Mobility Patterns
Content of this lesson

- Global patterns
 - Trajectory distances
 - Trajectory clustering
- Local patterns
 - Flocks, Convoys & Swarms
 - Moving clusters
 - T-Patterns
Global Patterns
Clustering
(sample K-means family)

- Find k subgroups that form compact and well-separated clusters
Trajectory clustering

- Trajectories are grouped based on similarity

Trajectory Clustering

Questions:
- Which distance between trajectories?
- Which kind of clustering?
- What is a cluster ‘mean’ in our case?
 - A representative trajectory?
Trajectory Distances
Families of Trajectory Distances

- Trajectory as **set** of points
 - Single-point approaches
 - Hausdorff distance
- Trajectory as **sequence** of points
 - Fréchet distance
 - Time series distances: Euclidean, DTW & LCSS
- Trajectory as **time-stamped sequence** of points
 - Average Euclidean distance
Trajectory as set of points
Common Destination

- Select last point $Plast$ for each trajectory
- $D(T, T') = \text{Euclidean}(Plast, P'last)$
Select first point P_{first} for each trajectory

$D(T,T') = \text{Euclidean}(P_{\text{first}}, P'_{\text{first}})$
Trajectory as set of points

Hausdorff distance

- Intuition: two sets are close if every point of either set is close to some point of the other set
- Formally, given sets A and B:
 - $r(x, B) = \inf \{d(x, b) : b \in B\}$
 - $h(A, B) = \sup \{r(a, B) : a \in A\}$
 - $d_H(A, B) = \max \{h(A, B), h(B, A)\}$

- Equivalently:
 - $h(A, B) = \text{minimum buffer radius around } B \text{ that fully contains } A$
 - $d_H(A, B) = \text{symmetric version of } h()$
Trajectory as set of points
Hausdorff distance

Example $h(A,B)$
Trajectory as sequence of points
From Hausdorff to Fréchet distance

- Applied to trajectories, sometimes Hausdorff distance yields counter-intuitive results
- How far are these?

- Reasonable in a set-oriented view
- Wrong in terms of moving objects
Trajectory as sequence of points
Fréchet distance

- Intuition: equivalent of Dynamic Time Warping on continuous curves
- Formally:

\[F(A, B) = \inf_{\alpha, \beta} \max_{t \in [0,1]} \left\{ d\left(A(\alpha(t)), B(\beta(t)) \right) \right\} \]

\(\alpha\) and \(\beta\) are non-decreasing mappings from \([0,1]\) to the points along \(A\) and \(B\) in forward order

- Also described as “minimum leash length”:
 - What is the minimum length of a leash needed to stroll around the dog, given the owner’s and the dog’s trajectories?
Trajectory as sequence of points
Fréchet distance

- Back to our example
Trajectory as sequence of points
Time series distances

- Just replace “difference of two values” with “spatial distance of two points”
- IMPORTANT: most methods in this class assume constant sampling rates

- Examples:
 - Dynamic Time Warping
 - Edit Distance with Real values
 - Similar to DTW, but can remove points

Dynamic Time Warping Matching
Longest Common SubSequence
- Define a maximum radius
- Match points from the two trajectories if dist() < radius
- Find contiguous subsequences of matches
- LCSS = length of the best match
The trajectory is seen as a continuous spatio-temporal curve
Positions between input points (the GPS fixes) linearly interpolated

"Synchronized" behaviour distance
 Similar objects = almost always in the same place at the same time
Computed on the whole trajectory

\[
D(\tau_1, \tau_2) = \frac{\int_{T} d(\tau_1(t), \tau_2(t)) dt}{|T|}
\]

distance between moving objects \(\tau_1\) and \(\tau_2\) at time \(t\)
Clustering Algorithms
Which kind of clustering method?

- In principle, any distance-based algorithm
- General requirements:
 - Non-spherical clusters should be allowed
 - E.g.: A traffic jam along a road = “snake-shaped” cluster
 - Tolerance to noise
 - Low computational cost
 - Applicability to complex, possibly non-vectorial data
- A suitable candidate: Density-based clustering
 - OPTICS (Ankerst et al., 1999)
 - Evolution of standard DBSCAN
Density Based Clustering
A refresher

K-means

Density-based

cluster 1
cluster 2
cluster 3
cluster 4
Density Based Clustering

Step 1: label points as core (dense), border and noise

- Based on thresholds R (radius of neighborhood) and min_pts (min number of neighbors)
Density Based Clustering

Step 2: connect core objects that are neighbors, and put them in the same cluster
Density Based Clustering

Step 3: associate border objects to (one of) their core(s), and remove noise
Density Based Clustering

Original Points

Point types: core, border and noise
Density Based Clustering

- Resistant to Noise
- Can handle clusters of different shapes and sizes
A sample dataset

- A set of trajectories forming 4 clusters + noise (synthetic)
T-OPTICS vs. K-means

Reachability plot
(= objects reordering for distance distribution)
What’s the source of traffic in Pisa?

Trajectory clustering at work
Access patterns using T-clustering
Characterizing the access patterns: origin & time
Local Trajectory Patterns
Frequent patterns in sequences

• Frequent sequences (a.k.a. Sequential patterns)
• Input: sequences of events (or of groups)
From trajectories to sequential patterns: the easy way

- Map each trajectory to a sequence of areas
 - Predefined or driven by data

<table>
<thead>
<tr>
<th>O</th>
<th>N</th>
<th>D</th>
<th>C</th>
<th>G</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>E</td>
<td>H</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

A → B → C

D → B → E → F

C → G → H → E → I

L → M → H
From trajectories to sequential patterns: the easy way

- A “Trajectory frequent pattern” can be defined as sequential pattern over traversed areas
Moving Trajectory Flocks

- Group of objects that move together (close to each other) for a time interval
Moving Trajectory Flocks

- Group of objects that move together (close to each other) for a time interval

- Discover all possible:
 - sets of objects O, with $|O| > \text{min_size}$ and
 - time intervals T, with $|T| > \text{min_duration}$
 - such that for all timestamps $t \in T$ the points in $O|t$ are contained in a circle of radius r

Moving Trajectory Flocks
From Flocks to Convoys

- Given radius r, size m, and time threshold k
 - find all groups of objects so that each group consists of density-connected objects w.r.t. r and m
 - during at least k consecutive time points
- Basically replace circles with DBSCAN clusters
From Convoys to Swarms

- Given radius r, size m, and time threshold k
 - find all groups of objects so that each group consists of **density-connected objects** w.r.t. r and m
 - during at least k time points – **not necessarily** consecutive

swarm pattern = \{O_1, O_2, O_3, O_4\} over times \langle 1, 3 \rangle
Moving Clusters

- A **moving cluster** is a set of objects that move close to each other for a long time interval.

Formal Definition [Kalnis et al., SSTD’05]:
- A **moving cluster** is a sequence of (snapshot) clusters c_1, c_2, \ldots, c_k such that for each timestamp i ($1 \leq i < k$): $\text{Jaccard}(c_i, c_{i+1}) \geq \theta$
 - $\text{Jaccard}(c_i, c_{i+1}) = \frac{|c_i \cap c_{i+1}|}{|c_i \cup c_{i+1}|}$
 - $0 < \theta \leq 1$
- Clustering computed with density-based method (DBSCAN)
Moving Clusters

[Diagram showing clusters of sheep moving over time with annotations 75% and OK]
T-Patterns

- A sequence of visited regions, **frequently** visited in the specified order with similar transition times

\[A_0 \xrightarrow{t_1} A_1 \xrightarrow{t_2} \ldots \xrightarrow{t_n} A_n \]

\(t_i = \) transition time, \(A_i = \) spatial region

T-Patterns

Key features
- Includes typical transition times in the output
- Areas are automatically detected – not “the easy way”
Sample Trajectory Pattern

Data Source: Trucks in Athens (273 trajectories)

A → B → B and
A → B' → B''
A quick peek into
Deep Learning
Deep Learning approaches

- Sample approach: DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis
- Basic idea:
 - Trajectories
 - Embedding
 - K-means
- Integrate the clustering step in the learning of embeddings
- Three steps:
 - Enrich trajectories with context
 - LSTM-based embedding of trajectories
 - Clustering on embeddings

Enrich trajectories with context
- Identify stay areas = segment of trajectory where there is no movement, basically a stop
- Create a buffer around the area
- Select all points-of-interest located there (hotels, shops, etc.)
- Compute a feature vector, one feature per PoI category

Output
- Traj = < (x,y,[f₁,..., fₙ]), (x',y',[f'₁,..., f'_ₙ]), ... >
LSTM-based embedding of trajectories
 - Apply a encoder-decoder schema to the enriched trajectories
 - Use LSTM as basic mechanism

Objective: minimize the difference between the encoder input and the decoder output
LSTM-based embedding of trajectories
 ○ Apply an encoder-decoder schema to the enriched trajectories
 ○ Use LSTM as the basic mechanism

Objective: minimize the difference between the encoder input and the decoder output
- Clustering on embeddings
- Clustering error becomes one term of the overall loss function
- P & Q = points distribution
 - P = real data (embedded)
 - Q = clusters (Student t-distribution around centers)

\[
\ell_c = KL(P \| Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}
\]

\[
\ell_r = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{T_i} \sum_{t=1}^{T_i} (x_i^{(t)} - \hat{x}_i^{(t)})^2
\]

\[
\nabla_c
\]

\[
\nabla_r
\]

Standard auto-encoder cycle
Homeworks
Homework 7.1

Implement a simple (non-optimized) discrete version of Hausdorff distance for trajectories, i.e. considering only the GPS points and not the segments connecting them:

- Apply it to a set of taxi trips: randomly pick 10 trajectories as “query objects”; find for each of them the trips of the dataset having $d_H(.) < 500$ mt; show them (query + result) on the map.
- Write a (well commented) python notebook, where d_H is defined as a function
Define a simple “embedding” of trajectories, e.g. as trajectory length, main direction, average latitude, etc. (you decide the number of features to use); then cluster the embeddings (you decide the clustering algorithm); finally, show on a map the different clusters.

- Apply it to a (sub)set of taxi trips, e.g. SF.
- Write a (well commented) python notebook
Homework 7.3

Clustering trajectory segments (a.k.a. mimicking TraClus [1])

Strongly simplify a dataset D of trajectories (output = D'), then build a second dataset D'' containing, for each trip in D', all its segments. Then, cluster the segments in D'' using the coordinates of start and end as attributes for clustering (4 attributes per segment), and show results on a map. You decide the clustering algorithm to use.

- Apply it to a (sub)set of taxi trips, e.g. SF.
- Write a (well commented) python notebook

[1] https://pypi.org/project/traclus-python/