
Projects
Geospatial Analytics
2022/2023
General remarks 3

Project 1: On the error between GPS traces and mobile phone records 4

Project 2: Implementation and testing of the Voronoi tessellation 5

Project 3: Enrichment of spatial tessellations with Points Of Interest 6

Project 4: Implementation and testing of trajectory split based on stop detection 7

Project 5: Systematic comparison of EPR models 9

Project 6: Systematic comparison of collective mobility models 11

Project 7: Vehicles’ GPS traces and shortest paths 12

Project 8: Spatial networks and small worlds 13

Project 9: Error in the reconstruction of OD matrices from different data sources 14

Project 10: Nocturnal vs Day mobility patterns 15

Project 11: Data-driven estimation of urban gentrification 16

Project 12: Euro bills and distance patterns 18

Project 13: Segregation in Networks 19

Project 14: Can relocation patterns mitigate Schelling effects? 21

Project 15: How Routing strategies impact vehicle-related measures 22

Project 16: Route Diversity and Urban Emissions 24

Project 17: Understanding international migration 26

Project 18: Urban desegregation model 27

Project 19: Data-driven Geo Schelling model 29

Project 20: Football matches as mobility networks 31

Project 21: Trajectory compression 33

Project 22: Implementing Trajectory Segmentation 34

Project 23: Deviation Patterns 36

Project 24: Schelling and The Pursuit of Happyness 37

Project 25: Moving Clusters 39

Project 26: T-Patterns 41

Project 27: Trajectory Prediction with Higher order Markov Chains 43

Project 28: A matter of resilience 45

Project 29: Traveling as a (dis)Continuous Function 46

Project 30: Random Perturbation of Paths 48

Project 31: SUMO Map Matching 50

General remarks
● The project should be delivered two weeks before the date of the “appello”

chosen by the student.

● The project should be delivered as a .zip folder through this form. For python
code, both .py (scripts) and .ipynb (notebooks) files are allowed.

○ for notebooks, remember to clear all outputs before uploading it on the
form (this will save memory space in the zip folder).

● Unless it is strictly needed, do not upload big datasets but provide the link
where to download them or, even better, make the code download the dataset
directly from a public URL. You can eventually upload small files (e.g., small
json, geojson, or shapefile files).

○ For experiments on SUMO, send also the road networks, the traffic
demands, and the configuration files.

● The code in the main notebook should run correctly without any modification
from our side.

The projects will be evaluated based on their correctness, level of detail and depth,
the elegance of coding, and creativity.

In case of questions about the projects, please write an email addressed to:
● luca.pappalardo@isti.cnr.it
● mirco.nanni@isti.cnr.it
● giuliano.cornacchia@phd.unipi.it
● giovanni.mauro@phd.unipi.it

https://forms.gle/QHmqQNS2ve1hCfUh8
mailto:luca.pappalardo@isti.cnr.it
mailto:mirco.nanni@isti.cnr.it
mailto:giuliano.cornacchia@phd.unipi.it
mailto:giovanni.mauro@phd.unipi.it

Project 1: On the error between GPS traces and
mobile phone records

In this project, the student investigates the difference between GPS traces and
mobile phone records (MPR). This should be done by developing Python code that
develops the following steps:

1. select at least four different datasets of GPS trajectories (e.g., the Geolife
dataset and/or the Milano dataset);

2. construct a Voronoi tessellation based on the position of the phone towers on
the geographic area the selected dataset(s) refer to. To get the position of
mobile phone towers, you can use for example the OpenCellID dataset, but
other, more creative, choices are welcome;

3. perform a mapping (spatial join) of each GPS trajectory to the constructed𝑇
Voronoi tessellation and create a modified trajectory where each point𝑇'

is substituted by the coordinates of the centroid of the tile falls within.𝑝 ∈ 𝑇 𝑝

4. “Sparsify” by removing records at random so that the inter-time between𝑇'
consecutive records is on average minutes (e.g., , try different);𝑥 𝑥 = 5 𝑥

5. Implement some trajectory similarity metrics (see, e.g., this paper) and
compute the similarity between each pair based on these metrics. Study𝑇, 𝑇'
the distribution of similarities (i.e., shape and aggregated statistics such as
average, standard deviation, etc.).

6. Make the most appropriate visualizations to show the difference between the
two types of trajectories in all the datasets. Study also the impact of
parameter (how the similarities and their distribution change with).𝑥 𝑥

7. Discuss and comment on the top-k and bottom-k users (e.g., k=5) users
based on the (average) similarity between and ’.𝑇 𝑇

NOTE: for statistical consistency, step 4 should be repeated a number of times (𝑘
) every time with a different seed, e.g., with different random removal of𝑘 ≥ 10

records. Then, for each pair , take the average similarity and study and proceed𝑇, 𝑇'
with the points 5, 6, 7.

https://www.microsoft.com/en-us/download/details.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F
https://www.microsoft.com/en-us/download/details.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F
https://ckan-sobigdata.d4science.org/dataset/gps_track_milan_italy
https://opencellid.org/
https://dl.acm.org/doi/abs/10.1145/2782759.2782767

Project 2: Implementation and testing of the
Voronoi tessellation

The student should modify the VoronoiTessellationTiler class of the
scikit-mobility library in order to make a function that creates a Voronoi tessellation
together with its geometric shapes.

In particular, the skmob.tilers.tiler.get function should be able to create a
Voronoi tessellation as a GeoDataFrame through the following signature:

skmob.tilers.tiler.get(“voronoi”, points, base_shape)
where:

● “voronoi” is a string;
● points is a numpy array or a list of tuples containing latitude and longitude

pairs;
● base_shape is a Shapely polygon indicating the area the points fall within.

The student should also test the provided code using the assert statement and
pytest (see the examples of testing of the skmob.tessellation module).

The developed code should be delivered as a test_tilers.py file, which is a
modification of the corresponding file on the scikit-mobility repository. Provide also a
subfolder named examples in which you show (e.g. using a notebook) how the
developed function works on some real-world datasets and compare the Voronoi
tessellation with the squared and the h3 tessellation already provided in
scikit-mobility.

Example: create a Voronoi tessellation based on the OpenCellID dataset (or other
datasets that you find on the web) and show some possible use of it (unleash your
creativity!).

https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/tessellation/tilers.py
https://github.com/scikit-mobility/scikit-mobility
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/tessellation/tests/test_tilers.py
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/tessellation/tests/test_tilers.py
https://opencellid.org/

Project 3: Enrichment of spatial tessellations with
Points Of Interest

The student should develop Python code to enrich a scikit-mobility spatial
tessellation (either squared, voronoi, h3, or based on official division in areas such
as neighborhoods), i.e., a GeoDataFrame, with information about Points Of Interest
(POIs) downloaded from OSMnx.
In particular, the student will develop a function enrich(gdf, tags, *), where:

● gdf (GeoDataFrame) represents the tessellation;
● tags (dict) – Dict of tags used for finding objects in the selected area. The

tags should be the same as those used in the OSMnx functions (see OSMNx
documentation).
Examples,

○ tags = {‘building’: True} returns all building footprints.
○ tags = {‘amenity’:True,

‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities,
landuse=retail, landuse=commercial, and
highway=bus_stop.

● * indicates all the other arguments plot_gdf already has in scikit-mobility.

The function should return a GeoDataFrame with a tile_ID column indicating the
tessellation’s tile where the POIs falls within, a geometry column describing the
geometric shape of the POI (i.e., a Shapely object), and other columns describing
the POI based on the output from OSMnx.

Then, the student should modify the scikit-mobility’s plot_gdf function so that it
can take in input this new GeoDataFrame as well, and plot the tessellations together
with the POIs’s geometries within them. Add to plot_gdf a parameter max_pois
with the max number of POIs to show for each tile (you choose whether these POIs
are selected randomly or based on other criteria).

Show how the enrich and the new plot_gdf functions work, developing some
practical cases in at least four different cities, each for squared, voronoi, h3, and
based on official division in areas (e.g., neighborhoods or census cells).

Example: show that these two functions (separately or in conjunction) may help
understand the different POIs composition of each neighborhood or zone in the city.

https://github.com/scikit-mobility/scikit-mobility
https://osmnx.readthedocs.io/en/stable/index.html
https://osmnx.readthedocs.io/en/stable/osmnx.html
https://osmnx.readthedocs.io/en/stable/osmnx.html
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/utils/plot.py

Project 4: Implementation and testing of
trajectory split based on stop detection

The student should modify scikit-mobility’s stay_locations function, which takes
in input a TrajDataFrame, tdf, and returns a new TrajDataFrame that splits
each individual’s global trajectory into sub-trajectories based on stop-detection.

An individual’s global trajectory consists of all the points of that individual in the𝑇(𝑢) 𝑢
TrajDataFrame (i.e., all rows in tdf with uid=u). An individual’s sub-trajectory

indicates all points between two consecutive stops detected by𝑇
𝑖
(𝑢)

stay_locations.

In practice, the new stay_locations function should return a TrajDataFrame
containing all the rows of the original tdf but with an additional column tid, which
contains the identifier of each sub-trajectory of an individual. tid must have an
integer value between 1 to , where 1 is the first sub-trajectory in chronological order𝑘
and k is the number of stops detected.

The signature of the new function should be as follows:

stay_locations(tdf, sub_traj=True, stop_radius_factor=0.5,
minutes_for_a_stop=20.0, spatial_radius_km=0.2,
leaving_time=True, no_data_for_minutes=1e12,
min_speed_kmh=None, inplace=False)

where:
● sub_traj=True indicates that the output should be the TrajDataFrame as

defined above, while sub_traj=False indicates that the output should be
the same as the current version of stay_locations.

● inplace=True indicates that the original tdf should be overwritten with the
new one (i.e., the one containing the new tid column); inplace=False
indicates that a new TrajDataFrame should be returned. inplace is used
when sub_traj=True only, otherwise it is discarded.

● all the other arguments (those not in bold) are the same as the current
stay_locations function.

https://github.com/scikit-mobility/scikit-mobility
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/preprocessing/detection.py

NOTE: The current version of stay_locations returns a stop TrajDataFrame,
which contains only the stops detected by the function based on the specified
arguments.

The student should also test the provided code using the assert statement and
pytest (see the examples of testing of the skmob.preprocessing module).

The developed code should be delivered as a detection.py file, which is a
modification of the corresponding file on the scikit-mobility repository. Provide also a
subfolder named examples in which you show how the developed function works
on at least four real-world datasets.

https://github.com/scikit-mobility/scikit-mobility/tree/master/skmob/preprocessing/tests
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/preprocessing/detection.py

Project 5: Systematic comparison of EPR models
The student should develop a systematic comparison of Exploration and Preferential
Return (EPR) models using scikit-mobility. In particular, the student should compare
the following models provided in the library:

● SpatialEPR
○ see also Human Mobility Modelling: Exploration and Preferential Return Meet

the Gravity Model
● DensityEPR

○ see also Human Mobility Modelling: Exploration and Preferential Return Meet
the Gravity Model

● DITRAS
○ see also Data-driven generation of spatio-temporal routines in human mobility

The student should run each model for 5,000 agents for a period of two weeks, on at
least four different geographic areas (e.g., cities, regions), and using squared,
hexagonal (h3), voronoi, and an official division in areas such as neighborhoods or
census cells. For the Voronoi tessellation, the student can select the dataset they
prefer (e.g., OpenCellID).

For example, for the SpatialEPR model, the student should perform the following list
of experiments (similarly for the other models):

Model Geographic Area Tessellation

SpatialEPR area1 squared

SpatialEPR area1 h3

SpatialEPR area1 voronoi

SpatialEPR area1 official division

… … …

SpatialEPR area2 squared

SpatialEPR area2 h3

… … …

SpatialEPR area3 squared

https://github.com/scikit-mobility/scikit-mobility
https://scikit-mobility.github.io/scikit-mobility/reference/models.html#skmob.models.epr.SpatialEPR
https://www.sciencedirect.com/science/article/pii/S1877050916302216
https://www.sciencedirect.com/science/article/pii/S1877050916302216
https://scikit-mobility.github.io/scikit-mobility/reference/models.html#skmob.models.epr.DensityEPR
https://www.sciencedirect.com/science/article/pii/S1877050916302216
https://www.sciencedirect.com/science/article/pii/S1877050916302216
https://scikit-mobility.github.io/scikit-mobility/reference/models.html#skmob.models.epr.Ditras
https://link.springer.com/article/10.1007/s10618-017-0548-4
https://opencellid.org/

SpatialEPR area3 h3

The models’ realism (i.e., the realism of the generated trajectories) should be
compared in terms of:

1. distribution of jump length ();𝑀
1

2. distribution of the radius of gyration ();𝑀
2

3. distribution of uncorrelated entropy ();𝑀
3

4. number of distinct visited locations ();𝑀
4

5. number of visits per location ();𝑀
5

6. location frequency ().𝑀
6

Use the appropriate scikit-mobility measures to compute the above metrics.

For given an area (e.g., city, region), compute the distributions , …, across the𝑀
1

𝑀
6

agents for each of the three models (SpatialEPR, DensityEPR, DITRAS). Given a
distribution (), compute a proper binning for the relative distribution𝑀

𝑖
𝑖 ∈ {1, ..., 6}

and compare all models’ distributions pair by pair using the Root Mean Squared
Error (RMSE). See this paper (Section Results, Model comparison and validation).

NOTE: some of the models (e.g., DensityEPR, DITRAS) need information about
location relevance, so define a proper relevance measure and find a proper dataset
on which to estimate it. Moreover, DITRAS requires the training of a Markov chain on
some trajectory dataset.

https://link.springer.com/article/10.1007/s10618-017-0548-4#Sec10

Project 6: Systematic comparison of collective
mobility models

The student should develop a systematic comparison of Gravity and Radiation
models based on at least four different datasets. The student may be inspired by
Lenormand et al.’s paper on how to conduct a systematic comparison of collective
mobility models.

In particular, the student should consider the following models (provided in
scikit-mobility):

● Singly-constrained gravity model with power-law deterrence function
● Singly-constrained gravity model with exponential deterrence function
● Globally-constrained gravity model with power-law deterrence function
● Globally-constrained gravity model with exponential deterrence function
● Radiation model

As per the evaluation metrics, the student should use the following ones (refer to
Lenormand et al.’s paper, Cha’s paper, and scikit-mobility docs for the formulas):

● Common Part of Commuters (CPC)
● Normalized Root Mean Squared Error (NRMSE)
● Information Gain Statistics (I)
● Common Part of Links (CPL)
● Common part of commuters according to the distance (CPCd)

The dataset on which the comparison should be done can be chosen by the student,
possibly of different types and geographic areas.

Examples of datasets:
1. same data source, but different geographic areas
2. same geographic area (e.g., city), but four different data sources
3. a mix of 1. and 2., justify your choice

The comparison should be done providing appropriate tables and/or plots in a
notebook and adequately commenting the steps and the results obtained.

https://arxiv.org/pdf/1506.04889.pdf
https://github.com/scikit-mobility/scikit-mobility
https://arxiv.org/pdf/1506.04889.pdf
http://www.fisica.edu.uy/~cris/teaching/Cha_pdf_distances_2007.pdf
https://scikit-mobility.github.io/scikit-mobility/reference/evaluation_measures.html

Project 7: Vehicles’ GPS traces and shortest paths
Do vehicles follow the shortest path on a road network? The student should answer
this question using the Milano dataset, which describes the GPS traces of several
private vehicles circulating in the city of Milan.

First, the student should split each vehicle’s global trajectory in sub-trajectories (you
may exploit the stay_locations function provided in scikit-mobility). Then, the
student should develop code to implement the following steps.

For each vehicle:
For each sub trajectory:

1. take the initial and the final position and associate them with the
corresponding road using OSMnx.

2. compute the shortest path and the fastest path on the road network
provided by OSMnx given the starting and ending roads.

3. associate each GPS point with the corresponding road (point
snapping);

4. use OSMnx to compute the path which passes through the obtained
roads (either shortest or fastest, depending on what you are testing).

The student should develop appropriate measures to quantify to what extent the
vehicles follow the shortest path (or the fastest path) calculated in point 2. This
comparison should be done in terms of:

● difference in paths length (in meters)
● Jaccard coefficient between the two sets of roads (the real one and the

shortest/fastest paths obtained from OSMnx)

Show and discuss the distributions of these two quantities, in terms of their shape,
average, standard deviation and provide a thorough interpretation of the obtained
results. Could you conclude, on the basis of these distributions, that vehicles tend to
follow the shortest path or the fastest path? Visualize some single cases (i.e., cases
in which the vehicle does or does not follow the shortest or fastest path) to provide
evidence of your interpretation.

Repeat the entire pipeline for the Rome taxi dataset and the San Francisco taxi
dataset. Do taxis tend to follow the shortest/fastest path?

https://ckan-sobigdata.d4science.org/dataset/gps_track_milan_italy
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/preprocessing/detection.py
https://github.com/scikit-mobility/scikit-mobility
https://osmnx.readthedocs.io/en/stable/index.html
https://osmnx.readthedocs.io/en/stable/index.html
https://en.wikipedia.org/wiki/Jaccard_index
https://crawdad.org/roma/taxi/20140717/
http://crawdad.org/epfl/mobility/20090224/index.html
http://crawdad.org/epfl/mobility/20090224/index.html

Project 8: Spatial networks and small worlds
The small-world effect is a well-known phenomenon characterizing real-world social
networks. Around a decade ago, the availability of data allowed scientists to discover
the existence of this effect in several contexts, such as collaboration networks (see,
e.g., the oracle of Bacon). Does a small world effect exist in human mobility as well?

Use the Brightkite, Gowalla and Foursquare datasets to construct an undirected
network in which nodes in are individuals and a link in indicates that𝑀 = (𝑉, 𝐸) 𝑉 𝐸
two individuals visited at least once the same location.

Analyze the structure of this network in terms of (use library networkx):
1. distribution of degree ;𝑃(𝑘)
2. clustering coefficient ;𝐶𝐶
3. average path length ;< 𝑑 >
4. betweenness centrality .𝐵𝐶

Comment on the results you find for points 1-4.

By small in the "small world phenomenon" we mean that the average path length
depends logarithmically on the number of nodes (see here for details).< 𝑑 >

Hence, “small” means that is proportional to , rather than or some< 𝑑 > 𝑙𝑛 𝑁 𝑁
power of . In other words, a network has the small-world effect if is around the𝑁 𝑑
natural logarithm of the number of nodes in the network. Is a small world? Why?𝑀

Compare the shape of and the values of , , and of with those of𝑃(𝑘) 𝐶𝐶 < 𝑑 > 𝐵𝐶 𝑀
a social network where are the users in the dataset used to construct𝐺 = (𝑈, 𝐼) 𝑈

and a link in indicates that two users are friends in the social network platform. Is𝑀 𝐼
a small world? What’s the smallest world between and ?𝐺 𝑀 𝐺

https://en.wikipedia.org/wiki/Six_degrees_of_separation
https://oracleofbacon.org/
https://snap.stanford.edu/data/loc-brightkite.html
https://snap.stanford.edu/data/loc-gowalla.html
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://networkx.org/
https://en.wikipedia.org/wiki/Degree_distribution
https://en.wikipedia.org/wiki/Clustering_coefficient
https://en.wikipedia.org/wiki/Average_path_length
https://en.wikipedia.org/wiki/Betweenness_centrality
http://networksciencebook.com/chapter/3#small-worlds
http://networksciencebook.com/chapter/3#small-worlds

Project 9: Error in the reconstruction of OD
matrices from different data sources

The student should select at least four geographic areas (e.g., cities, regions,
countries), for each geographic area should select different mobility data sources
(e.g., taxis traces, bike rides, checkins, vehicle traces, individual GPS traces), and
should reconstruct the Origin-Destination (OD) matrix for each area/source.

In particular, the student should reconstruct the OD matrix given:
● a squared tessellation (try at least four different tile sizes);
● an h3 tessellation (try at least four different tile sizes);
● a Voronoi tessellation (e.g., based on OpenCellID);
● an official division of the territory (e.g., neighborhoods, regions).

The student should compute the OD matrices in two ways:
● using the built-in method of scikit-mobility that converts a TrajDataFrame

into a FlowDataFrame;
● applying the stay_locations function (try different parameters). Two

consecutive stops determine a movement by an individual. Clearly, stops
should be spatially joined with the relative tessellation.

Systematically assess the error in the OD between the data sources and the various
OD matrices computed in the different ways. Define a proper measure of error
between flows, taking it from the literature or defining a new one on purpose. Find a
succinct way (using plots, metrics, or both) to summarize to what extent OD matrices
constructed with different tessellation/source differ among themselves.

Among the datasets, at least one area should be chosen to use flows estimated by
official statistics (e,.g., the Milano dataset can be compared with official flows in
Milan). For such areas, besides the analysis above, use flows from the official
statistics as ground truth and rank each OD matrix by its similarity with the official
flows.

http://opencellid
https://github.com/scikit-mobility/scikit-mobility
https://ckan-sobigdata.d4science.org/dataset/gps_track_milan_italy
https://kdd.isti.cnr.it/~nanni/Milano_OD_people.zip
https://kdd.isti.cnr.it/~nanni/Milano_OD_people.zip

Project 10: Nocturnal vs Day mobility patterns
Do nocturnal mobility patterns differ from day mobility patterns? In this project, the
student should select at least four different public trajectory datasets (e.g., Geolife,
Milano dataset, etc.) and investigate mobility patterns during night and day. In
particular, the student should:

● define reasonable times to delimit night and day, taking into account the
peculiarities of the datasets and the associated geographic areas;

● for each dataset, compare in a dual map night and day trajectories,
commenting on whether some differences are evident from the visualization;

○ Note: trips may be detected using the stay_locations function or
the cluster function, using the parameters the student believes are
the most appropriate. The student should also decide (motivating the
decision) what to do with trips that are at the border of night and day.

● compute, plot, and comment on the distribution of the main individual human
mobility patterns using scikit-mobility, both for daytime trips and nighttime
trips;

● compute, visualize, and comment on the Origin-Destination (OD) matrices
(i.e., FlowDataFrames) based on night and day and compare them both
quantitatively and quantitatively.

● Develop a coherent discussion about what you find, i.e., write a sort of blog
post in the form of a Jupyter notebook. Try to answer fundamental questions,
such as: Are nocturnal trips more predictable than day ones? Are they
typically longer? Etc.

.

https://www.microsoft.com/en-us/download/details.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F
https://ckan-sobigdata.d4science.org/dataset/gps_track_milan_italy
https://scikit-mobility.github.io/scikit-mobility/reference/preprocessing.html#skmob.preprocessing.detection.stay_locations
https://scikit-mobility.github.io/scikit-mobility/reference/preprocessing.html#skmob.preprocessing.clustering.cluster
https://scikit-mobility.github.io/scikit-mobility/reference/individual_measures.html

Project 11: Data-driven estimation of urban
gentrification

Yelp is a platform for sharing, reading, and collecting reviews about activities like
restaurants, pubs, hotels, etc. AirBnB is a famous platform that operates an online
marketplace focused on short-term homestays and experiences.

Gentrification is defined as “The process by which a place, especially part of a city,
changes from being a poor area to a richer one, where people from a higher social
class live” (Cambridge Dictionary). Scientific studies on Gentrification rely on
insideairbnb.com data, a platform containing data about the airbnb presence in
several cities in the world. The quantity of Airbnb facilities is one of the signals of the
gentrification of a neighborhood.

The student should:
● Download the Yelp Dataset:

○ Among the JSON files, focus on the
yelp_academic_dataset_review.json containing informations
about the reviews of the platform;

○ Select the reviews for Toronto, Canada;
● Download the listing of the insideairbnb facilities of Toronto:

○ Here you find the list of all insideairbnb datasets; in the Toronto section,
you find other data you may need, like the Toronto’s neighborhood
geojson object.

Both for the Yelp and for the insideairbnb data, consider the date of the first review
as the date of creation/foundation of the facility.

Start from the insideairbnb data (here you find the description of the columns of each
dataset type). With the help of scikit-mobility and Geopandas, split the city into
neighborhoods and study the evolution of the 2 time series of:

● The number of facilities (insertion date, col. first_review) per
neighborhood (per each facility, perform the spatial join between the lat/lng
columns and the geojson of the neighborhood, or rely on the
neighbourhood_cleansed column);

● The average price of facilities per neighborhood;
● For both the time series, study:

https://www.yelp.it/
https://www.airbnb.it/
https://dictionary.cambridge.org/dictionary/english/gentrification
http://insideairbnb.com/
https://www.yelp.com/dataset/download
http://data.insideairbnb.com/canada/on/toronto/2022-09-07/data/listings.csv.gz
http://insideairbnb.com/get-the-data
http://neighbourhoods.geojson
https://docs.google.com/spreadsheets/d/1iWCNJcSutYqpULSQHlNyGInUvHg2BoUGoNRIGa6Szc4/edit#gid=1322284596
https://scikit-mobility.github.io/scikit-mobility/reference/individual_measures.html
https://geopandas.org/en/stable/

a. The “cumulative” one, i.e., the time series that aggregate the listing
progressively, therefore keeping into account, at a given timestep, all of
the previously inserted ones;

b. The “iterative” one, i.e., the time series that keep into account only the
listing inserted in the current timestep;

c. A “k-sliding window” one, i.e., a time series that accounts for the
insertion of the previous k-steps (find some meaningful values for the k
parameter).

Do you notice any trend, pattern, seasonality? Do you find any breakout date?

Regarding the Yelp Dataset:
● Analyze the yelp_academic_dataset_business.json
● Pick only the first review per business activity
● Create the same time series as before.

Compare the Yelp and InsideAirBnB time series: Can you spot some neighborhoods
with abnormal, consistent, values? Can you spot neighborhoods with an abnormal
increment of both AirBnB houses AND Yelp activities? Would you define such
neighborhoods gentrified?

Project 12: Euro bills and distance patterns
Eurobilltracker (EBT) is a website that tracks the position of euro bills, similarly to
what wheresgeorge does. In this project, the student should:

● write python code to download euro bill traces using EBT APIs and download
at least 1M bank notes from the website.

● make a bar chart (in matplotlib) and a choropleth map (in folium) to show the
frequency of bank notes for each European country.

● visualize the trajectories of the top-10 bills in the downloaded dataset
● compute the percentage of bank notes that are next reported in the vicinity of

the initial entry location (≤ 10 km) and the percentage of bank notes reported
beyond a distance of 500 km.

● compute and plot the distribution of the following quantities:
1. the distances traveled by each bank note, 𝑃(𝑟)

○ compute for three classes of initial entry locations: highly𝑃(𝑟)
populated metropolitan areas (population > 120,000), cities of
intermediate size (120,000 > population > 22,000) and small
towns (population < 22,000)

2. the radius of gyration of each bank note
3. the number of bank notes per each user
4. the radius of gyration of each user
5. the 2-radius of gyration of each bank note
6. the 2-radius of gyration of each user
7. the country-uncorrelated entropy (CUE) of each trajectory in the

dataset, where each country is a possible location.
● For each EU capital, compute and plot the distribution of:

a. the distances of all bank notes firstly reported in that city;
b. the maximum distance and the radius of gyration of the city, i.e.,

considering the movements of all the euro bills firstly reported in that
city.

Write a blog post in the form of a Jupyter notebook to tell a coherent story regarding
the analysis above. Submit both the notebook and the script to download data from
the EBT website.

https://it.eurobilltracker.com/
https://www.wheresgeorge.com/
https://api.eurobilltracker.com/index.html

Project 13: Segregation in Networks
In this work, the authors propose a variation of the Schelling model in which they modify the
structure of the city: agents, instead of moving over a lattice (grid), move over six different
kinds of non-directed graphs (NDGs):

1. two-dimensional lattice with Von-Neumann neighborhoods (2D-VN);
2. two-dimensional lattice with Moore neighborhoods (2D-M);
3. regular NDGs (REG);
4. random network (RAND);
5. small-world network (SW);
6. scale-free network (SF).

The authors propose different parameters and simulations to characterize the dynamics of
the model (see the paper).

Students should replicate the analysis in the paper (until Section 5.1, ignoring SSI and Mixed
Deviation Index) by:

● Creating all the classes of graphs using Python library NetworkX;
○ e.g. G = nx.scale_free_graph(100);
○ Create a scale-free network of 100 nodes;

● Exploiting the possibility given by the MESA library of designing a NetworkGrid (see
an example here), so as to test all the network structures in the paper;

● Compute the first segregation index proposed by the authors (Freeman Segregation
Index, FSI), see below for details.

● Verify whether the results are consistent with the ones proposed by the authors.

Submit well-commented Python files for the MESA part and a well commented Jupyter
notebook for the analytical part.

Freeman Segregation Index (FSI)
FSI is just one of the metrics of segregation. You can follow this procedure to compute it:

● Compute the number of “cross-tie” edges, i.e., undirected edges connecting two

node of different category (say +1 and -1) is ,where𝑒 = 2
𝑘=1

𝑁

∑ 𝑥
𝑘,+1

· 𝑛
𝑘,−1

○ is the number of nodes𝑁
○ is a variable that indicates whether the -th node has label -1(1 if the𝑥

𝑘,+1
 𝑘

label is -1, 0 otherwise);
○ is a variable that indicates the number of node with -1 label that are𝑛

𝑘,−1

neighbors of the -th node.𝑘

https://www.sciencedirect.com/science/article/pii/S016726810700131X?casa_token=wgNOrrJED7sAAAAA:2FDvIjygwzt-h2XHCxTj-j07Sx99oK12RgfQ-Aj7fsPowzZjlIFp8ecckrJwS4XfQtGAghplVw
https://en.wikipedia.org/wiki/Regular_graph
https://en.wikipedia.org/wiki/Random_graph
https://en.wikipedia.org/wiki/Small-world_network#:~:text=A%20small%2Dworld%20network%20is,number%20of%20hops%20or%20steps.
https://en.wikipedia.org/wiki/Scale-free_network
https://www.sciencedirect.com/science/article/pii/S016726810700131X?casa_token=wgNOrrJED7sAAAAA:2FDvIjygwzt-h2XHCxTj-j07Sx99oK12RgfQ-Aj7fsPowzZjlIFp8ecckrJwS4XfQtGAghplVw
https://www.sciencedirect.com/science/article/pii/S016726810700131X?casa_token=wgNOrrJED7sAAAAA:2FDvIjygwzt-h2XHCxTj-j07Sx99oK12RgfQ-Aj7fsPowzZjlIFp8ecckrJwS4XfQtGAghplVw
https://networkx.org/
https://mesa.readthedocs.io/en/stable/
https://mesa.readthedocs.io/en/latest/mesa.html#mesa.space.NetworkGrid
https://dmnfarrell.github.io/bioinformatics/abm-mesa-network
https://www.sciencedirect.com/science/article/pii/S016726810700131X?casa_token=wgNOrrJED7sAAAAA:2FDvIjygwzt-h2XHCxTj-j07Sx99oK12RgfQ-Aj7fsPowzZjlIFp8ecckrJwS4XfQtGAghplVw

● The expected value of in a graph with edges distributed at random (you can think𝑒
about it as the average value of in several experiment in which the edge𝑒
configuration change randomly) is

○ , where𝐸𝑥𝑝(𝑒) = 2𝑁𝐿𝑃(1−𝑃)
𝑁−1

○ is the number of edges of the graph𝐿
○ is the proportion of black nodes (is the proportion of white nodes)𝑃 (1 − 𝑃)

● FSI is therefore the deviation of the number of “cross-tie” edges from the expected
value of them in a graph with edges distributed at random:

○ 𝐹𝑆𝐼 = 𝐸𝑥𝑝(𝑒)−𝑒
𝐸𝑥𝑝(𝑒)

Project 14: Can relocation patterns mitigate
Schelling effects?
Schelling model postulates a simple relocation choice: when agents are unhappy they
relocate choosing a cell, among the one they would be happy with, at random. The
happiness of an agent is dependent on one parameter, the one controlling the threshold of
intolerance (Memo: Schelling proved that even if everybody is willing to tolerate up to ⅔ of its
neighbors different than him, the city ends up segregated). This is quite a simplistic, yet
reasonable assumption.

The goal of this project is to test different policies of relocation. Students should test and
implement four different versions of the Schelling model, according to different relocation
policies (corresponding to different degrees of freedom).

When an agent is unhappy it relocates choosing:
1. Pure random policy:

○ Uniformly at random, a new, free, cell.
2. Mild random policy:

○ Uniformly at random, a new, free, cell, among the ones in which it would be
happy

3. Minimum-gain policy:
○ Among the free cells it would be happy into, the one with the minimum level of

happiness, i.e., a cell in which it minimizes its happiness above the tolerance
threshold. In case of ties (cells with the same level of minimum satisfaction)
agents must choose uniformly at random among them.

4. Best policy:
○ Among the free cells it would be happy into, the one that maximizes its

happiness. Again, in case of ties, agents must choose uniformly at random
among the cells that maximize its happiness.

All of the four variants of the Schelling movements must be coded and embedded into a
Mesa Script (like the one seen in class). The student should compare times of convergence
and segregation levels (both final and during the process) of the different approaches,
providing meaningful analysis, possible explanations, visualizations and tables in a Python
Notebook.
The comparison must show the different behaviors of the policies (in terms of time of
convergence and segregation levels) by varying several parameters like the size of the grid
or the tolerance of the agents: is it observable some trends? E.g. “large cities amplify final
segregation levels in case of best policies” or “a growing trend is observed when…” etc.

https://acoustique.ec-lyon.fr/chaos/Schelling71.pdf
https://mesa.readthedocs.io/

Project 15: How Routing strategies impact
vehicle-related measures

In this project, the student will study the impact of different routing strategies on some
vehicle-related quantities (e.g., travel time and emissions) using SUMO.

In detail, the student should:

1) Download the road network of La Spezia (Italy) from OSMWebWizard.

2) Create an hexagonal tessellation of the city with a H3 resolution of 8;

3) Create an OD-matrix , based on the tessellation, where the weight of a is𝑀 𝑚
𝑖,𝑗

∈ 𝑀

defined as , where:
𝑅

𝑖
𝑅

𝑗

𝑑
𝑖𝑗

2

● is the number of edges with the "from" or "end" node associated that falls in tile i;𝑅
𝑖

● is the distance between the centroids of tile i and tile j.𝑑
𝑖,𝑗

Normalize the matrix so that the sum of all elements is 1 to make cell values used as
transition probabilities.

4) Create a Traffic Demand , based on describing the movements of 1,000 vehicles.𝑇𝐷 𝑀,
Assign the starting and ending edge associated with each vehicle’s movement, selecting the
edges randomly within the starting and ending tile (ensure that there exists a path, i.e., they
are connected). Assign the departure time uniformly at random in the interval .[0, 600]

5) Starting from TD, compute the following traffic demands using different routing strategies:
● : assign the path from origin to destination using the shortest path;𝑇𝐷

𝑠ℎ𝑜𝑟𝑡

● : assign the path from origin to destination using the fastest path;𝑇𝐷
𝑓𝑎𝑠𝑡

● : assign the path from origin to destination using the tool duarouter with a𝑇𝐷
𝑤15

random factor = 15.𝑤

6) For each Traffic Demand computed in point 5, compute the following quantities for each
vehicle.

● Total distance traveled;
● Travel time;
● CO2 emissions;
● NOx emissions;
● Fuel consumption.

https://www.eclipse.org/sumo/
https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html

see https://sumo.dlr.de/docs/TraCI/Vehicle_Value_Retrieval.html

7) Compare the vehicles' distribution of the measures computed in point 6) for each Traffic
Demand and explain the results. For each vehicle, compare the difference in the measures
computed for all the travel demands.

8) According to the result obtained:
● Which routing strategies save more fuel (on average)?
● Which routing strategies minimize the travel time (on average)?
● Which routing strategies pollute less (on average)?

https://sumo.dlr.de/docs/TraCI/Vehicle_Value_Retrieval.html

Project 16: Route Diversity and Urban Emissions
In this project, the student should design two measures of route diversity and investigate
whether there is a correlation between route diversity, CO2 and NOx emissions using
SUMO.

More in detail, the student should:

1) Download the road network of Pisa (Italy) from OSMWebWizard.

2) Create an hexagonal tessellation of the city with a H3 resolution of 8;

3) Create an OD-matrix , based on the tessellation, where the weight of a is𝑀 𝑚
𝑖,𝑗

 ∈ 𝑀

defined as , where:
𝑅

𝑖
𝑅

𝑗

𝑑
𝑖𝑗

2

● is the number of edges with the "from" or "end" node associated that falls in tile i;𝑅
𝑖

● is the distance between the centroids of tile i and tile j.𝑑
𝑖,𝑗

Normalize the matrix so that the sum of all elements is 1 to make cell values used as
transition probabilities.

4) Create a Traffic Demand , based on , describing the movements of 500 vehicles.𝑇𝐷 𝑀
Assign the starting and ending edge associated with each vehicle's movement selecting the
edges randomly within the starting and ending tile. Assign the departure time uniformly at
random in the interval .[0, 300]

5) Starting from , compute the following traffic demands using OpenStreetMap routing𝑇𝐷
service and duarouter:

● : assign the path from origin to destination using OpenStreetMap with the𝑇𝐷
𝑂𝑆𝑀_𝑠ℎ𝑜𝑟𝑡

parameter preference=shortest;
● : assign the path from origin to destination using OpenStreetMap with the𝑇𝐷

𝑂𝑆𝑀_𝑓𝑎𝑠𝑡

parameter preference=fastest;
● : assign the path from origin to destination using OpenStreetMap with the𝑇𝐷

𝑂𝑆𝑀_𝑟𝑒𝑐𝑡

parameter preference=recommended;
● : assign the path from origin to destination using the tool duarouter with a𝑇𝐷

𝑑𝑟15

random factor w = 15.

6) Propose and implement two measures (and) to quantify the "diversity" of road𝑑
1

𝑑
2

usage. Motivate your choices and provide a formal definition of the measures. For each
Traffic Demand computed in point 5):

https://www.eclipse.org/sumo/
https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html
https://openrouteservice.org/dev
https://openrouteservice.org/dev

● compute the total CO2 and NOx emitted by the vehicles;
● measure the road usage (e.g., for each edge, the number of vehicles that traveled

that edge) and apply and .𝑑
1

𝑑
2

7) According to the results obtained:
● Which routing strategies maximize the diversity? why?
● Which routing strategies minimize the diversity? why?
● Is there a correlation between diversity and CO2 emissions?
● Is there a correlation between diversity and NOx emissions?
● Are CO2 emissions and NOx emissions correlated?

Project 17: Understanding international migration
The student should use this international migration flows dataset to study
international migration between countries and world zones. First of all, visualize the
information in the two datasets:

● plotting two circular plots (like that in Figure 4);
● creating two FlowDataFrames where the tessellation is the division of the

world in countries and world zones. Plot the two datasets using the method
plot_flows. Make the visualization as nice and informative as possible
exploiting the method’s arguments.

Then, plot the distribution of migration flows and flow-distances. A flow-distance
between two locations consists of the migration flow between them multiplied by the
distance between the two locations. For a country, consider the position of its capital
as its “centroid”. A world zone’s centroid is the centroid of the country’s capitals.

Split the dataset into a training and a test set and use the former to fit:
● singly-constrained gravity models

○ use the total number of out-migrants to estimate 𝑂
𝑖

○ use the population as measure of location relevance
○ variant 1: with power-law deterrence function (model)𝐺

1

○ variant 2: with exponential deterrence function (model)𝐺
2

● doubly-constrained gravity models
○ use the total number of out-migrants to estimate 𝑂

𝑖

○ use the population as measure of location relevance
○ use the total number of in-migrants to estimate 𝐷

𝑖

○ variant 1: with power-law deterrence function (model)𝐺
3

○ variant 2: with exponential deterrence function (model)𝐺
4

Evaluate on the test set, both qualitatively and quantitatively, the goodness of the
gravity models, as well as of a radiation model () where the population is used as𝑅
an estimate of the opportunities. What’s the model that best approximates the real
migration flows? Do the previous task for both countries and world zones. The
population of a world zone is the sum of the population of all its countries.
Repeat the previous task using the GDP (Gross Domestic Product) of each location
instead of the population (for both the gravity and the radiation models). The GDP of
a world zone is the sum of the GDP of all its countries. Do it for both countries and
world zones. What’s now the best model?

https://www.science.org/doi/10.1126/science.1248676
https://www.science.org/doi/suppl/10.1126/science.1248676/suppl_file/abel-database-s2.xlsx
https://www.science.org/doi/suppl/10.1126/science.1248676/suppl_file/abel-database-s1.xlsx
https://www.researchgate.net/publication/261186924_Quantifying_Global_International_Migration_Flows

Project 18: Urban desegregation model
Can we define a mechanism to desegregate a segregated city?

The student should use MESA to develop a simulation model that starts from an
already segregated space (i.e., output of a Schelling model’s execution) and
generates a desegregated space.

The simulation should be location-based rather than agent-based: at each simulation
step, it is not the individuals who choose where to go, but a district decides which
individuals to attract or reject. The district decides to attract or repel individuals on
the basis of a measure of racial diversity: a district should be racially mixed as much
as possible.

With respect to the original Schelling model, where each square is a single location,
in this model we introduce a multigrid: each of the cells that compose the space𝑚
(districts) can host up to individuals. Therefore, at most individuals can𝑛 > 1 𝑛
reside in a district, one for each location. The racial diversity of a district is𝐷
calculated as the Shannon's entropy on the races of the individuals in it:

where is a race and is the set of all possible races. For simplicity, we assume𝑟 𝑅
that there are only two races, namely .𝑅 = {𝑟

1
, 𝑟

2
}

The desired diversity is the minimum racial diversity that each district must𝐷*

respect. Note that when , we want only one race in a district (i.e., a fully𝐷* = 0
segregated district). Since our model starts from a segregated city (output of
Schelling's model), we expect that in the beginning a district’s racial diversity is far𝑥

from the desired one ().𝐷* 𝐷
𝑥

<< 𝐷*

At each step of the desegregation model, the following steps take place:
● each district evaluates its racial diversity ;𝑥 𝐷

𝑥

● if , i.e. if the racial diversity of the district is lower than the expected𝐷
𝑥

< 𝐷*

diversity, then the district is unhappy;

https://mesa.readthedocs.io/en/stable/

● unhappy districts are divided into two equivalence classes (and) based𝑅
1

𝑅
2

on race, creating a network initially without arches;
● districts in connect with districts to exchange individuals in order to𝑅

1
𝑅

2

increase racial diversity while respecting the racial tolerance of individuals;
● The contact between the districts (i.e., the creation of the arches in the

bipartite network) can be done based on a random principle or a “best”
principle (so that the diversity is maximized).

The simulation ends when racial tolerance is respected AND there are no unhappy
districts. To facilitate the convergence of the model, we can relax this last condition
and terminate the model when at least districts are happy.𝑘

The result of the simulation should be essentially equivalent to the input of the
Schelling model in which the neighborhoods have maximum racial diversity. In other
words, our location-based model generates a de-segregated city from a segregated
city.

Study how the behavior of the model changes with different parameter values
(number of agents, locations, and districts, tolerance, homophily, etc.).

Project 19: Data-driven Geo Schelling model
Mesa-Geo is an extension of MESA that offers the possibility of handling geospatial
data when defining the space of the model. Here you can find an example of a
simple GeoSchelling model, i.e., a model in which agents move inside some
geographical areas. There are two types of GeoAgents (extension of the Agent
class of Mesa): people (movable) and regions (fixed GeoJSON geometries). Each
person resides in a randomly assigned region, and checks the color ratio of its region
against a predefined happiness threshold at every time step. If the ratio falls below a
certain threshold (e.g., 40%), the agent is unhappy and randomly moves to another
region. People are represented as points, with locations randomly chosen within their
regions. A region’s color depends on the color of the majority population it contains
(i.e., point in polygon calculations, not so important for our scope). The main
difference from classical Schelling is that more agents can occupy a cell and
consider as neighbors all the agents that live in their same cell.

● Download from OpportunityInsights a csv file containing information about the
racial composition of each census tract in the US (here a description of the
columns of the dataset). As you can see in the column description, each
census tract is uniquely identified by three identifiers (2010 FIPS) – state,
county, and tract, i.e. the first three columns of the dataset. Create a column
named, for example geoid being the concatenation of these three ids.

● Visit the US Census Bureau website at this link:
○ Select, FOR YEAR 2010, the state of New York and the County of New

York;
○ Download the associated shapefile, and read it with GeoPandas
○ Save it into a GeoJSON file
○ Now you are able to use it as space in Mesa-Geo

● Choose two categories among the variables, calculate them aggregating the
existing variables (e.g., whites/non-whites, black/non-blacks), or deduce them
(poor/non-poor, note that you have the poor share column, but not the rich
one: it can be calculated, for example as 1-poor share).

● As you can see, almost each variable is calculated for three timestamps:
1990, 2000, 2010. These are the dates corresponding to the US census
years. Consider only the information about 2010.

● As you can see, the GeoSchelling example contains a small number of
agents: the idea of this project is to move a step towards the definition of the
so called data-augmented ABM:

https://mesa-geo.readthedocs.io/en/latest/tutorials/intro_tutorial.html
https://mesa.readthedocs.io/en/stable/
https://github.com/projectmesa/mesa-geo/tree/main/examples/geo_schelling_points
https://opportunityinsights.org/wp-content/uploads/2018/10/tract_covariates.csv
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_13
https://opportunityinsights.org/wp-content/uploads/2019/07/Codebook-for-Table-9.pdf
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2010&layergroup=Census+Tracts
https://github.com/projectmesa/mesa-geo/tree/main/examples/geo_schelling_points

○ Set up the model so that it can use as space the pre-calculated
GeoJSON as grid

○ Suppose each NYC census tract was populated, in 2010, by 1200
agents

■ If you want to refine it, you can search the web for the exact
population

■ Or you can multiply 1200 by the factor of the column
popdensity2010

○ Using the value of the population, calculate the exact number of agents
of your two categories per each census tract

○ Assign the number of agents to the GeoSchelling model
○ Let the simulation run for some steps… Do you find something

interesting? Be creative, propose a simple, but complete, analysis:
■ For the tolerance parameter, some hints:

● Leave the ⅔ of classical Schelling
● Increase it to 50%
● …

■ For the steps:
● Is there a number of steps that make the simulation

converge?
● Do you observe any difference in the evolution of the

process by changing some parameters?
■ Can you provide a visualization/interpretation of the process,

static or dynamic?

Project 20: Football matches as mobility networks
During a football match, players move on the field to attack and defend. This
generates a series of movements that can be analyzed to understand the players
behavior.

The student should use the Wyscout open dataset, describing the “events” in all
matches of seven competitions, to analyze the mobility of players. A player’s
movement is defined by consecutive events made by that player in the match.

First, compute and plot the distribution of (Euclidean) distances in the entire dataset,
as well as the distribution of the average distance per match and per player. What is
the shape of these distributions? Are they similar to the distributions of geographic
distances observed in mobility datasets?

Second, split the field into equally-sized tiles (try different values of) and𝑥 𝑥
construct the mobility network of each match. A node in this network identifies a
zone and a weighted edge indicates how many times any player moved between two
zones during the match. Create these networks for each match and the two teams
separately. Then:

● compute and plot the distribution of the node degree for 1) the entire dataset,
2) for each competition separately, and 3) for each team separately. Can you
find differences?

● compute the football-uncorrelated entropy, defined as the predictability of the
ball to be in a particular zone of the field. The higher this entropy, the harder it
is to predict where the ball is during a game. Do it for 1) the entire dataset, 2)
each competition separately, and 3) each match separately. Can you find
differences?

Third, define the indicator of a team in a match as the harmonic mean of the𝐻
average degree and the standard deviation of the degree of the mobility network.
Compare the indicator of two teams and evaluate how frequently a team with a𝐻
higher indicator wins over the opponent. Can the indicator be a valuable𝐻 𝐻
descriptor of a team’s strength?

Develop a simulation in which you take all matches in at least one of the
competitions available in the dataset, compute for each team the indicator, and𝐻
make a team win (+3 points) if its indicator is higher than the opponent. Compare𝐻

https://www.nature.com/articles/s41597-019-0247-7
https://en.wikipedia.org/wiki/Harmonic_mean

the final ranking you obtain with the real final ranking for that league/year. Are they
correlated?

Write a blog post in the form of a Jupyter notebook to tell a coherent story about the
analysis above.

Project 21: Trajectory compression
The student should modify the scikit-mobility function compress to provide three
different compression algorithms, taking in input a TrajDataFrame, tdf, and
returning a new TrajDataFrame with a reduced number of points. The new
compression methods should be the following:

● Ramer–Douglas–Peucker, 1973
● Driemel–HarPeled–Wenk, 2010 (Section “Curve Simplification”)
● Imai–Iri, 1988 (see slides)

The new compress function should return a TrajDataFrame containing only the
rows selected by the algorithm.

The signature of the new function should be as follows:

compress(tdf, spatial_radius_km=0.2,
algorithm=”default”,
<other_parameters>)

where:
● tdf is the input TrajDataFrame.
● spatial_radius_km=0.2 is the parameter required by the current

implementation of compress, that we keep for compatibility.
● algorithm=”default” is the selected compression algorithm. “default” represents

the current implementation. Other options are ‘ramer’, ‘driemel’, ‘imai’.
● <other_parameters> are the parameters required by the new algorithms –

each algorithm will consider only the relevant parameters and ignore the
others.

The student should test and compare the results of the three methods against a
real-world dataset of trajectories, both through global statistics and a selection of
examples to show on a map.

The developed code should be delivered as a compression.py file, which is a
modification of the existing one on the scikit-mobility repository. Provide also a
subfolder named examples in which you show how the developed function works
on the test data.

https://github.com/scikit-mobility/scikit-mobility
http://www2.ipcku.kansai-u.ac.jp/~yasumuro/M_InfoMedia/paper/Douglas73.pdf
https://link.springer.com/content/pdf/10.1007/s00454-012-9402-z.pdf

Project 22: Implementing Trajectory Segmentation
The student should add to scikit-mobility a function traj_segmentation that,
similarly to the existing stay_locations, takes in input a TrajDataFrame, tdf,
and returns a new TrajDataFrame that splits each individual’s global trajectory into
sub-trajectories based on the Trajectory Segmentation procedure described in
Siła-Nowicka et al. IJGIS 2015, 30:5.

An individual’s global trajectory consists of all the points of that individual in the𝑇(𝑢) 𝑢
TrajDataFrame (i.e., all rows in tdf with uid=u). An individual’s sub-trajectory

indicates all points belonging to the same segment identified by the function..𝑇
𝑖
(𝑢)

In practice, the new traj_segmentation function should return a
TrajDataFrame containing all the rows of the original tdf but with an additional
column tid, which contains the identifier of each sub-trajectory of an individual. tid
must have an integer value between 1 to , where 1 is the first sub-trajectory in𝑘
chronological order and k is the number of segments detected.

The signature of the new function should be as follows:

traj_segmentation(tdf, window=10, gap=2000, inplace=False)

where:
● tdf is the input TrajDataFrame.
● inplace=True indicates that the original tdf should be overwritten with the

new one (i.e., the one containing the new tid column); inplace=False
indicates that a new TrajDataFrame should be returned.

● all the other arguments are as described in the reference paper.

NOTE: The student is invited to include additional parameters if needed, following
the indications in the reference paper and their own creativity.

The student should also test the provided code on a small set of trajectories of their
own choice (for instance, traces of taxis), comparing the number and average length
of the segments obtained with those yielded by the standard stay_locations, and
visually showing examples on a map..

https://github.com/scikit-mobility/scikit-mobility
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/preprocessing/detection.py
https://research-repository.st-andrews.ac.uk/bitstream/handle/10023/9735/GeocrowdPaper_Accepted.pdf?sequence=1&isAllowed=y
https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/preprocessing/detection.py

The developed code should be delivered as a segmentation.py file, which is a
modification of the detection.py file on the scikit-mobility repository. Provide also a
subfolder named examples in which you show how the developed function works
on the test data.

https://github.com/scikit-mobility/scikit-mobility/blob/master/skmob/preprocessing/detection.py

Project 23: Deviation Patterns
It is well known that actual mobility of vehicles often does not follow shortest/fastest
paths (ref. Project 7), yet it is not clear what are the reasons. This project aims to dig
deeper in the phenomenon. The basic approach required involves to test two
possible (non-exclusive) hypotheses: (1) there are some roads that are almost
systematically avoided by real vehicles; (2) there are special events (road works,
accidents, exceptional traffic conditions) that make the road unappealing for a limited
time – either in a specific day, or regularly every day (e.g. systematic traffic jams).
The student is welcome to integrate them with additional ideas to explore.

First, follow the same process described in Project 7 to obtain, for each trajectory T
of the input dataset, the sequence TR = {s1, …, sn} of segment IDs that maps T to the
road network, and the sequence TS = {s*1, …, s*m} of the fastest path between start
and end of T (by construction, you should obtain s*1 = s1 and s*n = sm, though in
general m != n – a good test to put in an assert test…).

Second, for each input trajectory T we compute the set TM of segments that the real
vehicle “missed” w.r.t. the shortest path TS, namely TM = TS - TR (set difference).

Testing theory 1. For each road segment r, compute its “missing” absolute
frequency fABS(r) as size of {T in dataset | r in TM }, and its relative frequency fREL(r)
as fABS(r)/|{T | r in TS}|. Identify the highest frequency ones (both for relative and
absolute definition) and show them on a map. Are there extreme peaks, namely
hugely avoided roads?

Testing theory 2. Follow a similar approach as above, yet this time we associate to
each road segment r in TS, TR and TM the time they were traversed, i.e. these sets
contain now pairs (r, t) where t is the traversal time. Time can be discretized into
hours. We consider two cases: (i) t is described as “date + hour_of_the_day”; (ii) t is
just described as “hour_of_the_day”, thus not considering the date. For both cases
do the following:

(a) Find the pairs (r,t) with highest frequency, and do a similar analysis as for
theory 1

(b) Select the 3 most interesting pairs (s,t), and study what trajectories of TS

actually crossed it, by plotting them on the map highlighting the road
segments with highest frequency (e.g. associating colors based on the
number of trajectories passing through the segment).

Project 24: Schelling and The Pursuit of Happyness
This project is an extension of Project 14. The question we want to answer is the
following: can we learn relocation strategies in a Schelling simulation that improve
convergence time?

Phase 1: MESA-based simulation. Write and run a Mesa script implementing a
mild random policy for relocation, as described in Project 14. Collect the complete
traces of the simulation, extracting at least the sequence of relocations performed
along the simulation.

Phase 2: build a training set. Analyzing the simulation traces, create a dataset that
contains a row for each relocation happened, composed of <agent-feat, start-feat,
end-feat, happiness_duration>, where:

● agent-feat: this is a set of computed features describing the agent. Basic
features should include the number of time steps where the agent relocated.
The student can propose others.

● start-feat: this is a set of computed features describing the context of the
location where the agent was before relocating. Basic features should include
the coordinates in the grid and the number of similar agents in the
neighborhood. The student can propose others.

● end-feat: same as start-feat, but for the destination location.
● happiness_duration: a number describing for how many simulation steps,

starting from the relocation, the agent remained in the destination location.
This is equivalent to say, for how many time steps the agent remained happy
– before relocating again.

Phase 3: learn to relocate. Discretize the field happiness_duration into two classes:
“short” and “long”, based on a duration threshold that you decide through analysis of
the distribution of values. Use the dataset you obtain to train a classification model
that predicts the happiness duration class based on the other fields (excepted
happiness_duration, of course). Try with multiple classification methods and follow
the usual process to select the best combination of model + parameters. If the
training set is too small, run step 1 multiple times (on different initial configurations),
to enlarge it. We call the model “ML-Schelling”.
Now, modify the Mesa script in such a way that when an agent has to relocate it
uses the classification model to choose the destination. More precisely, we compute
all the features adopted in the training phase (namely: agent-feat, start-feat and
end-feat) for all pairs (o,d), where “o” is fixed and corresponds to the actual location

of the agent, and “d” is any of the remaining locations. Clearly, the components
agent-feat and start-feat are always the same, whereas end-feat changes with each
possible destination. We apply the model to each pair and select the one that
predicts “long” happiness with the highest confidence/probability.

Phase 4: test the model. Run a set of simulations on different initial conditions
using both the “mild random” and the ML Schelling policies, and evaluate, on each
simulation setting, how many iterations are needed with the two methods to
converge and how long, on average, does happiness of agents last. Does ML give
an advantage?

Project 25: Moving Clusters
The student should implement a function moving_clusters to be integrated in
scikit-mobility, which takes in input a TrajDataFrame, tdf, and returns a DataFrame
describing the moving clusters contained in tdf. The implementation should follow the
instructions given in the moving cluster paper by Kalnis-Mamoulis-Bakiras.

Resampling. Moving clusters require that trajectories have points at a given fixed
sampling rate, e.g. every 60 seconds. The function should take care of
preprocessing the input TrajDataFrame in order to interpolate points at timestamps
that are multiples of a given input time parameter, e.g. if the requested sampling is
120 seconds, we should interpolate points for each timestamp of form 2022/11/24
10:08:00, 2022/11/24 10:10:00, 2022/11/24 10:12:00, etc. The interpolation should
assume that objects move on a straight line at uniform speed between two
consecutive points.

The signature of the new function should be as follows:

moving_clusters(tdf, time_sampling_seconds=60,
dbscan_radius_mt=500, dbscan_min_pts=5,
theta=0.8)

where:
● time_sampling_seconds=60 indicates the (re)sampling rate to apply to

the input trajectories, which is by default set to 1 minute.
● dbscan_radius_mt=500 indicates the radius (or “epsilon”) of the DBSCAN

clustering algorithm used by moving clusters, by default set to 500 meters.
● dbscan_min_pts=5 is the minimum number of points used by DBSCAN, set

to 5 by default.
● theta=0.8 is the minimum “integrity threshold” used to link clusters between

time slices (see reference paper), by default set to 80%.

The output DataFrame should contain a row for each moving cluster found,
consisting of: timestamp of the time slice where the pattern starts; the pattern
duration; the minimum, maximum and average number of cluster members; a list
containing a sub-list for each time slice, each listing the trajectory IDs that belong to
the cluster at that time.

The student should test the function on at least two public datasets, and discuss
some sample results.

https://link.springer.com/content/pdf/10.1007/11535331_21.pdf

The developed code should be delivered as a moving_clusters.py file. Provide
also a subfolder named examples in which you show how the developed function
works on at least one sample dataset.

Project 26: T-Patterns
Implement a simple version of Trajectory Patterns, based on a pre-defined grid,
where transition times are computed a posteriori – as simple average transition time,
considering if variance is not too large.

The student should implement a function t_patterns to be integrated in
scikit-mobility, which takes in input a TrajDataFrame, tdf, and returns a DataFrame
describing the Trajectory Patterns contained in tdf, together with a reference grid.
The implementation should be a simplified version of what described in the
Trajectory Pattern Mining paper.

The function should realize the following steps:
● First, a spatial regular grid is created, composed of square cells of given side

length.
● Second, each trajectory is translated to a sequence of cell IDs with associated

timestamp (the same of the original point in the trajectory)
● Third, a sequential pattern mining task is run over the set of sequences

obtained above, according to a minimum support threshold
● Fourth, for each pattern P the function should identify the set S of input

sequences where it occurs. On each input sequence in S, the function should
compute the transition time for each transition A→B in the pattern , computed1

as tt(A,B) = time(B)-time(A), where time(X) is the timestamp of cell X in the
input sequence. Thus, each transition A→B of the pattern is now associated
with all its transition times. Compute the mean and standard deviation of
these values.

The signature of the new function should be as follows:

t_patterns(tdf, cell_size=250,
min_sup=0.20,
grid=None)

where:
● cell_size=250 indicates the side length of each cell in the regular grid, by

default set to 250 meters.

1 Given a sequential pattern A→B→C→D→…, the transitions are A→B, B→C, C→D, …

https://kdd.isti.cnr.it/~nanni/papers/kdd07_tpattern_TR.pdf

● min_sup=0.20 is the minimum support of the patterns, expressed as the
fraction of input trajectories containing them (0<=min_sup<=1), by default set
to 20%.

● grid=None is an optional parameter that provides the grid to use in the
algorithm. If grid==None, then a new grid is computed, based on the
cell_size.

The output should be formed by a pair (output_grid, patterns), where output_grid
is the grid used by the function (equal to the input grid, if provided) and patterns is a
DataFrame containing, for each pattern: support, list of cell IDs, list of mean
transition times, list of transition time standard deviations.

The student should test the function on at least two public datasets, and discuss
some sample results.

The developed code should be delivered as a t_patterns.py file. Provide also a
subfolder named examples in which you show how the developed function works
on at least one sample dataset.

Project 27: Trajectory Prediction with Higher
order Markov Chains
Preliminary notions. In standard Markov Chains (MC) the probability of the next
event in a sequence depends only on the current one (i.e. the last event seen so far),
while the previous history of the sequence is completely neglected. An extension of
this is given by k-th order Markov Chains, where we consider the last k events in the
sequence, i.e.

P(Xn | <X1, X2, …, Xn-1>) = P(Xn | <Xn-k, X(n-k)+1, …, Xn-1>)

Standard MCs are a particular case with k=1.

The student should implement two functions: mc_traj_train and
mc_traj_predict, to be integrated in scikit-mobility. The first one takes in input a
TrajDataFrame “tdf_train” and returns an MC model; the second takes as input a
TrajDataFrame “tdf_test” and an MC model, and returns a DataFrame describing the
predictions made by the model for each trajectory in tdf_test.

Function mc_traj_train should realize the following steps:
● First, a spatial regular grid is created, composed of square cells of given side

length.
● Second, each input trajectory is translated to a sequence of cell IDs.
● Third, the parameters of a k-order MC are learned from the set of sequences

obtained above, with k being an input parameter.
● Fourth, the grid and a data structure containing the MC model parameters are

returned.

The signature of mc_traj_train should be as follows:

mc_traj_train(tdf, cell_size=250, mc_order=1, grid=None)

where:
● cell_size=250 indicates the side length of each cell in the regular grid, by

default set to 250 meters.
● mc_order=1 defines the order of the MC model to adopt, by default set to 1,

namely the standard MC.
● grid=None is an optional parameter that provides the grid to use in the

algorithm. If grid==None, then a new grid is computed, based on the cell_size.

The output should be formed by a pair (output_grid, mc_model), where output_grid is
the grid used by the function (equal to the input grid, if provided) and mc_model is
the data structure containing the MC model parameter.

Function mc_traj_predict, instead, should realize the following steps:
● First, each input trajectory is translated to a sequence of cell IDs using the

grid passed as input.
● Second, the k-order MC passed as input is applied to the set of sequences

obtained above, yielding the next cell visited for each sequence.
● Third, each predicted cell is added to the input trajectories as an extra point

having coordinates corresponding to the center of the cell.

The signature of mc_traj_predict should be as follows:

mc_traj_predict(tdf, mc_parameters, grid)

where:
● mc_parameters contains the parameters of the MC model to adopt. This is a

mandatory parameter.
● grid is the grid to use in the algorithm. This is a mandatory parameter.

The output should be a TrajDataFrame where each input trajectory is now extended
with a new point.

Implementation notice. k-th order MCs are relatively easy to implement (remember
that there are no hidden states…) by computing conditional probabilities. The
student can either implement them from scratch, or make use of existing libraries,
like pomegranate. Reading the documentation of the latter is anyway suggested, as
it helps understanding a few details of the problem – e.g. how should be make
predictions if a test trajectory has less than k points?

The student should test the functions on at least two public datasets, dividing them
into a training set and a test set, studying the effect of the order of the MC on the
performances.

The developed code should be delivered as a markov_chains.py file. Provide
also a subfolder named examples in which you show how the developed function
works on at least one sample dataset.

https://pomegranate.readthedocs.io/en/latest/MarkovChain.html

Project 28: A matter of resilience
When a road is closed or becomes extremely slow, its impact on the overall mobility
of the city depends on various factors, including its centrality and the existence of
alternative routes. The objective of this project is to identify the road segments that
are more critical and can thus create resilience issues to the network.

As a case study, take the road network of Pisa, let say a square area of 10km x
10km. The ideal process to run is the following:

1. choose one road segment r
2. consider all possible pairs of origin-destination (o,d) in the city, where o and d

are nodes in the road network
3. compare the fastest path travel times obtained for all (o,d) pairs on the full

road network vs. the network obtained removing segment r
4. define an impact measure for r based on the increase of travel times (e.g. the

ratio between the average route durations)
5. repeat the process (steps 1–4) for all segments r in the road network
6. identify the roads that are less resilient, i.e. that create the highest impact on

the city mobility.
If the number of nodes and segments in the network is too high to compute all
segments and all fastest paths, a form of sampling can be adopted.

Create a map showing the impact of each road segment, for instance through colors,
and discuss the results. Question: is the impact measure equivalent to centrality of
the edge? If not, provide a rationale and – possibly – some empirical proof in Pisa.

Organize the result in a well-commented notebook.

Project 29: Traveling as a (dis)continuous function
Sometimes, the best path to reach a destination D can be very different from the
best path to reach a different destination D’ (from the same starting point), even if D
and D’ are very close. We name these cases “best path discontinuities”. E.g. (same
origin, destination changed by ~50 meters):

In some cases the difference is in terms of path, while the length/duration are the
same; in others (as the example above) also length/duration can change.
The objective of this project is to measure the phenomenon and then use it to
compare different cities.

Phase 1: the process. The student should implement a function
city_discontinuity that takes as input the road network of a city and outputs
two distributions of discontinuity measures (defined below).

The process is the following:
1. consider all possible pairs of origin-destination (o,d) in the city, where o and d

are nodes in the road network and such that distance(o,d) >= min_travel_dist
(which is an input parameter)

2. for each (o,d), randomly choose another destination d’ such that distance(d,d’)
lies within a predefined interval [d_min, d_max] – other input parameters

3. compare the fastest path for (o,d) with that for (o,d’), with two measures:
a. continuity1(o,d) = min(time(o,d), time(o,d’)) / max(time(o,d), time(o,d’))
b. continuity2(o,d) = Jaccard(path(o,d), path(o,d’))

where time(o,d) is the duration of the fastest path, and path(o,d) is the set of
road segments traversed along the fastest path from o to d.

4. return an histogram of Nbins bins ranging from 0 to 1 (which is the theoretical
maximal range of both continuity measures) for the continuity1 values, and
another similar histogram for continuity2.

Phase 2: the use case. Select 10 European cities, including Rome, London and
Barcelona, downloading their road networks cut to a bounding box of similar (and
reasonable) size. Then, compare the resulting distributions, discussing the results.
Questions:

● Which cities “suffer” from discontinuity?
● Are there specific areas of the city that increase discontinuity?

Organize the result in a well-commented notebook.

Project 30: Random Perturbation of Paths
In this project, the student should define (at least) two randomization algorithms for a path
between an origin and a destination.

Given a sequence of SUMO edges representing the path between an origin and a
destination (e.g., computed with the shortest or fastest path), propose two algorithms to
create a random perturbation of the path (Figure 1).

Each algorithm should have the following properties:

● A parameter that controls the level of randomization (means no𝑤 ∈ [1, ∞) 𝑤 = 1
randomization). The higher the value of , the more the path is perturbed. Provide𝑤
some empirical proof of this property.

● A "spatial" parameter to control the spatial extension of the perturbed path. Provide𝑠
some empirical proof of this property.

● The algorithm should be non-deterministic, i.e., given the same input (sequence of
edges, , and), the algorithm may propose a different path perturbation. Provide𝑠 𝑤
some empirical proof of this property.

● The algorithm should quantify the difference between the original and perturbed
paths, in terms of:

○ difference in paths length (in meters)
○ Jaccard coefficient between the two sets of roads (the originale one and the

perturbed path)

First, provide a mathematical definition and a Python implementation of the algorithms (they
should work on SUMO road networks). Visualize on Folium some examples of a path and
the perturbation obtained through the designed algorithms for different parameters’ values.

Then test the algorithms as follows:

https://www.eclipse.org/sumo/
https://en.wikipedia.org/wiki/Jaccard_index

1) Download the road network of Pisa (Italy) from OSMWebWizard.

2) Create a Traffic Demand describing the movements of 1500 vehicles. Assign the𝑇𝐷
starting and ending edge associated with each vehicle's movement selecting the edges
randomly. Assign the departure time uniformly at random in the interval .[0, 300]

3) Starting from , compute the following traffic demands using the perturbation algorithms𝑇𝐷
implemented (select the and parameters of your algorithms as you prefer):𝑤 𝑠

● : assign the path from origin to destination as a perturbation of the fastest path𝑇𝐷
𝑎𝑙𝑔1

using the first algorithm proposed;
● : assign the path from origin to destination as a perturbation of the fastest path𝑇𝐷

𝑎𝑙𝑔2

using the second algorithm proposed;
● : assign the path from origin to destination using the tool duarouter with a𝑇𝐷

𝑑𝑟15

random factor .𝑤 = 15

4) For each computed in point 3, calculate the following quantities for each vehicle.𝑇𝐷
● Total distance traveled;
● Travel time;
● NOx emissions.

5) Compare the vehicles' distribution of the measures computed in point 4 for each and𝑇𝐷
discuss the results.

6) According to the results obtained:
● Is path perturbation beneficial?
● Which one of the proposed algorithms has the best impact on each of the measured

quantities?
● Are the algorithms proposed “better” than duarouter with respect to NOx emission

and travel time? Why? provide an interpretation.

https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html

Project 31: SUMO Map Matching
In this project, the student should design, develop, and test a map matching algorithm. Given
a SUMO road network and a sequence of lat/lon points, the algorithm should map the
sequence of points on SUMO edges. The algorithm's output is a route (i.e., a sequence of
connected edges) representing and describing the lat/lon sequence.

The signature of the function should be:

def map_match(road_network, lat_lon_points):

Your code (well commented)

The proposed algorithm should:
● Be resilient to point inaccuracies;
● Be resilient to "noise" points (e.g., points that lie in intersections);
● Do not depend heavily on the density of the points.

Quantify the goodness of the map matching between the original edge list and the
map-matched one in terms of:

○ Difference in paths length (in meters)
○ Jaccard coefficient between the two sets of roads (the original one and the

map-matched one)

First, provide a mathematical definition and a Python implementation of the algorithm (it
should work on SUMO road networks). Visualize on Folium some examples of a path and
the map-matched path obtained through the map matching. Explain all the choices you have
made.

Then, to test the algorithm, the student should:

1) Download the road network of Milan (Italy) from OSMWebWizard.

2) Perform the following steps:

A. Create a Traffic Demand describing the trips of 5,000 vehicles. Assign the starting𝑇𝐷
and ending edge associated with each vehicle's movement selecting the edges
randomly. Ensure that the origin and destination are connected and that the shortest
path has a length 1.5 km;≥

https://en.wikipedia.org/wiki/Jaccard_index
https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html

B. Given , use duarouter with to compute a traffic demand that describes𝑇𝐷 𝑤 = 10 𝐷𝑅
the routes (sequence of connected edges) associated with each trip;

C. Transform each route into a sequence of lat/lon points that𝑟𝑜𝑢𝑡𝑒
𝑖
 ∈ 𝐷𝑅 𝑝

𝑖
 ∈ 𝑃

describes the selected route (tip use SUMO and collect the lat/lon points). Can you
imagine a way to collect the lat/lon points without using SUMO?

D. For each apply the proposed algorithm () and verify whether𝑝
𝑖
 ∈ 𝑃 𝑚𝑎𝑝𝑚𝑎𝑡𝑐ℎ

.𝑚𝑎𝑝𝑚𝑎𝑡𝑐ℎ(𝑝
𝑖
) = 𝑟𝑜𝑢𝑡𝑒

𝑖

a. For how many routes the map matching algorithm reconstructs exactly the
route? (i.e., Jaccard coefficient equal to 1);

b. What is the total distribution of the Jaccard coefficient?

E. Reduce the "density" (number of points) as follows (Figure 1):

a. Randomly discard a fraction of points from obtaining (do not𝑑 𝑝
𝑖
 ∈ 𝑃 𝑝

𝑖
‾ ∈ 𝑃‾

discard the first and last point);
b. Vary the values of and investigate how the𝑑 ∈ {0. 1, 0. 25, 0. 5, 0. 75, 0. 9}

map-matching performance changes; i.e., plot the distribution of the Jaccard

coefficient of ;𝑚𝑎𝑝𝑚𝑎𝑡𝑐ℎ(𝑝
𝑖

‾) = 𝑟𝑜𝑢𝑡𝑒
𝑖
 ∀ 𝑝

𝑖
‾ ∈ 𝑃‾

c. For how many routes the map matching algorithm reconstructs exactly the
route? (i.e., Jaccard coefficient equal to 1).

According to the results obtained:
● When does your algorithm fail to correctly map-match a sequence of points? provide

an interpretation of why it happens.
● Is there some correlation between the length of the path (in km) and the accuracy of

the map matching algorithm?

