Preprocessing Mobility Data
Content of this lesson

● Preprocessing trajectories
 ○ trajectory filtering
 ○ point map matching
 ○ route reconstruction
 ○ trajectory compression
 ○ Semantic enrichment
 ■ stop detection / trajectory segmentation
 ■ home location detection (GPS & MobPhones)
 ■ activity recognition (POI-based)
Trajectory filtering

- Data points are sometimes affected by errors
- Errors can have huge effects on results

What is the real length of this trip?

- Two families of approaches:
 - Context-based filtering
 - Movement-based filtering
Context-based filtering

- Single points might contain errors of various kinds
Context-based filtering

- Single points might contain errors of various kinds
- **Map-based detection**: cars on the water or out of roads are noise
 - Caution: do you trust 100% your map?

Always inspect your data!
Movement-based filtering

- No context is used, just the geometry / dynamics of movement

- **Speed-based** noise filtering approach:
 - The first point of the trajectory is set as valid
 - Scan all remaining points “p” of the trajectory (time order)
 - Compute “v” = average straight-line speed between point “p” and the previous valid one
 - If “v” is huge (e.g. larger than 400 km/h)
 => remove “p” from trajectory (“p” will not be used next to estimate speeds...)
 else
 => set “p” as valid
Movement-based filtering

Exercise

- What happens in this situation? (Multiple noisy points)
 - Assume constant sampling rate 1 minute
 - Speed threshold = 240 km/h (= 4 km/minute)
Point map matching

- Points can be aligned to the road network
 - Objective 1: improve accuracy of position
 - Objective 2: remove extreme cases (ref. filtering)
 - Objective 3: translate trajectories to sequences of road IDs

- Idea: project the point to the close location in the network
 - Usually there is a maximum threshold
 - Points farther than the threshold from any road are removed as noise
Point map matching

- Point projection
 - Requires to compare each point to each road segment

- Refresher on point-to-segment distance computation
Point map matching

- In some contexts there can be multiple choices at reasonable distance
 - Simply taking the closest one is “risky”
Point map matching

- Matching points separately can lead to inconsistent results
 - Mainly road-dense areas with position accuracy comparable to road separation
- Need a trajectory-level matching
 - Linked to route reconstruction
Route reconstruction

- Sometimes the space/time gap between consecutive points is significant

What happens in the middle?
Route reconstruction

- Typical solutions:
 - Free movement => straight line, uniform speed
Route reconstruction

- Typical solutions:
 - Constrained movement => shortest path
Route reconstruction

Shortest paths can be replaced by alternative “optimal paths”

- Based on a notion of path cost
- Typical ones: path length, path duration (requires to know typical traversal times of roads)
- Alternative ones: fuel consumption, EV battery consumption, CO2 emissions, mixed costs

Algorithms applied are standard graph path optimization methods:

- Dijkstra's algorithm → efficient, requires that costs are non-negative
- Bellman-Ford algorithm → less efficient, can work with negative weights (but no cycles)

See method parameter of shortest_path function of NetworkX
Refresher: Dijkstra’s minimum cost algorithm

- Simple and efficient: $O(M + N \log N)$ time complexity
 $(M = |edges|, \ N = |nodes|)$

```javascript
function Dijkstra(Graph, source):
    for each vertex v in Graph.Vertices:
        dist[v] ← INFINITY
        prev[v] ← UNDEFINED
        add v to Q
    dist[source] ← 0

    while Q is not empty:
        u ← vertex in Q with min dist[u]
        remove u from Q

        for each neighbor v of u still in Q:
            alt ← dist[u] + Graph.Edges(u, v)
            if alt < dist[v]:
                dist[v] ← alt
                prev[v] ← u

    return dist[], prev[]
```
Trajectory Map Matching

- Assigns points to road segments
- Reconstructs the movement between consecutive points
- Ensures coherence of the overall process

- Two sample approaches:
 - Based on shortest path
 - Based on probabilities
Shortest path-based Map Matching

Used by MappyMatch

- Similar ideas as trajectory simplification
 - Match first and last point
 - Compute shortest path on the network
 - Find farthest point from shortest path
 - If distance > threshold ⇒
 - split into two parts
 - run recursively the process on both

Probability-based Map Matching

Used by pyTrack

- Consider possible point-to-road assignments, with probabilities
- Compute most likely path that visits all points in the correct sequence

Who’s Dijkstra

- 1930 - 2002
- Dutch computer scientist, programmer, software engineer, systems scientist, and science essayist
- 1972 Turing Award for “fundamental contributions to developing programming languages”
Dijkstra is famous for...

- Dijkstra’s algorithm, of course
- Contributions to “self-stabilization of program computation”
 - Won him the “ACM PODC Influential Paper Award”, later renamed “Dijkstra Prize”
- Hundreds of papers on computational and science philosophy issues
Dijkstra is famous for...

- His habit of writing everything with paper & fountain pen
- Hundreds of papers, many unpublished
 - E. W. Dijkstra Archive
- Counting should start from 0, not 1...

When dealing with a sequence of length N, the elements of which we wish to distinguish by subscript, the next vexing question is what subscript value to assign to its starting element. Adhering to convention a) yields, when starting with subscript 1, the subscript range is $1 \leq i \leq N+1$; starting with 0, however, gives the nicer range $0 \leq i \leq N$. So let us let our ordinals start at zero; an element's ordinal (subscript) equals the number of elements preceding it in the sequence. And the moral of the story is that we had better regard -after all those centuries!- zero as a most natural number.
INTERVALLO

Dijkstra the teacher

- Chalk & blackboard, no projectors
- No textbooks
- Improvisation & long pauses
- No references in papers

 "For the absence of a bibliography I offer neither explanation nor apology."

- Long exams
 - Each student was examined in Dijkstra's office or home, and an exam lasted several hours
Trajectory compression / simplification

- Many algorithms for trajectories are expensive
 - Their complexity depends on the number of points
 - Sometimes trajectories have more points than needed

- Objective of compression / simplification
 - Reduce the number of points...
 - ... without affecting the quality of results
A trajectory is a temporal sequence of time-stamped locations. Most methods focus on the spatial component.
Typical cases where points might be removed

Straight line movement

Negligible movement
Compression/simplification methods

Some standard methods for simplifying polygonal curves:

• Ramer-Douglas-Peucker, 1973
• Driemel-HarPeled-Wenk, 2010
• Imai-Iri, 1988
Ramer-Douglas-Peucker

1972 by Urs Ramer and 1973 by David Douglas and Thomas Peucker

- Mostly known as Douglas-Peucker (DP) algorithm

The most successful simplification algorithm. Used in GIS, geography, computer vision, pattern recognition...

Very easy to implement and works well in practice.
Input polygonal path $P = \langle p_1, ..., p_n \rangle$ and threshold ε

Initially $i=1$ and $j=n$

Algorithm $\text{DP}(P, i, j)$
- Find the vertex v_f between p_i and p_j farthest from p_ip_j.
- $\text{dist} :=$ the distance between v_f and p_ip_j.
- if $\text{dist} > \varepsilon$ then
 - $\text{DP}(P, v_i, v_f)$
 - $\text{DP}(P, v_f, v_j)$
- else
 - Output(v_iv_j)
Input polygonal path $P = \langle p_1, \ldots, p_n \rangle$ and threshold ε

Initially $i=1$ and $j=n$

Algorithm $DP(P, i, j)$

1. Find the vertex p_f between p_i and p_j farthest from $p_i p_j$.
2. $dist :=$ the distance between p_f and $p_i p_j$.
3. If $dist > \varepsilon$ then
 - $DP(P, p_i, p_f)$
 - $DP(P, p_f, p_j)$
4. Else
 - Output($p_i p_j$)
Ramer-Douglas-Peucker

https://cartography-playground.gitlab.io/playgrounds/douglas-peucker-algorithm/
Ramer-Douglas-Peucker

Time complexity?

Testing a shortcut between p_i and p_j takes $O(j-i)$ time.

Worst-case recursion?

Algorithm $DP(P, i, j)$

1. Find the vertex v_f farthest from p_ip_j.
2. $\text{dist} := \text{the distance between } v_f \text{ and } p_ip_j$.
3. if $\text{dist} > \varepsilon$ then
 1. $DP(P, v_i, v_f)$
 2. $DP(P, v_f, v_j)$
4. else
 1. Output(v_iv_j)

Time complexity

$T(n) = O(n) + T(n-1) = O(n^2)$
Simple simplification \((P = \langle p_1, \ldots, p_n \rangle, \varepsilon)\)

\[P' := \langle p_1 \rangle\]

\[i := 1\]

while \(i < n\) do

\[q := p_i\]

\[p_i := \text{first vertex } p_i \text{ in } \langle q, \ldots, p_n \rangle \text{ s.t. } |q-p_i| > \varepsilon\]

if no such vertex then set \(i := n\)

add \(p_i\) to \(P'\)

end

return \(P'\)
Simple simplification ($P = \langle p_1, \ldots, p_n \rangle, \epsilon$)

$P' := \langle p_1 \rangle$

i:=1

while i<n do

 q := p_i
 $p_i :=$ first vertex p_i in $\langle q, \ldots, p_n \rangle$ s.t. $|q-p_i| > \epsilon$
 if no such vertex then set i:=n
 add p_i to P'

end

return P'
Simple simplification\((P = \langle p_1, \ldots, p_n \rangle, \varepsilon)\)

\[P' := \langle p_1 \rangle \]

\[i := 1 \]

while \(i < n\) do

\[q := p_i \]

\[p_i := \text{first vertex } p_i \text{ in } \langle q, \ldots, p_n \rangle \text{ s.t. } |q-p_i| \geq \varepsilon \]

if no such vertex then set \(i := n\)

add \(p_i\) to \(P'\)

end

return \(P'\)
Simple simplification ($P = \langle p_1, \ldots, p_n \rangle, \varepsilon$)

$P' := \langle p_1 \rangle$

$i := 1$

while $i < n$ do
 $q := p_i$
 $p_i := \text{first vertex } p_i \text{ in } \langle q, \ldots, p_n \rangle \text{ s.t. } |q - p_i| > \varepsilon$
 if no such vertex then set $i := n$
 add p_i to P'
end

return P'
Simple simplification \((P = \langle p_1, ..., p_n \rangle, \varepsilon) \)

\(P':= \langle p_1 \rangle \)

\(i:=1 \)

while \(i<n \) do

\(q := p_i \)

\(p_i := \) first vertex \(p_i \) in \(\langle q, ..., p_n \rangle \) s.t. \(|q-p_i| > \varepsilon \)

if no such vertex then set \(i:=n \)

add \(p_i \) to \(P' \)

end

return \(P' \)
Simple simplification \(P' = \langle p_1, ..., p_n \rangle, \varepsilon \)

\[
P' := \langle p_1 \rangle \\
i := 1 \\
\text{while } i < n \text{ do} \\
\quad q := p_i \\
\quad p_i := \text{first vertex } p_i \text{ in } \langle q, ..., p_n \rangle \text{ s.t. } |q - p_i| > \varepsilon \\
\quad \text{if no such vertex then set } i := n \\
\quad \text{add } p_i \text{ to } P' \\
\text{end} \\
\text{return } P'
\]
Simple simplification \((P = \langle p_1, \ldots, p_n \rangle, \varepsilon)\)

\[\begin{align*}
P' &:= \langle p_1 \rangle \\
i &:= 1 \\
\text{while } i < n \text{ do} \\
& \quad q := p_i \\
& \quad p_i := \text{first vertex } p_i \text{ in } \langle q, \ldots, p_n \rangle \text{ s.t. } |q - p_i| > \varepsilon \\
& \quad \text{if no such vertex then set } i := n \\
& \quad \text{add } p_i \text{ to } P' \\
\text{end} \\
\text{return } P'
\end{align*} \]
Simple simplification\((P = \langle p_1, \ldots, p_n \rangle, \varepsilon)\)

\[P' := \langle p_1 \rangle \]

\[i := 1 \]

while \(i < n \) do

\[q := p_i \]

\[p_i := \text{first vertex } p_i \text{ in } \langle q, \ldots, p_n \rangle \text{ s.t. } |q-p_i| > \varepsilon \]

if no such vertex then set \(i := n \)

add \(p_i \) to \(P' \)

end

return \(P' \)
Simple simplification ($P = \langle p_1, ..., p_n \rangle, \varepsilon$)

$P' := \langle p_1 \rangle$

$i := 1$

while $i < n$ do

$q := p_i$

$p_i :=$ first vertex p_i in $\langle q, ..., p_n \rangle$ s.t. $|q - p_i| > \varepsilon$

if no such vertex then set $i := n$

add p_i to P'

end

return P'
Impact on speed

- What about time and speeds?
 - Time-stamps were never considered in the algorithms
 - They considered on impact on space / geometry of trajectories
 - What impact on time-related aspects, e.g. speed?

- Typically, simplification reduces average speed estimates:

\[
\text{Avg speed} = \frac{\sum s}{t_8 - t_1} > \frac{s}{t_8 - t_1}
\]
Impact on speed

- Flattening effect
How fast is a cow?
How fast is a cow?

- Trajectory compression / simplification changes the scale of the analysis
 - Simplified data → macroscopic analysis
 - Detailed data → microscopic analysis
- Several movement characteristics can be affected
How fast is a cow? Cross-Scale Analysis of Movement Data
Laube P, Purves RS (2011)

Understanding the impact of temporal scale on human movement analytics
Su, R., Dodge, S. & Goulias, K.G (2022)
How fast is a cow?

How fast is a cow? Cross-Scale Analysis of Movement Data
Laube P, Purves RS (2011)

Understanding the impact of temporal scale on human movement analytics
Su, R., Dodge, S. & Goulias, K.G (2022)
Stop detection & Trajectory segmentation

- Raw data forms a continuous stream of points
- Typical unit of analysis: the trip
- How to segment?
 - Basic idea: identify stops
Stop detection & Trajectory segmentation

- General criteria based on speed
 - If it **moves very little** (threshold T_{th_S}) over a significant **time interval** (threshold T_{th_T})
 => it is practically a stop
 - Trajectory (trip) = contiguous sequence of points between two stops

- Typical values:
 - T_{th_S} within [50, 250] meters
 - T_{th_T} within [1, 20] minutes
Stop detection & Trajectory segmentation

- Different time thresholds yield different semantics

- Which one is the best for you?
 - Application dependent
Stop detection & Trajectory segmentation

- Special cases, easier to treat
 - Stop explicitly in the data: e.g. engine status on/off
 - Simply “cut” trajectories on status transitions
 - Device is off during stops:
 - Typical of cars data
 - A stop results in a time gap in the data
 - Exceptions: short stops might remain undetected
Generalization: transportation means segmentation

- Speed / density-based approach
- Idea: faster means less of my points around me

Number of points within radius R

User’s Mobility History

- What do we get after segmentation?
- Several trajectories associated to the same subject
- Enables individual-level analyses
 - E.g. explore user’s habits, find deviations from usual, etc.
Inferring Home / Work locations

- Take all trips of a vehicle / user
- Build a “Individual Mobility Network”
 - Graph abstraction of the overall mobility based on locations (nodes) and movements (edges).
Individual Mobility Network

- Focus on start and stop points
 - Dense areas represent important places
Individual Mobility Network

- Cluster points to identify locations
Individual Mobility Network

- Each location is characterized by its frequency
Individual Mobility Network

- Trips between points are aggregated as edges between nodes/locations
Inferring Home / Work locations

- Basic approach is based on frequency only
 - Most frequent location (L0) := Home
 - Second most frequent location (L1) := Work
 - A minimum frequency threshold is applied

- Various alternatives & refinement are possible
 - Check time of stop & stay duration
 - Home: stop at 20-22, stay 8-10 hrs
 - Work: stop at 7-10, stay 6-9 hrs
Data gathered from mobile phone operator for billing purpose

<table>
<thead>
<tr>
<th>User id</th>
<th>Time start</th>
<th>Cell start</th>
<th>Cell end</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10294595</td>
<td>"2014-02-20 14:24:58"</td>
<td>"PI010U2"</td>
<td>"PI010U1"</td>
<td>48</td>
</tr>
<tr>
<td>10294595</td>
<td>"2014-02-20 18:50:22"</td>
<td>"PI002G1"</td>
<td>"PI010U2"</td>
<td>78</td>
</tr>
<tr>
<td>10294595</td>
<td>"2014-02-21 09:19:51"</td>
<td>"PI080G1"</td>
<td>"PI016G1"</td>
<td>357</td>
</tr>
</tbody>
</table>
Inferring Home / Work locations with Phone Data
The case of GSM traces - 1

- “Personal Anchor Points”: high-frequency visited places of a user
 - Select top 2 cells with max number of days with calls
 - Determine home and work through time constraints:
 - Based on average start time (AST) of calls and its deviation (std)
 - IF AST<17:00 & std<0.175 ⇒ WORK
 - ELSE HOME
Inferring Home / Work locations with Phone Data
Tha case of GSM traces - 1

- “Personal Anchor Points”

Inferring Home / Work locations with Phone Data
The case of GSM traces - 2

- Estimating users' **residence through night activity**
 - Home = region with highest frequency of calls during nighttime
 - More suitable for larger scales
 - E.g. region = municipality

Pierre Deville et al.
Dynamic population mapping using mobile phone data.
PNAS vol. 111 no. 45, pp. 15888–15893, doi: 10.1073/pnas.1408439111
Inferring Home / Work locations with Phone Data
The case of GSM traces - 2

- Sample results on national level (France)
 - estimate resident density (ρ) vs. real one (σ)

A = GSM data estimates B = Environment/Infrastructures-based estimates
Activity labelling / recognition

Objective: adding information to points / locations

Two main ways:

- Assign a single activity
- Assign a distribution of POIs / activity types
Activity labelling / recognition

Given a dataset of GPS tracks of private vehicles, annotate trajectories with the most probable activities performed by the user.

Associates the list of possible POIs (with corresponding probabilities) visited by a user moving by car when he stops.

A mapping between POIs categories and Transportation Engineering activities is necessary.
Activity labelling / recognition

- **POI collection** from available sources, e.g. from Google Places.
- **Association POI – Activity**: Each POI is associated to a "activity". For example Restaurant → Eating/Food, Library → Education, etc.
- **Basic elements/characteristics**:
 - $C(POI) = \{\text{category, opening hour, location}\}$
 - $C(Trajectory) = \{\text{stop duration, stop location, time of the day}\}$
 - $C(User) = \{\text{max walking distance}\}$
- **Computation of the probability to visit a POI/ to make an activity**: For each POI, the probability of "being visited" is a function of the POI, the trajectory and the user features.
- **Annotated trajectory**: The list of possible activities is then associated to a Stop based on the corresponding probability of visiting POIs
Activity labelling / recognition

POI assignment

Filter POIs based on time constraints

- Bank: Mon – Fri [8:00 – 15:30]
- Dentist: Mon – Sat [9:00 – 13:00] [15:30 – 18:00]
- Church: Mon – Sat [18:00 – 19:00]
 Sun [11:00 – 12:00]
- Primary School: Mon – Sat [8:00 – 13:00]
Activity labelling / recognition

What if multiple POIs match

- Select closest one

- Assign a distribution of probability:
The points of each trajectory taken separately were grouped into spatial clusters of maximal radius 150m. For groups with at least 5 points, convex hulls have been built and spatial buffers of small width (5m) around them. 1,461,582 points belong to the clusters (89% of 1,637,346); 24,935 personal places have been extracted.

Examples of extracted places

Statistical distribution of the number of places per person
INTERVALLO

Reading social media to find POIs

Topics have been assigned to 208,391 messages (14.3% of the 1,461,582 points belonging to the personal places)

<table>
<thead>
<tr>
<th>Message</th>
<th>Features</th>
<th>topicfamily</th>
<th>topics: music</th>
<th>topics: sport</th>
<th>topics: travel</th>
<th>topics: work</th>
</tr>
</thead>
<tbody>
<tr>
<td>@Tony_Tavern 1 usually: music</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: sport</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: travel</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: work</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: music</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: sport</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: travel</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: work</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: music</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: sport</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: travel</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>@Tony_Tavern 1 usually: work</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Some places did not get topic summaries (about 20% of the places)
2) In many places the topics are very much mixed
3) The topics are not necessarily representative of the place type (e.g., topics near a supermarket: family, education, work, cafe, shopping, services, health care, friends, game, private event, food, sweets, coffee)
In the meanwhile, in Seattle...

Homeworks
How fast are users?

Choose one of the datasets seen at lesson (taxis, Geolife, etc.), select at least 10 users/vehicles and compute distributions of lengths. Remove 10% of points in each trajectory and repeat the distribution. Do the same for 20%, 30%, ... 90%. How does length distribution change?

- Prepare a (well commented) python notebook
Homework 4.2

Implement a “speed-aware” trajectory compression method, that preserves speed, and test it on a dataset of your choice, e.g. a subset of taxis or Geolife users.

● Show the effects of simplification on some sample trajectories
● Study how the lengths of trajectories are affected
● Prepare a (well commented) python notebook
Homework 4.3

Inferring Home locations is often used to estimate the resident population of geographical areas. What are the existing approaches to face the problem?

- Make a research on Internet on the methods, including big data-based ones (GPS, GSM data, maybe satellite data or others) but also any other approach – e.g. coming from statistics/demography, sociology, etc.
- Prepare a blog (basically a survey) summarizing your discoveries.
Homework 4.4

Estimating GPS errors. Choose a bounding rectangle covering SF city. Download the road network/graph of that area. Select the GPS points of taxis in the same area. Assign each point P to its closest road segment R. Define pseudo-error(P) as the distance $\text{dist}(P,R)$.

- Analyze the overall distribution of the pseudo-errors. Is it coherent with GPS.gov estimates of errors?
- Are pseudo-errors the same downtown vs. out of city?
- Prepare a (well commented) python notebook
Homework 4.5

The typical filtering algorithm relies on the individual. Define this new algorithm: label the points which have less than X neighbors in the set of points of all trips within an y radius as outliers, and discard them.

- Test it on SF taxi data
- Prepare a (well commented) python notebook