
Traffic simulation with SUMO

Traffic Simulation

Traffic simulation is of fundamental in many areas:

- What-if analysis;
- Traffic and road optimization;
- Traffic forecasting;
- Data collection and augmentation;
- o Traffic lights optimization.

SUMO (Simulation of Urban Mobility)

SUMO (Simulation of Urban MObility) is an **open source**, highly portable, **microscopic** and continuous multi-modal **traffic simulation system** designed to handle large networks.

Road Network

File extension: .net.xml

Road Network

File extension: .net.xml

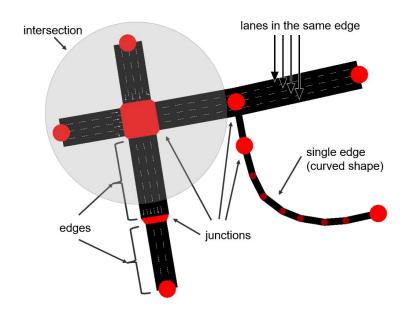
Traffic Demand

File extension: .rou.xml

Road Network

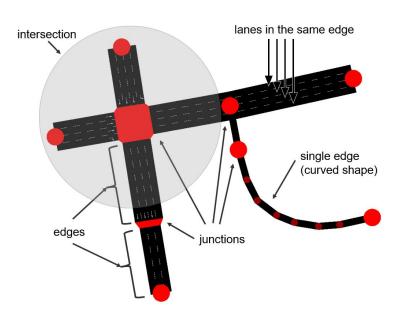
File extension: .net.xml

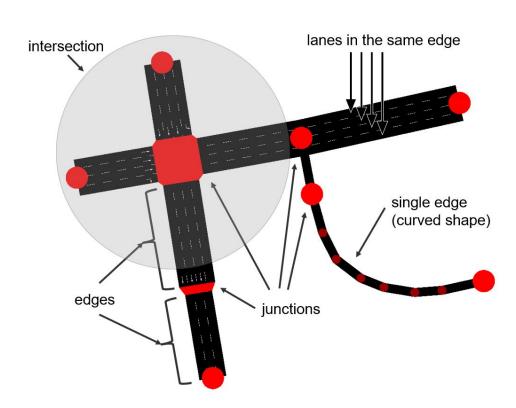
Traffic Demand

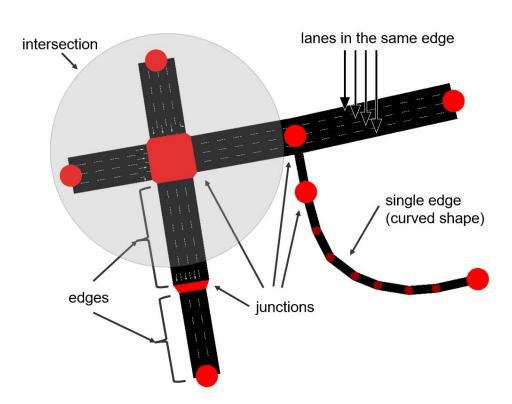

File extension: .rou.xml

Configuration File

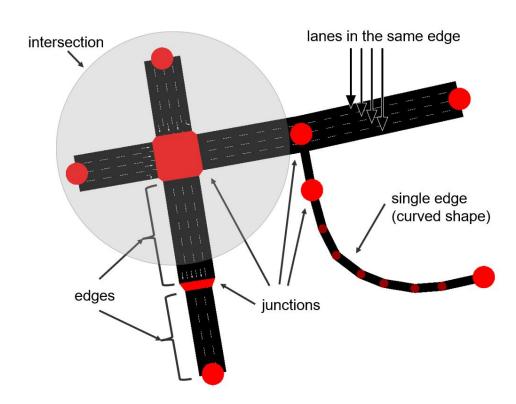
File extension: .sumocfg

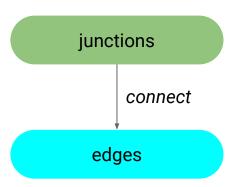

A SUMO **road network** describes the traffic-related **roads** and **intersections** the simulated vehicles run along or across.

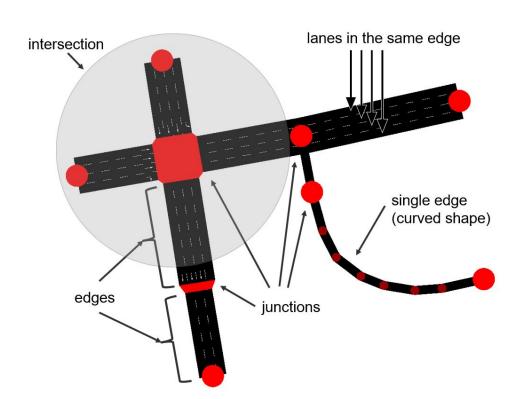


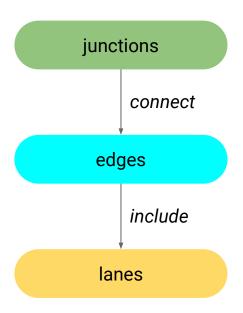

A SUMO **road network** describes the traffic-related **roads** and **intersections** the simulated vehicles run along or across.

In SUMO road networks are **directed** graphs in which


- nodes represent intersections/junctions;
- edges represent roads/streets.







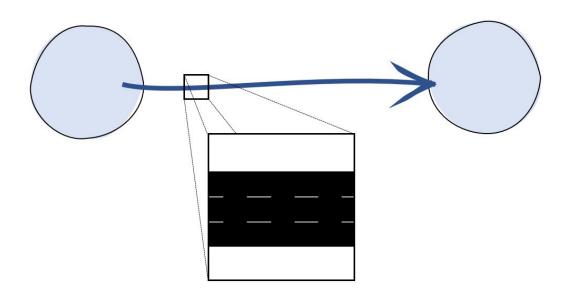
junctions

Road Network: Edges

An edge is a connection between two nodes (junctions);

Road Network: Edges

• The **attributes** of an **edge** are:


Name	Туре	Description
id	id (string)	The id of the edge
from	id (string)	The id of the node it starts at
to	id (string)	The id of the node it ends at
priority	integer	Indicates how important the road is (optional)
function	enum ("normal", "internal", "connector", "crossing", "walkingarea")	An abstract edge purpose (optional with default "normal")

Road Network: Edges

In the xml file, an edge is represented as:

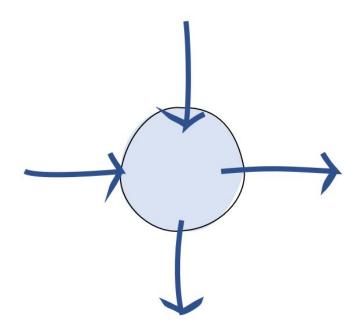
Road Network: Lanes

 Each edge includes the definitions of lanes it consists of. Generally, an edge consists of at least one lane.

Road Network: Lanes

• The **attributes** of a lane are:

Name	Туре	Description
id	id (string)	The id of the lane
index	running number (unsigned int)	A running number, starting with zero at the right-most lane
speed	float	The maximum speed allowed on this lane [m/s]
length	float	The length of this lane [m]
shape	position vector	The geometry of the lane, given by a polyline that describes the lane's center line


Road Network: Lanes

In the xml file, a lane is represented as:

```
<lane id="<ID>" index="<INDEX>" speed="<SPEED>"
length="<LENGTH>" shape="<SHAPE>"/>
```

Road Network: Junctions

 Junctions represent the area where different streams (edges) cross; they include the right-of-way rules vehicles have to follow when crossing the intersection.

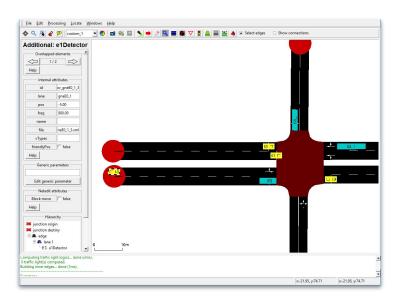
Road Network: Junctions

• The **attributes** of a junction are:

Name	Туре	Description
id	id (string)	The id of the junction
x	x-position (real)	The x-coordinate of the intersection
у	y-position (real)	The y-coordinate of the intersection
incLanes	id list	The ids of the lanes that end at the intersection.
intLanes	id list	The IDs of the lanes within the intersection
shape	position vector	The geometry of the lane, given by a polyline that describes the lane's center line.

Road Network: Junctions

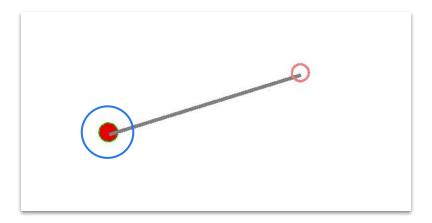
In the xml file, a junction is represented as:

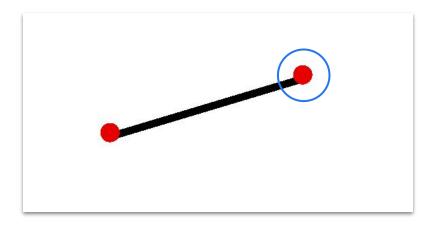

```
<junction id="<ID>" type="<JUNCTION_TYPE>" x="<X-POSITION>"

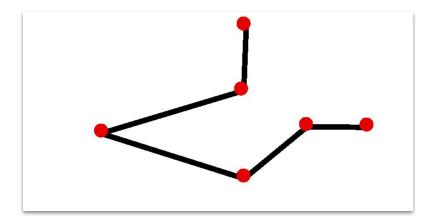
y="<Y-POSITION>" inclanes="<INCOMING_LANES>" intlanes="<INTERNAL_LANES>"

shape="<SHAPE>">
    ... requests ...
</junction>
```

Netedit


- <u>Netedit</u> is a graphical network editor included in SUMO;
- Netedit can be used to create and edit SUMO networks.


Step 1: Open netedit and select the option "**Set create edge mode**" to create an edge.


Step 2: Left click to create the **from** node of the edge.

Step 3: Left click to create the **end** node of the edge.

Step 4: Re-iterate Steps 1-3 to create more edges in the road network and save it.

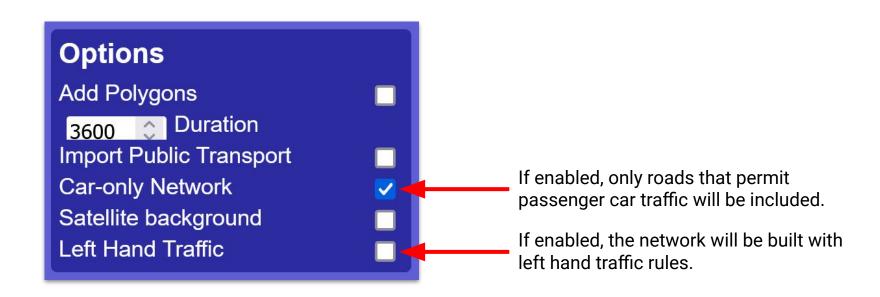
OSMWebWizard

What about **real-world** road networks?

OSMWebWizard

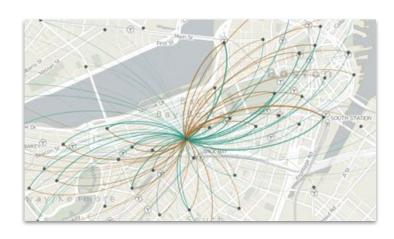
What about **real-world** road networks?

You can download **real-world** road networks in a SUMO-friendly format by using <u>OSMWebWizard</u>.


Step 1: Open OSMWebWizard and select your area of interest (e.g., Pisa). The area selection will be activated by clicking the checkbox **"Select Area"** at the blue area selection panel on the right side of the map.

Step 2: Set the following options:

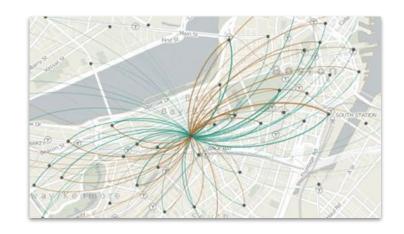
Step 2: Set the following options:



Step 3: uncheck "Cars" and click on "Generate Scenario". The road network will be downloaded and ready to be used in SUMO.

Traffic Demand

A SUMO **traffic demand** describes the traffic that will circulate on the **road network** during the simulation.



Traffic Demand

A SUMO **traffic demand** describes the traffic that will circulate on the **road network** during the simulation.

In SUMO there are two ways to define a vehicle movement:

- Routes;
- Incomplete Routes (trips and flows).

The traffic demand file **must** be sorted by departure time!

Vehicle Types

SUMO allows to define vehicle types to describe the vehicle's physical features.

Vehicle Types

The most important attributes of a **vehicle type** are:

Name	Туре	Default	Description
id	id (string)	-	The name of the vehicle type
accel	float	2.6	The acceleration ability of vehicles of this type (in m/s^2)
decel	float	4.5	The deceleration ability of vehicles of this type (in m/s^2)
maxSpee d	float	55.55 (200 km/h)	The vehicle's (technical) maximum velocity (in m/s)
length	float	5.0	The vehicle's netto-length (length) (in m)
sigma	float	0.5	Driver imperfection

Vehicle Types

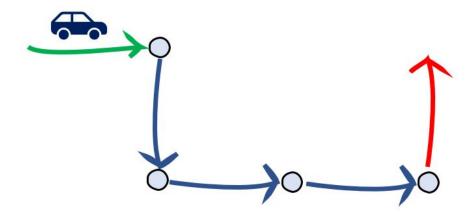
In the xml file, a vehicle type is represented as:

```
<vType id="<ID>" accel="<ACCEL>" decel="<DECEL>" sigma="<SIGMA>"

length="<LENGTH>" maxSpeed="<MAX-SPEED"/>
```

Vehicle Types

In the xml file, a vehicle type is represented as:


```
<vType id="<ID>" accel="<ACCEL>" decel="<DECEL>" sigma="<SIGMA>"
length="<LENGTH>" maxSpeed="<MAX-SPEED"/>
```

In the xml file, a default vehicle type is represented as:

```
<vType id="<ID>" vClass="<DEF_VEHICLE_CLASS>"/>
```

Traffic Demand: Routes

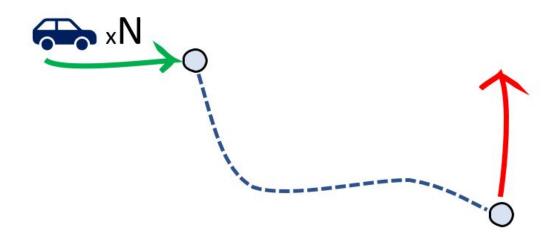
- A route is a vehicle movement defined by all the edges the vehicle will pass and the departure time.
- The sequence of edges defined in a route has to be connected!

Traffic Demand: Routes

• In the xml file, a **vehicle** which follows a **route** is represented as:

```
<vehicle id="v0" type="type1" depart="0">
    <route edges="START E1 E2 E3 END"/>
    </vehicle>
```

Traffic Demand: Routes


In the xml file, a vehicle which follows a route is represented as:

```
<vehicle id="v0" type="type1" depart="0">
   <route edges="START E1 E2 E3 END"/>
   </vehicle>
```

- A vehicle of type "type1" with id "v0" departing at time "0" with the route "START E1
 E2 E3 END" will be created;
- "START E1 E2 E3 END" must be a sequence of connected edges on the Road Network.

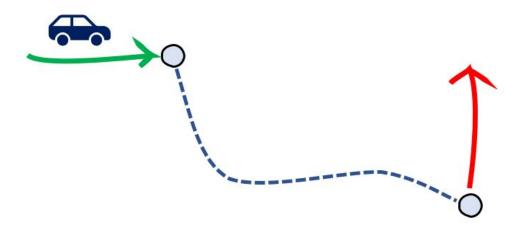
Traffic Demand: Flows

- A flow is a set of repeated vehicles defined by:
 - number of vehicles, starting edge, destination edge, first vehicle departure time and the end of departure interval

Traffic Demand: Flows

• In the xml file a **flow** represented as:

```
<flow id="f0" begin="0" end="100" number="50" type="type1"
from="START" to="END" via="Ex Ey">
  </flow>
```


Traffic Demand: Flows

In the xml file a flow represented as:

```
<flow id="f0" begin="0" end="100" number="50" type="type1"
from="START" to="END" via="Ex Ey">
  </flow>
```

- 50 vehicles of type "type1" will be created departing between timesteps "0" and "100" (at regular intervals) starting from edge "START" and ending at edge "END";
- The (optional) attribute via specifies a sequence of intermediate edges that will be traveled by vehicles to reach the destination.

• A **trip** is a vehicle movement defined by the **starting edge**, the **destination edge**, and the **departure time**.

In SUMO, vehicles cannot be associated with trips. You can use <u>duarouter</u> (next. lecture) to translate trips into routes.

In SUMO, vehicles cannot be associated with trips. You can use <u>duarouter</u> (next. lecture) to translate trips into routes.

How can we describe the movement of a vehicle specifying **only** the **starting** and **ending** edges?

(we can't use trips in SUMO)

In SUMO, vehicles cannot be associated with trips. You can use <u>duarouter</u> (next. lecture) to translate trips into routes.

How can we describe the movement of a vehicle specifying **only** the **starting** and **ending** edges?

(we can't use trips in SUMO)

By using a "trick". We can describe it using a **flow** for a **single vehicle**! I.e., number="1"

 The configuration file specifies which Road Network and Traffic Demand to use in the SUMO simulation and the simulation time interval.

```
<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">
    <input>
        <net-file value="<ROAD-NETWORK PATH>"/>
        <route-files value="<TRAFFIC-DEMAND PATH>"/>
    </input>
    <time>
        <begin value="<START TIMESTEP>"/>
        <end value="<END TIMESTEP>"/>
    </time>
</configuration>
```

```
<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">
    <input>
                                                                XML schema info
        <net-file value="<ROAD-NETWORK PATH>"/>
        <route-files value="<TRAFFIC-DEMAND PATH>"/>
    </input>
    <time>
        <begin value="<START TIMESTEP>"/>
        <end value="<END TIMESTEP>"/>
    </time>
</configuration>
```

```
<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">
    <input>
        <net-file value="<ROAD-NETWORK PATH>"/>
        <route-files value="<TRAFFIC-DEMAND PATH>"/>
    </input>
    <time>
        <begin value="<START TIMESTEP>"/>
        <end value="<END TIMESTEP>"/>
    </time>
</configuration>
```

Paths of the road network and traffic demand to simulate

```
<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">
    <input>
        <net-file value="<ROAD-NETWORK PATH>"/>
        <route-files value="<TRAFFIC-DEMAND PATH>"/>
    </input>
    <time>
        <begin value="<START TIMESTEP>"/>
                                                Time interval of
                                                the simulation
        <end value="<END TIMESTEP>"/>
                                                  (optional)
    </time>
```

</configuration>

```
<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">
    <input>
        <net-file value="<ROAD-NETWORK PATH>"/>
        <route-files value="<TRAFFIC-DEMAND PATH>"/>
    </input>
    <time>
        <begin value="<START TIMESTEP>"/>
                                                               Use this configuration
        <end value="<END TIMESTEP>"/>
                                                                file template for your
    </time>
                                                                   simulations!
</configuration>
```

In this slides you can find the material to download a "Hello SUMO" simulation.

In the material you will find:

- A road network with 14 nodes and 21 edges;
- A traffic demand describing the routes of two vehicles and and two flows (one with the via parameter);
- The configuration file to run the simulation.

Download the material <u>here</u>

In this slides you can find the material to download a "Hello SUMO" simulation.

In the material you will find:

- A road network with 14 nodes and 21 edges;
- A traffic demand describing the routes of two vehicles and and two flows (one with the via parameter);
- The **configuration file** to run the simulation.

Download the material here

Tip

Use these files as a starting point for the exercises!

• There are **two** ways to start the SUMO simulation:

There are two ways to start the SUMO simulation:

From the SUMO application $-\Box X$

- 1. Open sumo-gui;
- 2. File \rightarrow Open Simulation;
- 3. Select the configuration file;
- 4. Run the simulation.

_ 🗆 X

or

- >> sumo-gui -c <PATH_CONFIG>
- or
- >> sumo -c <PATH_CONFIG>

Resources

- Useful resources:
 - How to install SUMO
 - SUMO documentation
 - o <u>SUMO FAQ</u>
 - SUMO official tutorials

For any question contact me at <u>giuliano.cornacchia@phd.unipi.it</u>

Homeworks

to be delivered by Thursday, November 25th 2022

Homework 10.1

Download the road network of La Spezia (Italy) from OSMWebWizard: (i) Create a python function that, given a list of tuples in the form (type, n_vehicles, edge_list, departure_time) creates an xml file describing the corresponding traffic demand; use the script to compute the traffic demand for the following points. Type can be route or (ii) Create a traffic demand of 1,000 vehicles moving through a random origin and destination edges. Ensure that origin and destination are connected. Departure time is chosen uniformly at random in [0, (iii) Apply duarouter to the mobility demand for w=1, 5, 10, 15, 20. Compute, for each value of w, the total distance traveled, the difference with respect to the shortest path, and the total CO2 emissions.

Submit a (well commented) python notebook and the SUMO files.

Homework 10.2

Download the road network of La Spezia (Italy) from OSMWebWizard: (i) Create a python function that, given a list of tuples in the form (type, n_vehicles, edge_list, departure_time) create an xml file describing the corresponding traffic demand; use the script to compute the mobility demands for the following points. Type can be route or flow. (ii) Create a traffic demand of 500 vehicles moving through a random origin and destination edges. Ensure that origin and destination are connected. Departure time is chosen uniformly at random in [0, (iii) Use OpenStreetMap to compute the suggested paths for the 500 vehicles create a traffic demand to describe them. (iv) Compare the total emissions and distance traveled for the routed (ii) and non-routed (iii) traffic demands.

Submit a (well commented) python notebook and the SUMO files.