proportional to j in the worst case. By adding
up the time spent on each iteration, we obtained the summation (or series)

Do
J=2

When we evaluated this summation, we attained a bound of ©(n?) on the worst-
case running time of the algorithm. This example illustrates why you should know
how to manipulate and bound summations.

Section A.1 lists several basic formulas involving summations. Section A.2 of-
fers useful techniques for bounding summations. We present the formulas in Sec-
tion A.1 without proof, though proofs for some of them appear in Section A.2 to

illustrate the methods of that section. You can find most of the other proofs in any
calculus text.

A.1 Summation formulas and properties

Given a sequence a,, a». . ...a, of numbers, where # is a nonnegative integer, we
can write the finite sum a; + a, + --- + a, as

n
E day .
k=1

[f n = 0, the value of the summation is defined to be 0. The value of a finite series
is always well defined, and we can add its terms in any order.

Given an infinite sequence a,.a,.... of numbers, we can write the infinite sum
aq -+ (25 + ---as




1146 Appendix A Summations

which we interpret to mean ;

. |

lim E ag . |
n—o0

k=1 :

If the limit does not exist, the series diverges; otherwise, it converges. The terms
of a convergent series cannot always be added in any order. We can, however,

. . - oo
rearrange the terms of an absolutely convergent series, that is, a series Y ,_ dk
for which the series Y po.; |ak| also converges.

Linearity

For any real number ¢ and any finite sequences d.dz. . ... a, and by, bs, .. .. by,

Z(cak + b)) = cZak + Zbk )
k=1 k=1 k=1

The linearity property also applies to infinite convergent series.
We can exploit the linearity property o manipulate summations incorporating
asymptotic notation. For example,

> 0/ =6 (Z f(k)) ~
| k=1 k=1

In this equation, the ©-notation on the left-hand side applies to the variable k., but
on the right-hand side, it applies to n. We can also apply such manipulations to
infinite convergent series.

Arithmetic series

The summation
n
Zk =1424---4+n,
k=1
is an arithmetic series and has the value

- 1
Yok o= 5n(n+1) (A1)
k=1

= O®m?. (A.2)
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Sums of squares and cubes

We have the following summations of squares and cubes:

- D@+ 1

Yok - mer DOl (A3)
k=0

n 2 2

n“(n +1
Yk = )y (A.4)
4

k=0

Geometric series
For real x # 1, the summation

Zxk =1ld+x+x>4. g

k=0

is a geometric or exponential series and has the value

n n+l _

Y k= x_“l . (A5)
k=0 X

When the summation is infinite and |x| < 1, we have the infinite decreasing geo-
metric series |
D xk = : (A.6) |

1 —x
k=0

Harmonic series

For positive integers 1, the nth harmonic number is

H, = 1+1+1+1+ +l
o 2 3 4 n
n
_ Zl
k=1k
= Inn+ O(l) . (A7)

(We shall prove a related bound in Section A2)

Integrating and differentiating series

By integrating or differentiating the formulas above, additional formulas arise. For
example, by differentiating both sides of the infinite geometric series (A.6) and
multiplying by x, we get
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. A8
;)x =57 (A.8)

for [x] < 1.

Telescoping series

For any sequence ag,ay, ..., a,,
n
Z(ak —dx_1) =dan, —ag, (A.9)
k=1
since each of the terms ay, a5, . .., a,—, is added in exactly once and subtracted out

exactly once. We say that the sum telescopes. Similarly,

n—1

§ (ak —ax1)) = ap—ay, .

k=0

As an example of a telescoping sum, consider the series
n—1 1

Z&w+n‘

k=1

Since we can rewrite each term as
1 1 1

k(k+1) ko k+1°

we get

n

1 1 N n—1 (1 1
k(k +1) kK k+1

=1 k=1

x

Products

We can write the finite product a a5 - -- a, as

n
l—[ ay .
k=1
If n = 0, the value of the product is defined to be 1. We can convert a formula with
a product to a formula with a summation by using the identity

n n
lg (H ak) = Zlgak .
k=1 k=1
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Exercises

A.l-1
Find a simple formula for "} _, (2k — 1).

A2 %
Show that 3 /_ 1/(2k — 1) = In(/n) + O(1) by manipulating the harmonic
series.

A.l-3
Show that 37 ) k2x* = x(1 4 x)/(1 — x)® for 0 < [x| < 1.

A4 x
Show that 3" (k — 1)/2k = 0.

Al-5 %
Evaluate the sum } 77 (2k + 1)x%.

Al-6

Prove that 3/ _, O(fi(i)) = O(Yk=, fe(i)) by using the linearity property of
summations.

A.l-7
Evaluate the product [T;_, 2 4%.

Al-8 x
Evaluate the product [T; _,(1 — 1/k?).

A.2  Bounding summations

We have many techniques at our disposal for bounding the summations that de-
scribe the running times of algorithms. Here are some of the most frequently used
methods.

Mathematical induction

The most basic way to evaluate a series is to use mathematical induction. As an
example, let us prove that the arithmetic series Y i—, k evaluates to %n(n +1). We
can easily verify this assertion for n = 1. We make the inductive assumption that
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it holds for 1, and we prove that it holds for n 4+ 1. We have

n+1 n
k= Yk+(m+1)
k=1 k=1

= %n(n+1)+(n+1)

= %(n +1D(n+2).

You don’t always need to guess the exact value of a summation in order to use
mathematical induction. Instead, you can use induction to prove a bound on a sum-
mation. As an example, let us prove that the geometric series Y, _, 3* is O(3").
More specifically, let us prove that Y ; _, 3% < ¢3" for some constant ¢. For the
initial condition n = 0, we have Z,(z:() ¥=1<c¢-las long as ¢ > 1. Assuming
that the bound holds for #, let us prove that it holds for n + 1. We have

n+1 n
Z 3k — Z 3k + gntl
k=0 k=0
< 3" 43 (by the inductive hypothesis)
1 1 n+1
= (3 + c) c3
< 63n+1

as long as (1/3 + 1/c) < 1 or, equivalently, ¢ > 3/2. Thus, } ;_, 3% = 0(3"),
as we wished to show.

We have to be careful when we use asymptotic notation to prove bounds by in-
duction. Consider the following fallacious proof that > ; _, k = O(n). Certainly,
Zli=1 k = O(1). Assuming that the bound holds for n, we now prove it for n + 1:

n+1 n

ko= Y k+m+1

k=1 k=1
= Om+n+1) < wrong!!
= O(n+1).

The bug in the argument is that the “constant” hidden by the “big-oh” grows with n
and thus is not constant. We have not shown that the same constant works for a/l #.

Bounding the terms

We can sometimes obtain a good upper bound on a series by bounding each term
of the series, and it often suffices to use the largest term to bound the others. For
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example, a quick upper bound on the arithmetic series (A.1) is

ik < zn:n
k=1 k=1

= 112.

In general, for a series ZZ:I ag. if we let a,,, = Max; <k <, dg, then

n
E ar =n *lmax -
k=1

The technique of bounding each term in a series by the largest term is a weak
method when the series can in fact be bounded by a geometric series. Given the
series ZZ:O Ak, suppose that ay(/a; < r for all k > 0,where 0 < r < lisa
constant. We can bound the sum by an infinite decreasing geometric series, since
ar < agr®, and thus

n [o¢]
> ap < > "agrk
k=0 k=0
o0

= aOErk

k=0
1
1—r"

= a()

We can apply this method to bound the summation Y77 (k/3%). In order to
start the summation at k = 0, we rewrite it as ek + 1)/3**1). The first
term (ay) is 1/3, and the ratio (r) of consecutive terms is

(k +2)/3k+2 k+2
(k + 1)/3k+1 k+1

Wi W —

=

for all k > 0. Thus, we have

2k k41
;37 = Z3k+1
=]




